% % (c) The University of Glasgow 2001 % \section[ByteCodeGen]{Generate machine-code sequences for foreign import} \begin{code} module ByteCodeFFI ( mkMarshalCode, moan64 ) where #include "HsVersions.h" import Outputable import SMRep ( CgRep(..), cgRepSizeW ) import ForeignCall ( CCallConv(..) ) import Panic -- DON'T remove apparently unused imports here .. -- there is ifdeffery below import Control.Exception ( throwDyn ) import DATA_BITS ( Bits(..), shiftR, shiftL ) import Foreign ( newArray ) import Data.List ( mapAccumL ) import DATA_WORD ( Word8, Word32 ) import Foreign ( Ptr ) import System.IO.Unsafe ( unsafePerformIO ) import IO ( hPutStrLn, stderr ) -- import Debug.Trace ( trace ) \end{code} %************************************************************************ %* * \subsection{The platform-dependent marshall-code-generator.} %* * %************************************************************************ \begin{code} moan64 :: String -> SDoc -> a moan64 msg pp_rep = unsafePerformIO ( hPutStrLn stderr ( "\nGHCi's bytecode generation machinery can't handle 64-bit\n" ++ "code properly yet. You can work around this for the time being\n" ++ "by compiling this module and all those it imports to object code,\n" ++ "and re-starting your GHCi session. The panic below contains information,\n" ++ "intended for the GHC implementors, about the exact place where GHC gave up.\n" ) ) `seq` pprPanic msg pp_rep -- For sparc_TARGET_ARCH, i386_TARGET_ARCH, etc. #include "nativeGen/NCG.h" {- Make a piece of code which expects to see the Haskell stack looking like this. It is given a pointer to the lowest word in the stack -- presumably the tag of the placeholder. ... Addr# address_of_C_fn (must be an unboxed type) We cope with both ccall and stdcall for the C fn. However, this code itself expects only to be called using the ccall convention -- that is, we don't clear our own (single) arg off the C stack. -} mkMarshalCode :: CCallConv -> (Int, CgRep) -> Int -> [(Int, CgRep)] -> IO (Ptr Word8) mkMarshalCode cconv (r_offW, r_rep) addr_offW arg_offs_n_reps = let bytes = mkMarshalCode_wrk cconv (r_offW, r_rep) addr_offW arg_offs_n_reps in Foreign.newArray bytes mkMarshalCode_wrk :: CCallConv -> (Int, CgRep) -> Int -> [(Int, CgRep)] -> [Word8] mkMarshalCode_wrk cconv (r_offW, r_rep) addr_offW arg_offs_n_reps #if i386_TARGET_ARCH = let -- Don't change this without first consulting Intel Corp :-) bytes_per_word = 4 offsets_to_pushW = concat [ -- reversed because x86 is little-endian reverse [a_offW .. a_offW + cgRepSizeW a_rep - 1] -- reversed because args are pushed L -> R onto C stack | (a_offW, a_rep) <- reverse arg_offs_n_reps ] arguments_size = bytes_per_word * length offsets_to_pushW #if darwin_TARGET_OS -- Darwin: align stack frame size to a multiple of 16 bytes stack_frame_size = (arguments_size + 15) .