% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % The @match@ function \begin{code} {-# OPTIONS -fno-warn-incomplete-patterns #-} -- The above warning supression flag is a temporary kludge. -- While working on this module you are encouraged to remove it and fix -- any warnings in the module. See -- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings -- for details module Match ( match, matchEquations, matchWrapper, matchSimply, matchSinglePat ) where #include "HsVersions.h" import {-#SOURCE#-} DsExpr (dsLExpr) import DynFlags import HsSyn import TcHsSyn import Check import CoreSyn import Literal import CoreUtils import MkCore import DsMonad import DsBinds import DsGRHSs import DsUtils import Id import DataCon import MatchCon import MatchLit import PrelInfo import Type import TysWiredIn import ListSetOps import SrcLoc import Maybes import Util import Name import Outputable import FastString \end{code} This function is a wrapper of @match@, it must be called from all the parts where it was called match, but only substitutes the firs call, .... if the associated flags are declared, warnings will be issued. It can not be called matchWrapper because this name already exists :-( JJCQ 30-Nov-1997 \begin{code} matchCheck :: DsMatchContext -> [Id] -- Vars rep'ing the exprs we're matching with -> Type -- Type of the case expression -> [EquationInfo] -- Info about patterns, etc. (type synonym below) -> DsM MatchResult -- Desugared result! matchCheck ctx vars ty qs = do dflags <- getDOptsDs matchCheck_really dflags ctx vars ty qs matchCheck_really :: DynFlags -> DsMatchContext -> [Id] -> Type -> [EquationInfo] -> DsM MatchResult matchCheck_really dflags ctx vars ty qs | incomplete && shadow = do dsShadowWarn ctx eqns_shadow dsIncompleteWarn ctx pats match vars ty qs | incomplete = do dsIncompleteWarn ctx pats match vars ty qs | shadow = do dsShadowWarn ctx eqns_shadow match vars ty qs | otherwise = match vars ty qs where (pats, eqns_shadow) = check qs incomplete = want_incomplete && (notNull pats) want_incomplete = case ctx of DsMatchContext RecUpd _ -> dopt Opt_WarnIncompletePatternsRecUpd dflags _ -> dopt Opt_WarnIncompletePatterns dflags shadow = dopt Opt_WarnOverlappingPatterns dflags && not (null eqns_shadow) \end{code} This variable shows the maximum number of lines of output generated for warnings. It will limit the number of patterns/equations displayed to@ maximum_output@. (ToDo: add command-line option?) \begin{code} maximum_output :: Int maximum_output = 4 \end{code} The next two functions create the warning message. \begin{code} dsShadowWarn :: DsMatchContext -> [EquationInfo] -> DsM () dsShadowWarn ctx@(DsMatchContext kind loc) qs = putSrcSpanDs loc (warnDs warn) where warn | qs `lengthExceeds` maximum_output = pp_context ctx (ptext (sLit "are overlapped")) (\ f -> vcat (map (ppr_eqn f kind) (take maximum_output qs)) $$ ptext (sLit "...")) | otherwise = pp_context ctx (ptext (sLit "are overlapped")) (\ f -> vcat $ map (ppr_eqn f kind) qs) dsIncompleteWarn :: DsMatchContext -> [ExhaustivePat] -> DsM () dsIncompleteWarn ctx@(DsMatchContext kind loc) pats = putSrcSpanDs loc (warnDs warn) where warn = pp_context ctx (ptext (sLit "are non-exhaustive")) (\_ -> hang (ptext (sLit "Patterns not matched:")) 4 ((vcat $ map (ppr_incomplete_pats kind) (take maximum_output pats)) $$ dots)) dots | pats `lengthExceeds` maximum_output = ptext (sLit "...") | otherwise = empty pp_context :: DsMatchContext -> SDoc -> ((SDoc -> SDoc) -> SDoc) -> SDoc pp_context (DsMatchContext kind _loc) msg rest_of_msg_fun = vcat [ptext (sLit "Pattern match(es)") <+> msg, sep [ptext (sLit "In") <+> ppr_match <> char ':', nest 4 (rest_of_msg_fun pref)]] where (ppr_match, pref) = case kind of FunRhs fun _ -> (pprMatchContext kind, \ pp -> ppr fun <+> pp) _ -> (pprMatchContext kind, \ pp -> pp) ppr_pats :: Outputable a => [a] -> SDoc ppr_pats pats = sep (map ppr pats) ppr_shadow_pats :: HsMatchContext Name -> [Pat Id] -> SDoc ppr_shadow_pats kind pats = sep [ppr_pats pats, matchSeparator kind, ptext (sLit "...")] ppr_incomplete_pats :: HsMatchContext Name -> ExhaustivePat -> SDoc ppr_incomplete_pats _ (pats,[]) = ppr_pats pats ppr_incomplete_pats _ (pats,constraints) = sep [ppr_pats pats, ptext (sLit "with"), sep (map ppr_constraint constraints)] ppr_constraint :: (Name,[HsLit]) -> SDoc ppr_constraint (var,pats) = sep [ppr var, ptext (sLit "`notElem`"), ppr pats] ppr_eqn :: (SDoc -> SDoc) -> HsMatchContext Name -> EquationInfo -> SDoc ppr_eqn prefixF kind eqn = prefixF (ppr_shadow_pats kind (eqn_pats eqn)) \end{code} %************************************************************************ %* * The main matching function %* * %************************************************************************ The function @match@ is basically the same as in the Wadler chapter, except it is monadised, to carry around the name supply, info about annotations, etc. Notes on @match@'s arguments, assuming $m$ equations and $n$ patterns: \begin{enumerate} \item A list of $n$ variable names, those variables presumably bound to the $n$ expressions being matched against the $n$ patterns. Using the list of $n$ expressions as the first argument showed no benefit and some inelegance. \item The second argument, a list giving the ``equation info'' for each of the $m$ equations: \begin{itemize} \item the $n$ patterns for that equation, and \item a list of Core bindings [@(Id, CoreExpr)@ pairs] to be ``stuck on the front'' of the matching code, as in: \begin{verbatim} let in \end{verbatim} \item and finally: (ToDo: fill in) The right way to think about the ``after-match function'' is that it is an embryonic @CoreExpr@ with a ``hole'' at the end for the final ``else expression''. \end{itemize} There is a type synonym, @EquationInfo@, defined in module @DsUtils@. An experiment with re-ordering this information about equations (in particular, having the patterns available in column-major order) showed no benefit. \item A default expression---what to evaluate if the overall pattern-match fails. This expression will (almost?) always be a measly expression @Var@, unless we know it will only be used once (as we do in @glue_success_exprs@). Leaving out this third argument to @match@ (and slamming in lots of @Var "fail"@s) is a positively {\em bad} idea, because it makes it impossible to share the default expressions. (Also, it stands no chance of working in our post-upheaval world of @Locals@.) \end{enumerate} Note: @match@ is often called via @matchWrapper@ (end of this module), a function that does much of the house-keeping that goes with a call to @match@. It is also worth mentioning the {\em typical} way a block of equations is desugared with @match@. At each stage, it is the first column of patterns that is examined. The steps carried out are roughly: \begin{enumerate} \item Tidy the patterns in column~1 with @tidyEqnInfo@ (this may add bindings to the second component of the equation-info): \begin{itemize} \item Remove the `as' patterns from column~1. \item Make all constructor patterns in column~1 into @ConPats@, notably @ListPats@ and @TuplePats@. \item Handle any irrefutable (or ``twiddle'') @LazyPats@. \end{itemize} \item Now {\em unmix} the equations into {\em blocks} [w\/ local function @unmix_eqns@], in which the equations in a block all have variable patterns in column~1, or they all have constructor patterns in ... (see ``the mixture rule'' in SLPJ). \item Call @matchEqnBlock@ on each block of equations; it will do the appropriate thing for each kind of column-1 pattern, usually ending up in a recursive call to @match@. \end{enumerate} We are a little more paranoid about the ``empty rule'' (SLPJ, p.