% % (c) The University of Glasgow 2002-2006 % ByteCodeLink: Bytecode assembler and linker \begin{code} {-# OPTIONS -optc-DNON_POSIX_SOURCE #-} {-# LANGUAGE BangPatterns #-} module ByteCodeAsm ( assembleBCOs, assembleBCO, CompiledByteCode(..), UnlinkedBCO(..), BCOPtr(..), BCONPtr(..), bcoFreeNames, SizedSeq, sizeSS, ssElts, iNTERP_STACK_CHECK_THRESH ) where #include "HsVersions.h" import ByteCodeInstr import ByteCodeItbls import Name import NameSet import Literal import TyCon import PrimOp import FastString import StgCmmLayout ( ArgRep(..) ) import SMRep import DynFlags import Outputable import Platform import Util import Control.Monad import Control.Monad.ST ( runST ) import Control.Monad.Trans.Class import Control.Monad.Trans.State.Strict import Data.Array.MArray import Data.Array.Unboxed ( listArray ) import Data.Array.Base ( UArray(..) ) import Data.Array.Unsafe( castSTUArray ) import Foreign import Data.Char ( ord ) import Data.List import Data.Map (Map) import Data.Maybe (fromMaybe) import qualified Data.Map as Map import GHC.Base ( ByteArray#, MutableByteArray#, RealWorld ) -- ----------------------------------------------------------------------------- -- Unlinked BCOs -- CompiledByteCode represents the result of byte-code -- compiling a bunch of functions and data types data CompiledByteCode = ByteCode [UnlinkedBCO] -- Bunch of interpretable bindings ItblEnv -- A mapping from DataCons to their itbls instance Outputable CompiledByteCode where ppr (ByteCode bcos _) = ppr bcos data UnlinkedBCO = UnlinkedBCO { unlinkedBCOName :: Name, unlinkedBCOArity :: Int, unlinkedBCOInstrs :: ByteArray#, -- insns unlinkedBCOBitmap :: ByteArray#, -- bitmap unlinkedBCOLits :: (SizedSeq BCONPtr), -- non-ptrs unlinkedBCOPtrs :: (SizedSeq BCOPtr) -- ptrs } data BCOPtr = BCOPtrName Name | BCOPtrPrimOp PrimOp | BCOPtrBCO UnlinkedBCO | BCOPtrBreakInfo BreakInfo | BCOPtrArray (MutableByteArray# RealWorld) data BCONPtr = BCONPtrWord Word | BCONPtrLbl FastString | BCONPtrItbl Name -- | Finds external references. Remember to remove the names -- defined by this group of BCOs themselves bcoFreeNames :: UnlinkedBCO -> NameSet bcoFreeNames bco = bco_refs bco `minusNameSet` mkNameSet [unlinkedBCOName bco] where bco_refs (UnlinkedBCO _ _ _ _ nonptrs ptrs) = unionManyNameSets ( mkNameSet [ n | BCOPtrName n <- ssElts ptrs ] : mkNameSet [ n | BCONPtrItbl n <- ssElts nonptrs ] : map bco_refs [ bco | BCOPtrBCO bco <- ssElts ptrs ] ) instance Outputable UnlinkedBCO where ppr (UnlinkedBCO nm _arity _insns _bitmap lits ptrs) = sep [text "BCO", ppr nm, text "with", ppr (sizeSS lits), text "lits", ppr (sizeSS ptrs), text "ptrs" ] -- ----------------------------------------------------------------------------- -- The bytecode assembler -- The object format for bytecodes is: 16 bits for the opcode, and 16 -- for each field -- so the code can be considered a sequence of -- 16-bit ints. Each field denotes either a stack offset or number of -- items on the stack (eg SLIDE), and index into the pointer table (eg -- PUSH_G), an index into the literal table (eg PUSH_I/D/L), or a -- bytecode address in this BCO. -- Top level assembler fn. assembleBCOs :: DynFlags -> [ProtoBCO Name] -> [TyCon] -> IO CompiledByteCode assembleBCOs dflags proto_bcos tycons = do itblenv <- mkITbls dflags tycons bcos <- mapM (assembleBCO dflags) proto_bcos return (ByteCode bcos itblenv) assembleBCO :: DynFlags -> ProtoBCO Name -> IO UnlinkedBCO assembleBCO dflags (ProtoBCO nm instrs bitmap bsize arity _origin _malloced) = do -- pass 1: collect up the offsets of the local labels. let asm = mapM_ (assembleI dflags) instrs initial_offset = 0 -- Jump instructions are variable-sized, there are long and short variants -- depending on the magnitude of the offset. However, we can't tell what -- size instructions we will need until we have calculated the offsets of -- the labels, which depends on the size of the instructions... So we -- first create the label environment assuming that all jumps are short, -- and if the final size is indeed small enough for short jumps, we are -- done. Otherwise, we repeat the calculation, and we force all jumps in -- this BCO to be long. (n_insns0, lbl_map0) = inspectAsm dflags False initial_offset asm ((n_insns, lbl_map), long_jumps) | isLarge n_insns0 = (inspectAsm dflags True initial_offset asm, True) | otherwise = ((n_insns0, lbl_map0), False) env :: Word16 -> Word env lbl = fromMaybe (pprPanic "assembleBCO.findLabel" (ppr lbl)) (Map.lookup lbl lbl_map) -- pass 2: run assembler and generate instructions, literals and pointers let initial_state = (emptySS, emptySS, emptySS) (final_insns, final_lits, final_ptrs) <- flip execStateT initial_state $ runAsm dflags long_jumps env asm -- precomputed size should be equal to final size ASSERT (n_insns == sizeSS final_insns) return () let asm_insns = ssElts final_insns barr a = case a of UArray _lo _hi _n b -> b insns_arr = listArray (0, n_insns - 1) asm_insns !insns_barr = barr insns_arr bitmap_arr = mkBitmapArray dflags bsize bitmap !bitmap_barr = barr bitmap_arr ul_bco = UnlinkedBCO nm arity insns_barr bitmap_barr final_lits final_ptrs -- 8 Aug 01: Finalisers aren't safe when attached to non-primitive -- objects, since they might get run too early. Disable this until -- we figure out what to do. -- when (notNull malloced) (addFinalizer ul_bco (mapM_ zonk malloced)) return ul_bco mkBitmapArray :: DynFlags -> Word16 -> [StgWord] -> UArray Int StgWord mkBitmapArray dflags bsize bitmap = listArray (0, length bitmap) (toStgWord dflags (toInteger bsize) : bitmap) -- instrs nonptrs ptrs type AsmState = (SizedSeq Word16, SizedSeq BCONPtr, SizedSeq BCOPtr) data SizedSeq a = SizedSeq !Word [a] emptySS :: SizedSeq a emptySS = SizedSeq 0 [] addToSS :: SizedSeq a -> a -> SizedSeq a addToSS (SizedSeq n r_xs) x = SizedSeq (n+1) (x:r_xs) addListToSS :: SizedSeq a -> [a] -> SizedSeq a addListToSS (SizedSeq n r_xs) xs = SizedSeq (n + genericLength xs) (reverse xs ++ r_xs) ssElts :: SizedSeq a -> [a] ssElts (SizedSeq _ r_xs) = reverse r_xs sizeSS :: SizedSeq a -> Word sizeSS (SizedSeq n _) = n data Operand = Op Word | SmallOp Word16 | LabelOp Word16 -- (unused) | LargeOp Word data Assembler a = AllocPtr (IO BCOPtr) (Word -> Assembler a) | AllocLit [BCONPtr] (Word -> Assembler a) | AllocLabel Word16 (Assembler a) | Emit Word16 [Operand] (Assembler a) | NullAsm a instance Monad Assembler where return = NullAsm NullAsm x >>= f = f x AllocPtr p k >>= f = AllocPtr p (k >=> f) AllocLit l k >>= f = AllocLit l (k >=> f) AllocLabel lbl k >>= f = AllocLabel lbl (k >>= f) Emit w ops k >>= f = Emit w ops (k >>= f) ioptr :: IO BCOPtr -> Assembler Word ioptr p = AllocPtr p return ptr :: BCOPtr -> Assembler Word ptr = ioptr . return lit :: [BCONPtr] -> Assembler Word lit l = AllocLit l return label :: Word16 -> Assembler () label w = AllocLabel w (return ()) emit :: Word16 -> [Operand] -> Assembler () emit w ops = Emit w ops (return ()) type LabelEnv = Word16 -> Word largeOp :: Bool -> Operand -> Bool largeOp long_jumps op = case op of SmallOp _ -> False Op w -> isLarge w LabelOp _ -> long_jumps -- LargeOp _ -> True runAsm :: DynFlags -> Bool -> LabelEnv -> Assembler a -> StateT AsmState IO a runAsm dflags long_jumps e = go where go (NullAsm x) = return x go (AllocPtr p_io k) = do p <- lift p_io w <- state $ \(st_i0,st_l0,st_p0) -> let st_p1 = addToSS st_p0 p in (sizeSS st_p0, (st_i0,st_l0,st_p1)) go $ k w go (AllocLit lits k) = do w <- state $ \(st_i0,st_l0,st_p0) -> let st_l1 = addListToSS st_l0 lits in (sizeSS st_l0, (st_i0,st_l1,st_p0)) go $ k w go (AllocLabel _ k) = go k go (Emit w ops k) = do let largeOps = any (largeOp long_jumps) ops opcode | largeOps = largeArgInstr w | otherwise = w words = concatMap expand ops expand (SmallOp w) = [w] expand (LabelOp w) = expand (Op (e w)) expand (Op w) = if largeOps then largeArg dflags w else [fromIntegral w] -- expand (LargeOp w) = largeArg dflags w state $ \(st_i0,st_l0,st_p0) -> let st_i1 = addListToSS st_i0 (opcode : words) in ((), (st_i1,st_l0,st_p0)) go k type LabelEnvMap = Map Word16 Word data InspectState = InspectState { instrCount :: !Word , ptrCount :: !Word , litCount :: !Word , lblEnv :: LabelEnvMap } inspectAsm :: DynFlags -> Bool -> Word -> Assembler a -> (Word, LabelEnvMap) inspectAsm dflags long_jumps initial_offset = go (InspectState initial_offset 0 0 Map.empty) where go s (NullAsm _) = (instrCount s, lblEnv s) go s (AllocPtr _ k) = go (s { ptrCount = n + 1 }) (k n) where n = ptrCount s go s (AllocLit ls k) = go (s { litCount = n + genericLength ls }) (k n) where n = litCount s go s (AllocLabel lbl k) = go s' k where s' = s { lblEnv = Map.insert lbl (instrCount s) (lblEnv s) } go s (Emit _ ops k) = go s' k where s' = s { instrCount = instrCount s + size } size = sum (map count ops) + 1 largeOps = any (largeOp long_jumps) ops count (SmallOp _) = 1 count (LabelOp _) = count (Op 0) count (Op _) = if largeOps then largeArg16s dflags else 1 -- count (LargeOp _) = largeArg16s dflags -- Bring in all the bci_ bytecode constants. #include "rts/Bytecodes.h" largeArgInstr :: Word16 -> Word16 largeArgInstr bci = bci_FLAG_LARGE_ARGS .