% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % This module converts Template Haskell syntax into HsSyn \begin{code} module Convert( convertToHsExpr, convertToHsDecls, convertToHsType, thRdrName ) where #include "HsVersions.h" import HsSyn as Hs import qualified Class import RdrName import qualified Name import Module import RdrHsSyn import qualified OccName import PackageConfig import OccName import SrcLoc import Type import TysWiredIn import BasicTypes import ForeignCall import Char import List import Unique import ErrUtils import Bag import FastString import Outputable import Language.Haskell.TH as TH hiding (sigP) import Language.Haskell.TH.Syntax as TH import GHC.Exts ------------------------------------------------------------------- -- The external interface convertToHsDecls :: SrcSpan -> [TH.Dec] -> Either Message [LHsDecl RdrName] convertToHsDecls loc ds = initCvt loc (mapM cvtTop ds) convertToHsExpr :: SrcSpan -> TH.Exp -> Either Message (LHsExpr RdrName) convertToHsExpr loc e = case initCvt loc (cvtl e) of Left msg -> Left (msg $$ (ptext SLIT("When converting TH expression") <+> text (show e))) Right res -> Right res convertToHsType :: SrcSpan -> TH.Type -> Either Message (LHsType RdrName) convertToHsType loc t = initCvt loc (cvtType t) ------------------------------------------------------------------- newtype CvtM a = CvtM { unCvtM :: SrcSpan -> Either Message a } -- Push down the source location; -- Can fail, with a single error message -- NB: If the conversion succeeds with (Right x), there should -- be no exception values hiding in x -- Reason: so a (head []) in TH code doesn't subsequently -- make GHC crash when it tries to walk the generated tree -- Use the loc everywhere, for lack of anything better -- In particular, we want it on binding locations, so that variables bound in -- the spliced-in declarations get a location that at least relates to the splice point instance Monad CvtM where return x = CvtM $ \loc -> Right x (CvtM m) >>= k = CvtM $ \loc -> case m loc of Left err -> Left err Right v -> unCvtM (k v) loc initCvt :: SrcSpan -> CvtM a -> Either Message a initCvt loc (CvtM m) = m loc force :: a -> CvtM a force a = a `seq` return a failWith :: Message -> CvtM a failWith m = CvtM (\loc -> Left full_msg) where full_msg = m $$ ptext SLIT("When splicing generated code into the program") returnL :: a -> CvtM (Located a) returnL x = CvtM (\loc -> Right (L loc x)) wrapL :: CvtM a -> CvtM (Located a) wrapL (CvtM m) = CvtM (\loc -> case m loc of Left err -> Left err Right v -> Right (L loc v)) ------------------------------------------------------------------- cvtTop :: TH.Dec -> CvtM (LHsDecl RdrName) cvtTop d@(TH.ValD _ _ _) = do { L loc d' <- cvtBind d; return (L loc $ Hs.ValD d') } cvtTop d@(TH.FunD _ _) = do { L loc d' <- cvtBind d; return (L loc $ Hs.ValD d') } cvtTop (TH.SigD nm typ) = do { nm' <- vNameL nm ; ty' <- cvtType typ ; returnL $ Hs.SigD (TypeSig nm' ty') } cvtTop (TySynD tc tvs rhs) = do { tc' <- tconNameL tc ; tvs' <- cvtTvs tvs ; rhs' <- cvtType rhs ; returnL $ TyClD (TySynonym tc' tvs' Nothing rhs') } cvtTop (DataD ctxt tc tvs constrs derivs) = do { stuff <- cvt_tycl_hdr ctxt tc tvs ; cons' <- mapM cvtConstr constrs ; derivs' <- cvtDerivs derivs ; returnL $ TyClD (mkTyData DataType stuff Nothing cons' derivs') } cvtTop (NewtypeD ctxt tc tvs constr derivs) = do { stuff <- cvt_tycl_hdr ctxt tc tvs ; con' <- cvtConstr constr ; derivs' <- cvtDerivs derivs ; returnL $ TyClD (mkTyData NewType stuff Nothing [con'] derivs') } cvtTop (ClassD ctxt cl tvs fds decs) = do { (cxt', tc', tvs', _) <- cvt_tycl_hdr ctxt cl tvs ; fds' <- mapM cvt_fundep fds ; (binds', sigs') <- cvtBindsAndSigs decs ; returnL $ TyClD $ mkClassDecl (cxt', tc', tvs') fds' sigs' binds' [] [] -- no ATs or docs in TH ^^ ^^ } cvtTop (InstanceD tys ty decs) = do { (binds', sigs') <- cvtBindsAndSigs