~87) than the Wadler-chapter code for @match@ (p.~93, first @match@ clause). And gluing the ``success expressions'' together isn't quite so pretty. This (more interesting) clause of @match@ uses @tidy_and_unmix_eqns@ (a)~to get `as'- and `twiddle'-patterns out of the way (tidying), and (b)~to do ``the mixture rule'' (SLPJ, p.~88) [which really {\em un}mixes the equations], producing a list of equation-info blocks, each block having as its first column of patterns either all constructors, or all variables (or similar beasts), etc. @match_unmixed_eqn_blks@ simply takes the place of the @foldr@ in the Wadler-chapter @match@ (p.~93, last clause), and @match_unmixed_blk@ corresponds roughly to @matchVarCon@. \begin{code} match :: [Id] -- Variables rep\'ing the exprs we\'re matching with -> Type -- Type of the case expression -> [EquationInfo] -- Info about patterns, etc. (type synonym below) -> DsM MatchResult -- Desugared result! match [] ty eqns = ASSERT2( not (null eqns), ppr ty ) return (foldr1 combineMatchResults match_results) where match_results = [ ASSERT( null (eqn_pats eqn) ) eqn_rhs eqn | eqn <- eqns ] match vars@(v:_) ty eqns = ASSERT( not (null eqns ) ) do { -- Tidy the first pattern, generating -- auxiliary bindings if necessary (aux_binds, tidy_eqns) <- mapAndUnzipM (tidyEqnInfo v) eqns -- Group the equations and match each group in turn ; let grouped = (groupEquations tidy_eqns) -- print the view patterns that are commoned up to help debug ; ifOptM Opt_D_dump_view_pattern_commoning (debug grouped) ; match_results <- mapM match_group grouped ; return (adjustMatchResult (foldr1 (.) aux_binds) $ foldr1 combineMatchResults match_results) } where dropGroup :: [(PatGroup,EquationInfo)] -> [EquationInfo] dropGroup = map snd match_group :: [(PatGroup,EquationInfo)] -> DsM MatchResult match_group eqns@((group,_) : _) = case group of PgAny -> matchVariables vars ty (dropGroup eqns) PgCon _ -> matchConFamily vars ty (subGroups eqns) PgLit _ -> matchLiterals vars ty (subGroups eqns) PgN _ -> matchNPats vars ty (subGroups eqns) PgNpK _ -> matchNPlusKPats vars ty (dropGroup eqns) PgBang -> matchBangs vars ty (dropGroup eqns) PgCo _ -> matchCoercion vars ty (dropGroup eqns) PgView _ _ -> matchView vars ty (dropGroup eqns) -- FIXME: we should also warn about view patterns that should be -- commoned up but are not -- print some stuff to see what's getting grouped -- use -dppr-debug to see the resolution of overloaded lits debug eqns = let gs = map (\group -> foldr (\ (p,_) -> \acc -> case p of PgView e _ -> e:acc _ -> acc) [] group) eqns maybeWarn [] = return () maybeWarn l = warnDs (vcat l) in maybeWarn $ (map (\g -> text "Putting these view expressions into the same case:" <+> (ppr g)) (filter (not . null) gs)) matchVariables :: [Id] -> Type -> [EquationInfo] -> DsM MatchResult -- Real true variables, just like in matchVar, SLPJ p 94 -- No binding to do: they'll all be wildcards by now (done in tidy) matchVariables (_:vars) ty eqns = match vars ty (shiftEqns eqns) matchBangs :: [Id] -> Type -> [EquationInfo] -> DsM MatchResult matchBangs (var:vars) ty eqns = do { match_result <- match (var:vars) ty (map decomposeFirst_Bang eqns) ; return (mkEvalMatchResult var ty match_result) } matchCoercion :: [Id] -> Type -> [EquationInfo] -> DsM MatchResult -- Apply the coercion to the match variable and then match that matchCoercion (var:vars) ty (eqns@(eqn1:_)) = do { let CoPat co pat _ = firstPat eqn1 ; var' <- newUniqueId (idName var) (hsPatType pat) ; match_result <- match (var':vars) ty (map decomposeFirst_Coercion eqns) ; rhs <- dsCoercion co (return (Var var)) ; return (mkCoLetMatchResult (NonRec var' rhs) match_result) } matchView :: [Id] -> Type -> [EquationInfo] -> DsM MatchResult -- Apply the view function to the match variable and then match that matchView (var:vars) ty (eqns@(eqn1:_)) = do { -- we could pass in the expr from the PgView, -- but this needs to extract the pat anyway -- to figure out the type of the fresh variable let ViewPat viewExpr (L _ pat) _ = firstPat eqn1 -- do the rest of the compilation ; var' <- newUniqueId (idName var) (hsPatType pat) ; match_result <- match (var':vars) ty (map decomposeFirst_View eqns) -- compile the view expressions ; viewExpr' <- dsLExpr viewExpr ; return (mkViewMatchResult var' viewExpr' var match_result) } -- decompose the first pattern and leave the rest alone decomposeFirstPat :: (Pat Id -> Pat Id) -> EquationInfo -> EquationInfo decomposeFirstPat extractpat (eqn@(EqnInfo { eqn_pats = pat : pats })) = eqn { eqn_pats = extractpat pat : pats} decomposeFirst_Coercion, decomposeFirst_Bang, decomposeFirst_View :: EquationInfo -> EquationInfo decomposeFirst_Coercion = decomposeFirstPat (\ (CoPat _ pat _) -> pat) decomposeFirst_Bang = decomposeFirstPat (\ (BangPat pat ) -> unLoc pat) decomposeFirst_View = decomposeFirstPat (\ (ViewPat _ pat _) -> unLoc pat) \end{code} %************************************************************************ %* * Tidying patterns %* * %************************************************************************ Tidy up the leftmost pattern in an @EquationInfo@, given the variable @v@ which will be scrutinised. This means: \begin{itemize} \item Replace variable patterns @x@ (@x /= v@) with the pattern @_@, together with the binding @x = v@. \item Replace the `as' pattern @x@@p@ with the pattern p and a binding @x = v@. \item Removing lazy (irrefutable) patterns (you don't want to know...). \item Converting explicit tuple-, list-, and parallel-array-pats into ordinary @ConPats@. \item Convert the literal pat "" to []. \end{itemize} The result of this tidying is that the column of patterns will include {\em only}: \begin{description} \item[@WildPats@:] The @VarPat@ information isn't needed any more after this. \item[@ConPats@:] @ListPats@, @TuplePats@, etc., are all converted into @ConPats@. \item[@LitPats@ and @NPats@:] @LitPats@/@NPats@ of ``known friendly types'' (Int, Char, Float, Double, at least) are converted to unboxed form; e.g., \tr{(NPat (HsInt i) _ _)} is converted to: \begin{verbatim} (ConPat I# _ _ [LitPat (HsIntPrim i)]) \end{verbatim} \end{description} \begin{code} tidyEqnInfo :: Id -> EquationInfo -> DsM (DsWrapper, EquationInfo) -- DsM'd because of internal call to dsLHsBinds -- and mkSelectorBinds. -- "tidy1" does the interesting stuff, looking at -- one pattern and fiddling the list of bindings. -- -- POST CONDITION: head pattern in the EqnInfo is -- WildPat -- ConPat -- NPat -- LitPat -- NPlusKPat -- but no other tidyEqnInfo v eqn@(EqnInfo { eqn_pats = pat : pats }) = do (wrap, pat') <- tidy1 v pat return (wrap, eqn { eqn_pats = do pat' : pats }) tidy1 :: Id -- The Id being scrutinised -> Pat Id -- The pattern against which it is to be matched -> DsM (DsWrapper, -- Extra bindings to do before the match Pat Id) -- Equivalent pattern ------------------------------------------------------- -- (pat', mr') = tidy1 v pat mr -- tidies the *outer level only* of pat, giving pat' -- It eliminates many pattern forms (as-patterns, variable patterns, -- list patterns, etc) yielding one of: -- WildPat -- ConPatOut -- LitPat -- NPat -- NPlusKPat tidy1 v (ParPat pat) = tidy1 v (unLoc pat) tidy1 v (SigPatOut pat _) = tidy1 v (unLoc pat) tidy1 _ (WildPat ty) = return (idDsWrapper, WildPat ty) -- case v of { x -> mr[] } -- = case v of { _ -> let x=v in mr[] } tidy1 v (VarPat var) = return (wrapBind var v, WildPat (idType var)) tidy1 v (VarPatOut var binds) = do { prs <- dsLHsBinds binds ; return (wrapBind var v . mkCoreLet (Rec prs), WildPat (idType var)) } -- case v of { x@p -> mr[] } -- = case v of { p -> let x=v in mr[] } tidy1 v (AsPat (L _ var) pat) = do { (wrap, pat') <- tidy1 