&. complement 15 stack_frame_pad = stack_frame_size - arguments_size #else stack_frame_size = arguments_size #endif -- some helpers to assemble x86 insns. movl_offespmem_esi offB -- movl offB(%esp), %esi = [0x8B, 0xB4, 0x24] ++ lit32 offB movl_offesimem_ecx offB -- movl offB(%esi), %ecx = [0x8B, 0x8E] ++ lit32 offB save_regs -- pushl all intregs except %esp = [0x50, 0x53, 0x51, 0x52, 0x56, 0x57, 0x55] restore_regs -- popl ditto = [0x5D, 0x5F, 0x5E, 0x5A, 0x59, 0x5B, 0x58] pushl_ecx -- pushl %ecx = [0x51] call_star_ecx -- call * %ecx = [0xFF, 0xD1] add_lit_esp lit -- addl $lit, %esp = [0x81, 0xC4] ++ lit32 lit movl_eax_offesimem offB -- movl %eax, offB(%esi) = [0x89, 0x86] ++ lit32 offB movl_edx_offesimem offB -- movl %edx, offB(%esi) = [0x89, 0x96] ++ lit32 offB ret -- ret = [0xC3] fstpl_offesimem offB -- fstpl offB(%esi) = [0xDD, 0x9E] ++ lit32 offB fstps_offesimem offB -- fstps offB(%esi) = [0xD9, 0x9E] ++ lit32 offB {- 2 0000 8BB42478 movl 0x12345678(%esp), %esi 2 563412 3 0007 8B8E7856 movl 0x12345678(%esi), %ecx 3 3412 4 5 000d 50535152 pushl %eax ; pushl %ebx ; pushl %ecx ; pushl %edx 6 0011 565755 pushl %esi ; pushl %edi ; pushl %ebp 7 8 0014 5D5F5E popl %ebp ; popl %edi ; popl %esi 9 0017 5A595B58 popl %edx ; popl %ecx ; popl %ebx ; popl %eax 10 11 001b 51 pushl %ecx 12 001c FFD1 call * %ecx 13 14 001e 81C47856 addl $0x12345678, %esp 14 3412 15 0024 89867856 movl %eax, 0x12345678(%esi) 15 3412 16 002a 89967856 movl %edx, 0x12345678(%esi) 16 3412 17 18 0030 DD967856 fstl 0x12345678(%esi) 18 3412 19 0036 DD9E7856 fstpl 0x12345678(%esi) 19 3412 20 003c D9967856 fsts 0x12345678(%esi) 20 3412 21 0042 D99E7856 fstps 0x12345678(%esi) 18 19 0030 C3 ret 20 -} in --trace (show (map fst arg_offs_n_reps)) ( {- On entry, top of C stack 0(%esp) is the RA and 4(%esp) is arg passed from the interpreter. Push all callee saved regs. Push all of them anyway ... pushl %eax pushl %ebx pushl %ecx pushl %edx pushl %esi pushl %edi pushl %ebp -} save_regs {- Now 28+0(%esp) is RA and 28+4(%esp) is the arg (the H stack ptr). We'll use %esi as a temporary to point at the H stack, and %ecx as a temporary to copy via. movl 28+4(%esp), %esi -} ++ movl_offespmem_esi 32 #if darwin_TARGET_OS {- On Darwin, add some padding so that the stack stays aligned. -} ++ (if stack_frame_pad /= 0 then add_lit_esp (-stack_frame_pad) else []) #endif {- For each arg in args_offs_n_reps, examine the associated CgRep to determine how many words there are. This gives a bunch of offsets on the H stack to copy to the C stack: movl off1(%esi), %ecx pushl %ecx -} ++ concatMap (\offW -> movl_offesimem_ecx (bytes_per_word * offW) ++ pushl_ecx) offsets_to_pushW {- Get the addr to call into %ecx, bearing in mind that there's an Addr# tag at the indicated location, and do the call: movl 4*(1 /*tag*/ +addr_offW)(%esi), %ecx call * %ecx -} ++ movl_offesimem_ecx (bytes_per_word * addr_offW) ++ call_star_ecx {- Nuke the args just pushed and re-establish %esi at the H-stack ptr: addl $4*number_of_args_pushed, %esp (ccall only) movl 