|. bci largeArg :: DynFlags -> Word -> [Word16] largeArg dflags w | wORD_SIZE_IN_BITS dflags == 64 = [fromIntegral (w `shiftR` 48), fromIntegral (w `shiftR` 32), fromIntegral (w `shiftR` 16), fromIntegral w] | wORD_SIZE_IN_BITS dflags == 32 = [fromIntegral (w `shiftR` 16), fromIntegral w] | otherwise = error "wORD_SIZE_IN_BITS not 32 or 64?" largeArg16s :: DynFlags -> Word largeArg16s dflags | wORD_SIZE_IN_BITS dflags == 64 = 4 | otherwise = 2 assembleI :: DynFlags -> BCInstr -> Assembler () assembleI dflags i = case i of STKCHECK n -> emit bci_STKCHECK [Op n] PUSH_L o1 -> emit bci_PUSH_L [SmallOp o1] PUSH_LL o1 o2 -> emit bci_PUSH_LL [SmallOp o1, SmallOp o2] PUSH_LLL o1 o2 o3 -> emit bci_PUSH_LLL [SmallOp o1, SmallOp o2, SmallOp o3] PUSH_G nm -> do p <- ptr (BCOPtrName nm) emit bci_PUSH_G [Op p] PUSH_PRIMOP op -> do p <- ptr (BCOPtrPrimOp op) emit bci_PUSH_G [Op p] PUSH_BCO proto -> do let ul_bco = assembleBCO dflags proto p <- ioptr (liftM BCOPtrBCO ul_bco) emit bci_PUSH_G [Op p] PUSH_ALTS proto -> do let ul_bco = assembleBCO dflags proto p <- ioptr (liftM BCOPtrBCO ul_bco) emit bci_PUSH_ALTS [Op p] PUSH_ALTS_UNLIFTED proto pk -> do let ul_bco = assembleBCO dflags proto p <- ioptr (liftM BCOPtrBCO ul_bco) emit (push_alts pk) [Op p] PUSH_UBX (Left lit) nws -> do np <- literal lit emit bci_PUSH_UBX [Op np, SmallOp nws] PUSH_UBX (Right aa) nws -> do np <- addr aa emit bci_PUSH_UBX [Op np, SmallOp nws] PUSH_APPLY_N -> emit bci_PUSH_APPLY_N [] PUSH_APPLY_V -> emit bci_PUSH_APPLY_V [] PUSH_APPLY_F -> emit bci_PUSH_APPLY_F [] PUSH_APPLY_D -> emit bci_PUSH_APPLY_D [] PUSH_APPLY_L -> emit bci_PUSH_APPLY_L [] PUSH_APPLY_P -> emit bci_PUSH_APPLY_P [] PUSH_APPLY_PP -> emit bci_PUSH_APPLY_PP [] PUSH_APPLY_PPP -> emit bci_PUSH_APPLY_PPP [] PUSH_APPLY_PPPP -> emit bci_PUSH_APPLY_PPPP [] PUSH_APPLY_PPPPP -> emit bci_PUSH_APPLY_PPPPP [] PUSH_APPLY_PPPPPP -> emit bci_PUSH_APPLY_PPPPPP [] SLIDE n by -> emit bci_SLIDE [SmallOp n, SmallOp by] ALLOC_AP n -> emit bci_ALLOC_AP [SmallOp n] ALLOC_AP_NOUPD n -> emit bci_ALLOC_AP_NOUPD [SmallOp n] ALLOC_PAP arity n -> emit bci_ALLOC_PAP [SmallOp arity, SmallOp n] MKAP off sz -> emit bci_MKAP [SmallOp off, SmallOp sz] MKPAP off sz -> emit bci_MKPAP [SmallOp off, SmallOp sz] UNPACK n -> emit bci_UNPACK [SmallOp n] PACK dcon sz -> do itbl_no <- lit [BCONPtrItbl (getName dcon)] emit bci_PACK [Op itbl_no, SmallOp sz] LABEL lbl -> label lbl TESTLT_I i l -> do np <- int i emit bci_TESTLT_I [Op np, LabelOp l] TESTEQ_I i l -> do np <- int i emit bci_TESTEQ_I [Op np, LabelOp l] TESTLT_W w l -> do np <- word w emit bci_TESTLT_W [Op np, LabelOp l] TESTEQ_W w l -> do np <- word w emit bci_TESTEQ_W [Op np, LabelOp l] TESTLT_F f l -> do np <- float f emit bci_TESTLT_F [Op np, LabelOp l] TESTEQ_F f l -> do np <- float f emit bci_TESTEQ_F [Op np, LabelOp l] TESTLT_D d l -> do np <- double d emit bci_TESTLT_D [Op np, LabelOp l] TESTEQ_D d l -> do np <- double d emit bci_TESTEQ_D [Op np, LabelOp l] TESTLT_P i l -> emit bci_TESTLT_P [SmallOp i, LabelOp l] TESTEQ_P i l -> emit bci_TESTEQ_P [SmallOp i, LabelOp l] CASEFAIL -> emit bci_CASEFAIL [] SWIZZLE stkoff n -> emit bci_SWIZZLE [SmallOp stkoff, SmallOp n] JMP l -> emit bci_JMP [LabelOp l] ENTER -> emit bci_ENTER [] RETURN -> emit bci_RETURN [] RETURN_UBX rep -> emit (return_ubx rep) [] CCALL off m_addr i -> do np <- addr m_addr emit bci_CCALL [SmallOp off, Op np, SmallOp i] BRK_FUN array index info -> do p1 <- ptr (BCOPtrArray array) p2 <- ptr (BCOPtrBreakInfo info) emit bci_BRK_FUN [Op p1, SmallOp