v (unLoc pat) ; return (wrapBind var v . wrap, pat') } {- now, here we handle lazy patterns: tidy1 v ~p bs = (v, v1 = case v of p -> v1 : v2 = case v of p -> v2 : ... : bs ) where the v_i's are the binders in the pattern. ToDo: in "v_i = ... -> v_i", are the v_i's really the same thing? The case expr for v_i is just: match [v] [(p, [], \ x -> Var v_i)] any_expr -} tidy1 v (LazyPat pat) = do { sel_prs <- mkSelectorBinds pat (Var v) ; let sel_binds = [NonRec b rhs | (b,rhs) <- sel_prs] ; return (mkCoreLets sel_binds, WildPat (idType v)) } tidy1 _ (ListPat pats ty) = return (idDsWrapper, unLoc list_ConPat) where list_ty = mkListTy ty list_ConPat = foldr (\ x y -> mkPrefixConPat consDataCon [x, y] list_ty) (mkNilPat list_ty) pats -- Introduce fake parallel array constructors to be able to handle parallel -- arrays with the existing machinery for constructor pattern tidy1 _ (PArrPat pats ty) = return (idDsWrapper, unLoc parrConPat) where arity = length pats parrConPat = mkPrefixConPat (parrFakeCon arity) pats (mkPArrTy ty) tidy1 _ (TuplePat pats boxity ty) = return (idDsWrapper, unLoc tuple_ConPat) where arity = length pats tuple_ConPat = mkPrefixConPat (tupleCon boxity arity) pats ty -- LitPats: we *might* be able to replace these w/ a simpler form tidy1 _ (LitPat lit) = return (idDsWrapper, tidyLitPat lit) -- NPats: we *might* be able to replace these w/ a simpler form tidy1 _ (NPat lit mb_neg eq) = return (idDsWrapper, tidyNPat lit mb_neg eq) -- Everything else goes through unchanged... tidy1 _ non_interesting_pat = return (idDsWrapper, non_interesting_pat) \end{code} \noindent {\bf Previous @matchTwiddled@ stuff:} Now we get to the only interesting part; note: there are choices for translation [from Simon's notes]; translation~1: \begin{verbatim} deTwiddle [s,t] e \end{verbatim} returns \begin{verbatim} [ w = e, s = case w of [s,t] -> s t = case w of [s,t] -> t ] \end{verbatim} Here \tr{w} is a fresh variable, and the \tr{w}-binding prevents multiple evaluation of \tr{e}. An alternative translation (No.~2): \begin{verbatim} [ w = case e of [s,t] -> (s,t) s = case w of (s,t) -> s t = case w of (s,t) -> t ] \end{verbatim} %************************************************************************ %* * \subsubsection[improved-unmixing]{UNIMPLEMENTED idea for improved unmixing} %* * %************************************************************************ We might be able to optimise unmixing when confronted by only-one-constructor-possible, of which tuples are the most notable examples. Consider: \begin{verbatim} f (a,b,c) ... = ... f d ... (e:f) = ... f (g,h,i) ... = ... f j ... = ... \end{verbatim} This definition would normally be unmixed into four equation blocks, one per equation. But it could be unmixed into just one equation block, because if the one equation matches (on the first column), the others certainly will. You have to be careful, though; the example \begin{verbatim} f j ... = ... ------------------- f (a,b,c) ... = ... f d ... (e:f) = ... f (g,h,i) ... = ... \end{verbatim} {\em must} be broken into two blocks at the line shown; otherwise, you are forcing unnecessary evaluation. In any case, the top-left pattern always gives the cue. You could then unmix blocks into groups of... \begin{description} \item[all variables:] As it is now. \item[constructors or variables (mixed):] Need to make sure the right names get bound for the variable patterns. \item[literals or variables (mixed):] Presumably just a variant on the constructor case (as it is now). \end{description} %************************************************************************ %* * %* matchWrapper: a convenient way to call @match@ * %* * %************************************************************************ \subsection[matchWrapper]{@matchWrapper@: a convenient interface to @match@} Calls to @match@ often