28+4(%esp), %esi -} ++ (if cconv /= StdCallConv then add_lit_esp stack_frame_size else []) ++ movl_offespmem_esi 32 {- Depending on what the return type is, get the result from %eax or %edx:%eax or %st(0). movl %eax, 4(%esi) -- assuming tagged result or movl %edx, 4(%esi) movl %eax, 8(%esi) or fstpl 4(%esi) or fstps 4(%esi) -} ++ let i32 = movl_eax_offesimem 0 i64 = movl_eax_offesimem 0 ++ movl_edx_offesimem 4 f32 = fstps_offesimem 0 f64 = fstpl_offesimem 0 in case r_rep of NonPtrArg -> i32 DoubleArg -> f64 FloatArg -> f32 -- LongArg -> i64 VoidArg -> [] other -> moan64 "ByteCodeFFI.mkMarshalCode_wrk(x86)" (ppr r_rep) {- Restore all the pushed regs and go home. pushl %ebp pushl %edi pushl %esi pushl %edx pushl %ecx pushl %ebx pushl %eax ret -} ++ restore_regs ++ ret ) #elif x86_64_TARGET_ARCH = -- the address of the H stack is in %rdi. We need to move it out, so -- we can use %rdi as an arg reg for the following call: pushq_rbp ++ movq_rdi_rbp ++ -- ####### load / push the args let (stack_args, fregs_unused, reg_loads) = load_arg_regs arg_offs_n_reps int_loads float_loads [] tot_arg_size = bytes_per_word * length stack_args -- On entry to the called function, %rsp should be aligned -- on a 16-byte boundary +8 (i.e. the first stack arg after -- the return address is 16-byte aligned). In STG land -- %rsp is kept 16-byte aligned (see StgCRun.c), so we just -- need to make sure we push a multiple of 16-bytes of args, -- plus the return address, to get the correct alignment. (real_size, adjust_rsp) | tot_arg_size `rem` 16 == 0 = (tot_arg_size, []) | otherwise = (tot_arg_size + 8, subq_lit_rsp 8) (stack_pushes, stack_words) = push_args stack_args [] 0 -- we need to know the number of SSE regs used in the call, see later n_sse_regs_used = length float_loads - length fregs_unused in concat reg_loads ++ adjust_rsp ++ concat stack_pushes -- push in reverse order -- ####### make the call -- use %r10 to make the call, because we don't have to save it. -- movq 8*addr_offW(%rbp), %r10 ++ movq_rbpoff_r10 (bytes_per_word * addr_offW) -- The x86_64 ABI requires us to set %al to the number of SSE -- registers that contain arguments, if the called routine -- is a varargs function. We don't know whether it's a -- varargs function or not, so we have to assume it is. -- -- It's not safe to omit this assignment, even if the number -- of SSE regs in use is zero. If %al is larger than 8 -- on entry to a varargs function, seg faults ensue. ++ movq_lit_rax n_sse_regs_used ++ call_star_r10 -- pop the args from the stack, only in ccall mode -- (in stdcall the callee does it). ++ (if cconv /= StdCallConv then addq_lit_rsp real_size else []) -- ####### place the result in the right place and return ++ assign_result ++ popq_rbp ++ ret where bytes_per_word = 8 -- int arg regs: rdi,rsi,rdx,rcx,r8,r9 -- flt arg regs: xmm0..xmm7 int_loads = [ movq_rbpoff_rdi, movq_rbpoff_rsi, movq_rbpoff_rdx, movq_rbpoff_rcx, movq_rbpoff_r8, movq_rbpoff_r9 ] float_loads = [ (mov_f32_rbpoff_xmm n, mov_f64_rbpoff_xmm n) | n <- [0..7] ] load_arg_regs args [] [] code = (args, [], code) load_arg_regs [] iregs fregs code = ([], fregs, code) load_arg_regs ((off,rep):args) iregs fregs code | FloatArg <- rep, ((mov_f32,_):frest) <- fregs = load_arg_regs args iregs frest (mov_f32 (bytes_per_word * off) : code) | DoubleArg <- rep, ((_,mov_f64):frest) <- fregs = load_arg_regs args iregs frest (mov_f64 (bytes_per_word * off) : code) | (mov_reg:irest) <- iregs = load_arg_regs args irest fregs (mov_reg (bytes_per_word * off) : code) | otherwise = push_this_arg where push_this_arg = ((off,rep):args',fregs', code') where (args',fregs',code') = load_arg_regs args iregs fregs code push_args [] code pushed_words = (code, pushed_words) push_args ((off,rep):args) code pushed_words | FloatArg <- rep = push_args args (push_f32_rbpoff (bytes_per_word * off) : code) (pushed_words+1) | DoubleArg <- rep = push_args args (push_f64_rbpoff (bytes_per_word * off) : code) (pushed_words+1) | otherwise = push_args args (pushq_rbpoff (bytes_per_word * off) : code) (pushed_words+1) assign_result = case r_rep of DoubleArg -> f64 FloatArg -> f32 VoidArg -> [] _other -> i64 where i64 = movq_rax_rbpoff 0 f32 = mov_f32_xmm0_rbpoff 0 f64 = mov_f64_xmm0_rbpoff 0 -- ######### x86_64 machine code: -- 0: 48 89 fd mov %rdi,%rbp -- 3: 48 8b bd 78 56 34 12 mov 0x12345678(%rbp),%rdi -- a: 48 8b b5 78 56 34 12 mov 0x12345678(%rbp),%rsi -- 11: 48 8b 95 78 56 34 12 mov 0x12345678(%rbp),%rdx -- 18: 48 8b 8d 78 56 34 12 mov 0x12345678(%rbp),%rcx -- 1f: 4c 8b 85 78 56 34 12 mov 0x12345678(%rbp),%r8 -- 26: 4c 8b 8d 78 56 34 12 mov 0x12345678(%rbp),%r9 -- 2d: 4c 8b 95 78 56 34 12 mov 0x12345678(%rbp),%r10 -- 34: 48 c7 c0 78 56 34 12 mov $0x12345678,%rax -- 3b: 48 89 85 78 56 34 12 mov %rax,0x12345678(%rbp) -- 42: f3 0f 10 85 78 56 34 12 movss 0x12345678(%rbp),%xmm0 -- 4a: f2 0f 10 85 78 56 34 12 movsd 0x12345678(%rbp),%xmm0 -- 52: f3 0f 11 85 78 56 34 12 movss %xmm0,0x12345678(%rbp) -- 5a: f2 0f 11 85 78 56 34 12 movsd %xmm0,0x12345678(%rbp) -- 62: ff b5 78 56 34 12 pushq 0x12345678(%rbp) -- 68: f3 44 0f 11 04 24 movss %xmm8,(%rsp) -- 6e: f2 44 0f 11 04 24 movsd %xmm8,(%rsp) -- 74: 48 81 ec 78 56 34 12 sub $0x12345678,%rsp -- 7b: 48 81 c4 78 56 34 12 add $0x12345678,%rsp -- 82: 41 ff d2 callq *%r10 -- 85: c3 retq movq_rdi_rbp = [0x48,0x89,0xfd] movq_rbpoff_rdi off = [0x48, 0x8b, 0xbd] ++ lit32 off movq_rbpoff_rsi off = [0x48, 0x8b, 0xb5] ++ lit32 off movq_rbpoff_rdx off = [0x48, 0x8b, 0x95] ++ lit32 off movq_rbpoff_rcx off = [0x48, 0x8b, 0x8d] ++ lit32 off movq_rbpoff_r8 off = [0x4c, 0x8b, 0x85] ++ lit32 off movq_rbpoff_r9 off = [0x4c, 0x8b, 0x8d] ++ lit32 off movq_rbpoff_r10 off = [0x4c, 0x8b, 0x95] ++ lit32 off movq_lit_rax lit = [0x48, 0xc7, 0xc0] ++ lit32 lit movq_rax_rbpoff off = [0x48, 0x89, 0x85] ++ lit32 off mov_f32_rbpoff_xmm n off = [0xf3, 0x0f, 0x10, 0x85 + n`shiftL`3] ++ lit32 off mov_f64_rbpoff_xmm n off = [0xf2, 0x0f, 0x10, 0x85 + n`shiftL`3] ++ lit32 off mov_f32_xmm0_rbpoff off = [0xf3, 0x0f, 0x11, 0x85] ++ lit32 off mov_f64_xmm0_rbpoff off = [0xf2, 0x0f, 0x11, 0x85] ++ lit32 off pushq_rbpoff off = [0xff, 0xb5] ++ lit32 off push_f32_rbpoff off = mov_f32_rbpoff_xmm 8 off ++ -- movss off(%rbp), %xmm8 [0xf3, 0x44, 0x0f, 0x11, 0x04, 0x24] ++ -- movss %xmm8, (%rsp) subq_lit_rsp 8 -- subq $8, %rsp push_f64_rbpoff off = mov_f64_rbpoff_xmm 8 off ++ -- movsd off(%rbp), %xmm8 [0xf2, 0x44, 0x0f, 0x11, 0x04, 0x24] ++ -- movsd %xmm8, (%rsp) subq_lit_rsp 8 -- subq $8, %rsp subq_lit_rsp lit = [0x48, 0x81, 0xec] ++ lit32 lit addq_lit_rsp lit = [0x48, 0x81, 0xc4] ++ lit32 lit call_star_r10 = [0x41,0xff,0xd2] ret = [0xc3] pushq_rbp = [0x55] popq_rbp = [0x5d] #elif sparc_TARGET_ARCH = let -- At least for sparc V8 bytes_per_word = 4 -- speaks for itself w32_to_w8s_bigEndian :: Word32 -> [Word8] w32_to_w8s_bigEndian w = [fromIntegral (0xFF .&. (w `shiftR` 24)), fromIntegral (0xFF .&. (w `shiftR` 16)), fromIntegral (0xFF .&. (w `shiftR` 8)), fromIntegral (0xFF .&. w)] offsets_to_pushW = concat [ [a_offW .. a_offW + cgRepSizeW a_rep - 1] | (a_offW, a_rep) <- arg_offs_n_reps ] total_argWs = length offsets_to_pushW argWs_on_stack = if total_argWs > 6 then total_argWs - 6 else 0 -- The stack pointer must be kept 8-byte aligned, which means -- we need to calculate this quantity too argWs_on_stack_ROUNDED_UP | odd argWs_on_stack = 1 + argWs_on_stack | otherwise = argWs_on_stack -- some helpers to assemble sparc insns. -- REGS iReg, oReg, gReg, fReg :: Int -> Word32 iReg = fromIntegral . (+ 24) oReg = fromIntegral . (+ 8) gReg = fromIntegral . (+ 0) fReg = fromIntegral sp = oReg 6 i0 = iReg 0 i7 = iReg 7 o0 = oReg 0 o1 = oReg 1 o7 = oReg 7 g0 = gReg 0 g1 = gReg 1 f0 = fReg 0 f1 = fReg 1 -- INSN templates insn_r_r_i :: Word32 -> Word32 -> Word32 -> Int -> Word32 insn_r_r_i op3 rs1 rd imm13 = (3 `shiftL` 30) .|. (rs1 `shiftL` 25) .|. (op3 `shiftL` 19) .|. (rd `shiftL` 14) .|. (1 `shiftL` 13) .|. mkSimm13 imm13 insn_r_i_r :: Word32 -> Word32 -> Int -> Word32 -> Word32 insn_r_i_r op3 rs1 imm13 rd = (2 `shiftL` 30) .|. (rd `shiftL` 25) .|. (op3 `shiftL` 19) .|. (rs1 `shiftL` 14) .|. (1 `shiftL` 13) .|. mkSimm13 imm13 mkSimm13 :: Int -> Word32 mkSimm13 imm13 = let imm13w = (fromIntegral imm13) :: Word32 in imm13w .&. 0x1FFF -- REAL (non-synthetic) insns -- or %rs1, %rs2, %rd mkOR :: Word32 -> Word32 -> Word32 -> Word32 mkOR rs1 rs2 rd = (2 `shiftL` 30) .|. (rd `shiftL` 25) .|. (op3_OR `shiftL` 19) .|. (rs1 `shiftL` 14) .|. (0 `shiftL` 13) .