index, Op p2] where literal (MachLabel fs (Just sz) _) | platformOS (targetPlatform dflags) == OSMinGW32 = litlabel (appendFS fs (mkFastString ('@':show sz))) -- On Windows, stdcall labels have a suffix indicating the no. of -- arg words, e.g. foo@8. testcase: ffi012(ghci) literal (MachLabel fs _ _) = litlabel fs literal (MachWord w) = int (fromIntegral w) literal (MachInt j) = int (fromIntegral j) literal MachNullAddr = int 0 literal (MachFloat r) = float (fromRational r) literal (MachDouble r) = double (fromRational r) literal (MachChar c) = int (ord c) literal (MachInt64 ii) = int64 (fromIntegral ii) literal (MachWord64 ii) = int64 (fromIntegral ii) literal other = pprPanic "ByteCodeAsm.literal" (ppr other) litlabel fs = lit [BCONPtrLbl fs] addr = words . mkLitPtr float = words . mkLitF double = words . mkLitD dflags int = words . mkLitI int64 = words . mkLitI64 dflags words ws = lit (map BCONPtrWord ws) word w = words [w] isLarge :: Word -> Bool isLarge n = n > 65535 push_alts :: ArgRep -> Word16 push_alts V = bci_PUSH_ALTS_V push_alts P = bci_PUSH_ALTS_P push_alts N = bci_PUSH_ALTS_N push_alts L = bci_PUSH_ALTS_L push_alts F = bci_PUSH_ALTS_F push_alts D = bci_PUSH_ALTS_D push_alts V16 = error "push_alts: vector" return_ubx :: ArgRep -> Word16 return_ubx V = bci_RETURN_V return_ubx P = bci_RETURN_P return_ubx N = bci_RETURN_N return_ubx L = bci_RETURN_L return_ubx F = bci_RETURN_F return_ubx D = bci_RETURN_D return_ubx V16 = error "return_ubx: vector" -- Make lists of host-sized words for literals, so that when the -- words are placed in memory at increasing addresses, the -- bit pattern is correct for the host's word size and endianness. mkLitI :: Int -> [Word] mkLitF :: Float -> [Word] mkLitD :: DynFlags -> Double -> [Word] mkLitPtr :: Ptr () -> [Word] mkLitI64 :: DynFlags -> Int64 -> [Word] mkLitF f = runST (do arr <- newArray_ ((0::Int),0) writeArray arr 0 f f_arr <- castSTUArray arr w0 <- readArray f_arr 0 return [w0 :: Word] ) mkLitD dflags d | wORD_SIZE dflags == 4 = runST (do arr <- newArray_ ((0::Int),1) writeArray arr 0 d d_arr <- castSTUArray arr w0 <- readArray d_arr 0 w1 <- readArray d_arr 1 return [w0 :: Word, w1] ) | wORD_SIZE dflags == 8 = runST (do arr <- newArray_ ((0::Int),0) writeArray arr 0 d d_arr <- castSTUArray arr w0 <- readArray d_arr 0 return [w0 :: Word] ) | otherwise = panic "mkLitD: Bad wORD_SIZE" mkLitI64 dflags ii | wORD_SIZE dflags == 4 = runST (do arr <- newArray_ ((0::Int),1) writeArray arr 0 ii d_arr <- castSTUArray arr w0 <- readArray d_arr 0 w1 <- readArray d_arr 1 return [w0 :: Word,w1] ) | wORD_SIZE dflags == 8 = runST (do arr <- newArray_ ((0::Int),0) writeArray arr 0 ii d_arr <- castSTUArray arr w0 <- readArray d_arr 0 return [w0 :: Word] ) | otherwise = panic "mkLitI64: Bad wORD_SIZE" mkLitI i = runST (do arr <- newArray_ ((0::Int),0) writeArray arr 0 i i_arr <- castSTUArray arr w0 <- readArray i_arr 0 return [w0 :: Word] ) mkLitPtr a = runST (do arr <- newArray_ ((0::Int),0) writeArray arr 0 a a_arr <- castSTUArray arr w0 <- readArray a_arr 0 return [w0 :: Word] ) iNTERP_STACK_CHECK_THRESH :: Int iNTERP_STACK_CHECK_THRESH = INTERP_STACK_CHECK_THRESH \end{code}