involve similar (non-trivial) work; that work is collected here, in @matchWrapper@. This function takes as arguments: \begin{itemize} \item Typchecked @Matches@ (of a function definition, or a case or lambda expression)---the main input; \item An error message to be inserted into any (runtime) pattern-matching failure messages. \end{itemize} As results, @matchWrapper@ produces: \begin{itemize} \item A list of variables (@Locals@) that the caller must ``promise'' to bind to appropriate values; and \item a @CoreExpr@, the desugared output (main result). \end{itemize} The main actions of @matchWrapper@ include: \begin{enumerate} \item Flatten the @[TypecheckedMatch]@ into a suitable list of @EquationInfo@s. \item Create as many new variables as there are patterns in a pattern-list (in any one of the @EquationInfo@s). \item Create a suitable ``if it fails'' expression---a call to @error@ using the error-string input; the {\em type} of this fail value can be found by examining one of the RHS expressions in one of the @EquationInfo@s. \item Call @match@ with all of this information! \end{enumerate} \begin{code} matchWrapper :: HsMatchContext Name -- For shadowing warning messages -> MatchGroup Id -- Matches being desugared -> DsM ([Id], CoreExpr) -- Results \end{code} There is one small problem with the Lambda Patterns, when somebody writes something similar to: \begin{verbatim} (\ (x:xs) -> ...) \end{verbatim} he/she don't want a warning about incomplete patterns, that is done with the flag @opt_WarnSimplePatterns@. This problem also appears in the: \begin{itemize} \item @do@ patterns, but if the @do@ can fail it creates another equation if the match can fail (see @DsExpr.doDo@ function) \item @let@ patterns, are treated by @matchSimply@ List Comprension Patterns, are treated by @matchSimply@ also \end{itemize} We can't call @matchSimply@ with Lambda patterns, due to the fact that lambda patterns can have more than one pattern, and match simply only accepts one pattern. JJQC 30-Nov-1997 \begin{code} matchWrapper ctxt (MatchGroup matches match_ty) = ASSERT( notNull matches ) do { eqns_info <- mapM mk_eqn_info matches ; new_vars <- selectMatchVars arg_pats ; result_expr <- matchEquations ctxt new_vars eqns_info rhs_ty ; return (new_vars, result_expr) } where arg_pats = map unLoc (hsLMatchPats (head matches)) n_pats = length arg_pats (_, rhs_ty) = splitFunTysN n_pats match_ty mk_eqn_info (L _ (Match pats _ grhss)) = do { let upats = map unLoc pats ; match_result <- dsGRHSs ctxt upats grhss rhs_ty ; return (EqnInfo { eqn_pats = upats, eqn_rhs = match_result}) } matchEquations :: HsMatchContext Name -> [Id] -> [EquationInfo] -> Type -> DsM CoreExpr matchEquations ctxt vars eqns_info rhs_ty = do { dflags <- getDOptsDs ; locn <- getSrcSpanDs ; let ds_ctxt = DsMatchContext ctxt locn error_string = matchContextErrString ctxt ; match_result <- match_fun dflags ds_ctxt vars rhs_ty eqns_info ; fail_expr <- mkErrorAppDs pAT_ERROR_ID rhs_ty error_string ; extractMatchResult match_result fail_expr } where match_fun dflags ds_ctxt = case ctxt of LambdaExpr | dopt Opt_WarnSimplePatterns dflags -> matchCheck ds_ctxt | otherwise -> match _ -> matchCheck ds_ctxt \end{code} %************************************************************************ %* * \subsection[matchSimply]{@matchSimply@: match a single expression against a single pattern} %* * %************************************************************************ @mkSimpleMatch@ is a wrapper for @match@ which deals with the situation where we want to match a single expression against a single pattern. It returns an expression. \begin{code} matchSimply :: CoreExpr -- Scrutinee -> HsMatchContext Name -- Match kind -> LPat Id -- Pattern it should match -> CoreExpr -- Return this if it matches -> CoreExpr -- Return this if it doesn't -> DsM CoreExpr