|. rs2 where op3_OR = 2 :: Word32 -- ld(int) [%rs + imm13], %rd mkLD rs1 imm13 rd = insn_r_r_i 0x00{-op3_LD-} rd rs1 imm13 -- st(int) %rs, [%rd + imm13] mkST = insn_r_r_i 0x04 -- op3_ST -- st(float) %rs, [%rd + imm13] mkSTF = insn_r_r_i 0x24 -- op3_STF -- jmpl %rs + imm13, %rd mkJMPL = insn_r_i_r 0x38 -- op3_JMPL -- save %rs + imm13, %rd mkSAVE = insn_r_i_r 0x3C -- op3_SAVE -- restore %rs + imm13, %rd mkRESTORE = insn_r_i_r 0x3D -- op3_RESTORE -- SYNTHETIC insns mkNOP = mkOR g0 g0 g0 mkCALL reg = mkJMPL reg 0 o7 mkRET = mkJMPL i7 8 g0 mkRESTORE_TRIVIAL = mkRESTORE g0 0 g0 in --trace (show (map fst arg_offs_n_reps)) concatMap w32_to_w8s_bigEndian ( {- On entry, %o0 is the arg passed from the interpreter. After the initial save insn, it will be in %i0. Studying the sparc docs one would have thought that the minimum frame size is 92 bytes, but gcc always uses at least 112, and indeed there are segfaults a-plenty with 92. So I use 112 here as well. I don't understand why, tho. -} [mkSAVE sp (- ({-92-}112 + 4*argWs_on_stack_ROUNDED_UP)) sp] {- For each arg in args_offs_n_reps, examine the associated CgRep to determine how many words there are. This gives a bunch of offsets on the H stack. Move the first 6 words into %o0 .. %o5 and the rest on the stack, starting at [%sp+92]. Use %g1 as a temp. -} ++ let doArgW (offW, wordNo) | wordNo < 6 = [mkLD i0 (bytes_per_word * offW) (oReg wordNo)] | otherwise = [mkLD i0 (bytes_per_word * offW) g1, mkST g1 sp (92 + bytes_per_word * (wordNo - 6))] in concatMap doArgW (zip offsets_to_pushW [0 ..]) {- Get the addr to call into %g1, bearing in mind that there's an Addr# tag at the indicated location, and do the call: ld [4*(1 /*tag*/ +addr_offW) + %i0], %g1 call %g1 -} ++ [mkLD i0 (bytes_per_word * addr_offW) g1, mkCALL g1, mkNOP] {- Depending on what the return type is, get the result from %o0 or %o1:%o0 or %f0 or %f1:%f0. st %o0, [%i0 + 4] -- 32 bit int or st %o0, [%i0 + 4] -- 64 bit int st %o1, [%i0 + 8] -- or the other way round? or st %f0, [%i0 + 4] -- 32 bit float or st %f0, [%i0 + 4] -- 64 bit float st %f1, [%i0 + 8] -- or the other way round? -} ++ let i32 = [mkST o0 i0 0] i64 = [mkST o0 i0 0, mkST o1 i0 4] f32 = [mkSTF f0 i0 0] f64 = [mkSTF f0 i0 0, mkSTF f1 i0 4] in case r_rep of NonPtrArg -> i32 DoubleArg -> f64 FloatArg -> f32 VoidArg -> [] other -> moan64 "ByteCodeFFI.mkMarshalCode_wrk(sparc)" (ppr r_rep) ++ [mkRET, mkRESTORE_TRIVIAL] -- this is in the delay slot of the RET ) #elif powerpc_TARGET_ARCH && darwin_TARGET_OS = let bytes_per_word = 4 -- speaks for itself w32_to_w8s_bigEndian :: Word32 -> [Word8] w32_to_w8s_bigEndian w = [fromIntegral (0xFF .&. (w `shiftR` 24)), fromIntegral (0xFF .&. (w `shiftR` 16)), fromIntegral (0xFF .&. (w `shiftR` 8)), fromIntegral (0xFF .&. w)] -- addr and result bits offsetsW a_off = addr_offW * bytes_per_word result_off = r_offW * bytes_per_word linkageArea = 24 parameterArea = sum [ cgRepSizeW a_rep * bytes_per_word | (_, a_rep) <- arg_offs_n_reps ] savedRegisterArea = 4 frameSize = padTo16 (linkageArea + max parameterArea 32 + savedRegisterArea) padTo16 x = case x `mod` 16 of 0 -> x y -> x - y + 16 pass_parameters [] _ _ = [] pass_parameters ((a_offW, a_rep):args) nextFPR offsetW = let haskellArgOffset = a_offW * bytes_per_word offsetW' = offsetW + cgRepSizeW a_rep pass_word w | offsetW + w < 8 = [0x801f0000 -- lwz rX, src(r31) .