matchSimply scrut hs_ctx pat result_expr fail_expr = do let match_result = cantFailMatchResult result_expr rhs_ty = exprType fail_expr -- Use exprType of fail_expr, because won't refine in the case of failure! match_result' <- matchSinglePat scrut hs_ctx pat rhs_ty match_result extractMatchResult match_result' fail_expr matchSinglePat :: CoreExpr -> HsMatchContext Name -> LPat Id -> Type -> MatchResult -> DsM MatchResult matchSinglePat (Var var) hs_ctx (L _ pat) ty match_result = do dflags <- getDOptsDs locn <- getSrcSpanDs let match_fn dflags | dopt Opt_WarnSimplePatterns dflags = matchCheck ds_ctx | otherwise = match where ds_ctx = DsMatchContext hs_ctx locn match_fn dflags [var] ty [EqnInfo { eqn_pats = [pat], eqn_rhs = match_result }] matchSinglePat scrut hs_ctx pat ty match_result = do var <- selectSimpleMatchVarL pat match_result' <- matchSinglePat (Var var) hs_ctx pat ty match_result return (adjustMatchResult (bindNonRec var scrut) match_result') \end{code} %************************************************************************ %* * Pattern classification %* * %************************************************************************ \begin{code} data PatGroup = PgAny -- Immediate match: variables, wildcards, -- lazy patterns | PgCon DataCon -- Constructor patterns (incl list, tuple) | PgLit Literal -- Literal patterns | PgN Literal -- Overloaded literals | PgNpK Literal -- n+k patterns | PgBang -- Bang patterns | PgCo Type -- Coercion patterns; the type is the type -- of the pattern *inside* | PgView (LHsExpr Id) -- view pattern (e -> p): -- the LHsExpr is the expression e Type -- the Type is the type of p (equivalently, the result type of e) groupEquations :: [EquationInfo] -> [[(PatGroup, EquationInfo)]] -- If the result is of form [g1, g2, g3], -- (a) all the (pg,eq) pairs in g1 have the same pg -- (b) none of the gi are empty groupEquations eqns = runs same_gp [(patGroup (firstPat eqn), eqn) | eqn <- eqns] where same_gp :: (PatGroup,EquationInfo) -> (PatGroup,EquationInfo) -> Bool (pg1,_) `same_gp` (pg2,_) = pg1 `sameGroup` pg2 subGroups :: [(PatGroup, EquationInfo)] -> [[EquationInfo]] -- Input is a particular group. The result sub-groups the -- equations by with particular constructor, literal etc they match. -- The order may be swizzled, so the matching should be order-independent subGroups groups = map (map snd) (equivClasses cmp groups) where (pg1, _) `cmp` (pg2, _) = pg1 `cmp_pg` pg2 (PgCon c1) `cmp_pg` (PgCon c2) = c1 `compare` c2 (PgLit l1) `cmp_pg` (PgLit l2) = l1 `compare` l2 (PgN l1) `cmp_pg` (PgN l2) = l1 `compare` l2 -- These are the only cases that are every sub-grouped sameGroup :: PatGroup -> PatGroup -> Bool -- Same group means that a single case expression -- or test will suffice to match both, *and* the order -- of testing within the group is insignificant. sameGroup PgAny PgAny = True sameGroup PgBang PgBang = True sameGroup (PgCon _) (PgCon _) = True -- One case expression sameGroup (PgLit _) (PgLit _) = True -- One case expression sameGroup (PgN _) (PgN _) = True -- Needs conditionals sameGroup (PgNpK l1) (PgNpK l2) = l1==l2 -- Order is significant -- See Note [Order of n+k] sameGroup (PgCo t1) (PgCo t2) = t1 `coreEqType` t2 -- CoPats are in the same goup only if the type of the -- enclosed pattern is the same. The patterns outside the CoPat -- always have the same type, so this boils down to saying that -- the two coercions are identical. sameGroup (PgView e1 t1) (PgView e2 t2) = viewLExprEq (e1,t1) (e2,t2) -- ViewPats are in the same gorup iff the expressions -- are "equal"---conservatively, we use syntactic equality sameGroup _ _ = False -- an approximation of syntactic equality used for determining when view -- exprs are in the same group. -- this function can always safely return false; -- but doing so will result in the application of the view function being repeated. -- -- currently: compare applications of literals and variables -- and anything else that we can do without involving other -- HsSyn types in the recursion -- -- NB we can't assume that the two view expressions have the same type. Consider -- f (e1 -> True) = ... -- f (e2 -> "hi") = ... viewLExprEq :: (LHsExpr Id,Type) -> (LHsExpr Id,Type) -> Bool viewLExprEq (e1,_) (e2,_) = let -- short name for recursive call on unLoc lexp e e' = exp (unLoc e) (unLoc e') -- check that two lists have the same length -- and that they match up pairwise lexps [] [] = True lexps [] (_:_) = False lexps (_:_) [] = False lexps (x:xs) (y:ys) = lexp x y && lexps xs ys -- conservative, in that it demands that wrappers be -- syntactically identical and doesn't look under binders -- -- coarser notions of equality are possible -- (e.g., reassociating compositions, -- equating different ways of writing a coercion) wrap WpHole WpHole = True wrap (WpCompose w1 w2) (WpCompose w1' w2') = wrap w1 w1' && wrap w2 w2' wrap (WpCast c) (WpCast c') = tcEqType c c' wrap (WpApp d) (WpApp d') = d == d' wrap (WpTyApp t) (WpTyApp t') = tcEqType t t' -- Enhancement: could implement equality for more wrappers -- if it seems useful (lams and lets) wrap _ _ = False -- real comparison is on HsExpr's -- strip parens exp (HsPar (L _ e)) e' = exp e e' exp e (HsPar (L _ e')) = exp e e' -- because the expressions do not necessarily have the same type, -- we have to compare the wrappers exp (HsWrap h e) (HsWrap h' e') = wrap h h' && exp e e' exp (HsVar i) (HsVar i') = i == i' -- the instance for IPName derives using the id, so this works if the -- above does exp (HsIPVar i) (HsIPVar i') = i == i' exp (HsOverLit l) (HsOverLit l') = -- overloaded lits are equal if they have the same type -- and the data is the same. -- this is coarser than comparing the SyntaxExpr's in l and l', -- which resolve the overloading (e.g., fromInteger 1), -- because these expressions get written as a bunch of different variables -- (presumably to improve sharing) tcEqType (overLitType l) (overLitType l') && l == l' -- comparing the constants seems right exp (HsLit l) (HsLit l') = l == l' exp (HsApp e1 e2) (HsApp e1' e2') = lexp e1 e1' && lexp e2 e2' -- the fixities have been straightened out by now, so it's safe -- to ignore them? exp (OpApp l o _ ri) (OpApp l' o' _ ri') = lexp l l' && lexp o o' && lexp ri ri' exp (NegApp e n) (NegApp e' n') = lexp e e' && exp n n' exp (SectionL e1 e2) (SectionL e1' e2') = lexp e1 e1' && lexp e2 e2' exp (SectionR e1 e2) (SectionR e1' e2') = lexp e1 e1' && lexp e2 e2' exp (HsIf e e1 e2) (HsIf e' e1' e2') = lexp e e' && lexp e1 e1' && lexp e2 e2' exp (ExplicitList _ ls) (ExplicitList _ ls') = lexps ls ls' exp (ExplicitPArr _ ls) (ExplicitPArr _ ls') = lexps ls ls' exp (ExplicitTuple ls _) (ExplicitTuple ls' _) = lexps ls ls' -- Enhancement: could implement equality for more expressions -- if it seems useful exp _ _ = False in lexp e1 e2 patGroup :: Pat Id -> PatGroup patGroup (WildPat {}) = PgAny patGroup (BangPat {}) = PgBang patGroup (ConPatOut { pat_con = dc }) = PgCon (unLoc dc) patGroup (LitPat lit) = PgLit (hsLitKey lit) patGroup (NPat olit mb_neg _) = PgN (hsOverLitKey olit (isJust mb_neg)) patGroup (NPlusKPat _ olit _ _) = PgNpK (hsOverLitKey olit False) patGroup (CoPat _ p _) = PgCo (hsPatType p) -- Type of innelexp pattern patGroup (ViewPat expr p _) = PgView expr (hsPatType (unLoc p)) patGroup pat = pprPanic "patGroup" (ppr pat) \end{code} Note [Order of n+k] ~~~~~~~~~~~~~~~~~~~ WATCH OUT! Consider f (n+1) = ... f (n+2) = ... f (n+1) = ... We can't group the first and third together, because the second may match the same thing as the first. Contrast f 1 = ... f 2 = ... f 1 = ... where we can group the first and third. Hence we don't regard (n+1) and (n+2) as part of the same group.