|. (fromIntegral src .&. 0xFFFF) .|. (fromIntegral (offsetW+w+3) `shiftL` 21)] | otherwise = [0x801f0000 -- lwz r0, src(r31) .|. (fromIntegral src .&. 0xFFFF), 0x90010000 -- stw r0, dst(r1) .|. (fromIntegral dst .&. 0xFFFF)] where src = haskellArgOffset + w*bytes_per_word dst = linkageArea + (offsetW+w) * bytes_per_word in case a_rep of FloatArg | nextFPR < 14 -> (0xc01f0000 -- lfs fX, haskellArgOffset(r31) .|. (fromIntegral haskellArgOffset .&. 0xFFFF) .|. (fromIntegral nextFPR `shiftL` 21)) : pass_parameters args (nextFPR+1) offsetW' DoubleArg | nextFPR < 14 -> (0xc81f0000 -- lfd fX, haskellArgOffset(r31) .|. (fromIntegral haskellArgOffset .&. 0xFFFF) .|. (fromIntegral nextFPR `shiftL` 21)) : pass_parameters args (nextFPR+1) offsetW' _ -> concatMap pass_word [0 .. cgRepSizeW a_rep - 1] ++ pass_parameters args nextFPR offsetW' gather_result = case r_rep of VoidArg -> [] FloatArg -> [0xd03f0000 .|. (fromIntegral result_off .&. 0xFFFF)] -- stfs f1, result_off(r31) DoubleArg -> [0xd83f0000 .|. (fromIntegral result_off .&. 0xFFFF)] -- stfd f1, result_off(r31) _ | cgRepSizeW r_rep == 2 -> [0x907f0000 .|. (fromIntegral result_off .&. 0xFFFF), 0x909f0000 .|. (fromIntegral (result_off+4) .&. 0xFFFF)] -- stw r3, result_off(r31) -- stw r4, result_off+4(r31) _ | cgRepSizeW r_rep == 1 -> [0x907f0000 .|. (fromIntegral result_off .&. 0xFFFF)] -- stw r3, result_off(r31) in concatMap w32_to_w8s_bigEndian $ [ 0x7c0802a6, -- mflr r0 0x93e1fffc, -- stw r31,-4(r1) 0x90010008, -- stw r0,8(r1) 0x94210000 .|. (fromIntegral (-frameSize) .&. 0xFFFF), -- stwu r1, -frameSize(r1) 0x7c7f1b78 -- mr r31, r3 ] ++ pass_parameters arg_offs_n_reps 1 0 ++ [ 0x819f0000 .|. (fromIntegral a_off .&. 0xFFFF), -- lwz r12, a_off(r31) 0x7d8903a6, -- mtctr r12 0x4e800421 -- bctrl ] ++ gather_result ++ [ 0x80210000, -- lwz r1, 0(r1) 0x83e1fffc, -- lwz r31, -4(r1) 0x80010008, -- lwz r0, 8(r1) 0x7c0803a6, -- mtlr r0 0x4e800020 -- blr ] #elif powerpc_TARGET_ARCH && linux_TARGET_OS -- All offsets here are measured in Words (not bytes). This includes -- arguments to the load/store machine code generators, alignment numbers -- and the final 'framesize' among others. = concatMap w32_to_w8s_bigEndian $ [ 0x7c0802a6, -- mflr r0 0x93e1fffc, -- stw r31,-4(r1) 0x90010008, -- stw r0,8(r1) 0x94210000 .|. offset (-framesize), -- stwu r1, -frameSize(r1) 0x7c7f1b78 -- mr r31, r3 ] ++ pass_parameters ++ -- pass the parameters loadWord 12 addr_offW ++ [ -- lwz r12, a_off(r31) 0x7d8903a6, -- mtctr r12 0x4e800421 -- bctrl ] ++ gather_result ++ [ -- save the return value 0x80210000, -- lwz r1, 0(r1) 0x83e1fffc, -- lwz r31, -4(r1) 0x80010008, -- lwz r0, 8(r1) 0x7c0803a6, -- mtlr r0 0x4e800020 -- blr ] where gather_result :: [Word32] gather_result = case r_rep of VoidArg -> [] FloatArg -> storeFloat 1 r_offW DoubleArg -> storeDouble 1 r_offW LongArg -> storeLong 3 r_offW _ -> storeWord 3 r_offW pass_parameters :: [Word32] pass_parameters = concat params -- vector aligned (4 word = 16 bytes) with 8 extra words of buffer space framesize = alignedTo 4 (argsize + 8) ((_,_,argsize), params) = mapAccumL loadparam (3,1,2) arg_offs_n_reps -- handle one argument, returning machine code and the updated state loadparam :: (Int, Int, Int) -> (Int, CgRep) -> ((Int, Int, Int), [Word32]) loadparam (gpr, fpr, stack) (ofs, rep) = case rep of FloatArg | fpr <= 8 -> ( (gpr, fpr + 1, stack), loadFloat fpr ofs ) FloatArg -> ( (gpr, fpr, stack + 1), stackWord stack ofs ) DoubleArg | fpr <= 8 -> ( (gpr, fpr + 1, stack), loadDouble fpr ofs ) DoubleArg -> ( (gpr, fpr, astack + 2), stackLong astack ofs ) LongArg | even gpr -> loadparam (gpr + 1, fpr, stack) (ofs, rep) LongArg | gpr <= 9 -> ( (gpr + 2, fpr, stack), loadLong gpr ofs ) LongArg -> ( (gpr, fpr, astack + 2), stackLong astack ofs ) _ | gpr <= 10 -> ( (gpr + 1, fpr, stack), loadWord gpr ofs ) _ -> ( (gpr, fpr, stack + 1), stackWord stack ofs ) where astack = alignedTo 2 stack alignedTo :: Int -> Int -> Int alignedTo alignment x = case x `mod` alignment of 0 -> x y -> x - y + alignment -- convenience macros to do multiple-instruction data moves stackWord dst src = loadWord 0 src ++ storeWordC 0 dst stackLong dst src = stackWord dst src ++ stackWord (dst + 1) (src + 1) loadLong dst src = loadWord dst src ++ loadWord (dst + 1) (src + 1) storeLong dst src = storeWord dst src ++ storeWord (dst + 1) (src + 1) -- load data from the Haskell stack (relative to r31) loadFloat = loadstoreInstr 0xc01f0000 -- lfs fpr, ofs(r31) loadDouble = loadstoreInstr 0xc81f0000 -- lfd fpr, ofs(r31) loadWord = loadstoreInstr 0x801f0000 -- lwz gpr, ofs(r31) -- store data to the Haskell stack (relative to r31) storeFloat = loadstoreInstr 0xd01f0000 -- stfs fpr, ofs(r31) storeDouble = loadstoreInstr 0xd81f0000 -- stfd fpr, ofs(r31) storeWord = loadstoreInstr 0x901f0000 -- stw gpr, ofs(r31) -- store data to the C stack (relative to r1) storeWordC = loadstoreInstr 0x90010000 -- stw gpr, ofs(r1) -- machine code building blocks loadstoreInstr :: Word32 -> Int -> Int -> [Word32] loadstoreInstr code reg ofs = [ code .|. register reg .|. offset ofs ] register :: Int -> Word32 register reg = fromIntegral reg `shiftL` 21 offset :: Int -> Word32 offset ofs = fromIntegral (ofs * 4) .&. 0xFFFF -- speaks for itself w32_to_w8s_bigEndian :: Word32 -> [Word8] w32_to_w8s_bigEndian w = [fromIntegral (0xFF .&. (w `shiftR` 24)), fromIntegral (0xFF .&. (w `shiftR` 16)), fromIntegral (0xFF .&. (w `shiftR` 8)), fromIntegral (0xFF .&. w)] #else = throwDyn (InstallationError "foreign import is not implemented for GHCi on this platform.") #endif #if i386_TARGET_ARCH || x86_64_TARGET_ARCH lit32 :: Int -> [Word8] lit32 i = let w32 = (fromIntegral i) :: Word32 in map (fromIntegral . ( .&. 0xFF)) [w32, w32 `shiftR` 8, w32 `shiftR` 16, w32 `shiftR` 24] #endif \end{code}