decs ; ctxt' <- cvtContext tys ; L loc pred' <- cvtPred ty ; inst_ty' <- returnL $ mkImplicitHsForAllTy ctxt' (L loc (HsPredTy pred')) ; returnL $ InstD (InstDecl inst_ty' binds' sigs' []) -- ^^no ATs in TH } cvtTop (ForeignD ford) = do { ford' <- cvtForD ford; returnL $ ForD ford' } cvt_tycl_hdr cxt tc tvs = do { cxt' <- cvtContext cxt ; tc' <- tconNameL tc ; tvs' <- cvtTvs tvs ; return (cxt', tc', tvs', Nothing) } --------------------------------------------------- -- Data types -- Can't handle GADTs yet --------------------------------------------------- cvtConstr (NormalC c strtys) = do { c' <- cNameL c ; cxt' <- returnL [] ; tys' <- mapM cvt_arg strtys ; returnL $ ConDecl c' Explicit noExistentials cxt' (PrefixCon tys') ResTyH98 Nothing } cvtConstr (RecC c varstrtys) = do { c' <- cNameL c ; cxt' <- returnL [] ; args' <- mapM cvt_id_arg varstrtys ; returnL $ ConDecl c' Explicit noExistentials cxt' (RecCon args') ResTyH98 Nothing } cvtConstr (InfixC st1 c st2) = do { c' <- cNameL c ; cxt' <- returnL [] ; st1' <- cvt_arg st1 ; st2' <- cvt_arg st2 ; returnL $ ConDecl c' Explicit noExistentials cxt' (InfixCon st1' st2') ResTyH98 Nothing } cvtConstr (ForallC tvs ctxt (ForallC tvs' ctxt' con')) = cvtConstr (ForallC (tvs ++ tvs') (ctxt ++ ctxt') con') cvtConstr (ForallC tvs ctxt con) = do { L _ con' <- cvtConstr con ; tvs' <- cvtTvs tvs ; ctxt' <- cvtContext ctxt ; case con' of ConDecl l _ [] (L _ []) x ResTyH98 _ -> returnL $ ConDecl l Explicit tvs' ctxt' x ResTyH98 Nothing c -> panic "ForallC: Can't happen" } cvt_arg (IsStrict, ty) = do { ty' <- cvtType ty; returnL $ HsBangTy HsStrict ty' } cvt_arg (NotStrict, ty) = cvtType ty cvt_id_arg (i, str, ty) = do { i' <- vNameL i ; ty' <- cvt_arg (str,ty) ; return (mkRecField i' ty') } cvtDerivs [] = return Nothing cvtDerivs cs = do { cs' <- mapM cvt_one cs ; return (Just cs') } where cvt_one c = do { c' <- tconName c ; returnL $ HsPredTy $ HsClassP c' [] } cvt_fundep :: FunDep -> CvtM (Located (Class.FunDep RdrName)) cvt_fundep (FunDep xs ys) = do { xs' <- mapM tName xs; ys' <- mapM tName ys; returnL (xs', ys') } noExistentials = [] ------------------------------------------ -- Foreign declarations ------------------------------------------ cvtForD :: Foreign -> CvtM (ForeignDecl RdrName) cvtForD (ImportF callconv safety from nm ty) | Just (c_header, cis) <- parse_ccall_impent (TH.nameBase nm) from = do { nm' <- vNameL nm ; ty' <- cvtType ty ; let i = CImport (cvt_conv callconv) safety' c_header nilFS cis ; return $ ForeignImport nm' ty' i } | otherwise = failWith $ text (show from)<+> ptext SLIT("is not a valid ccall impent") where safety' = case safety of Unsafe -> PlayRisky Safe -> PlaySafe False Threadsafe -> PlaySafe True cvtForD (ExportF callconv as nm ty) = do { nm' <- vNameL nm ; ty' <- cvtType ty ; let e = CExport (CExportStatic (mkFastString as) (cvt_conv callconv)) ; return $ ForeignExport nm' ty' e } cvt_conv TH.CCall = CCallConv cvt_conv TH.StdCall = StdCallConv parse_ccall_impent :: String -> String -> Maybe (FastString, CImportSpec) parse_ccall_impent nm s = case lex_ccall_impent s of Just ["dynamic"] -> Just (nilFS, CFunction DynamicTarget) Just ["wrapper"] -> Just (nilFS, CWrapper) Just ("static":ts) -> parse_ccall_impent_static nm ts Just ts -> parse_ccall_impent_static nm ts Nothing -> Nothing parse_ccall_impent_static :: String -> [String] -> Maybe (FastString, CImportSpec) parse_ccall_impent_static nm ts = let ts' = case ts of [ "&", cid] -> [ cid] [fname, "&" ] -> [fname ] [fname, "&", cid] -> [fname, cid] _ -> ts in case ts' of [ cid] | is_cid cid -> Just (nilFS, mk_cid cid) [fname, cid] | is_cid cid -> Just (mkFastString fname, mk_cid cid) [ ] -> Just (nilFS, mk_cid nm) [fname ] -> Just (mkFastString fname, mk_cid nm) _ -> Nothing where is_cid :: String -> Bool is_cid x = all (/= '.') x && (isAlpha (head x) || head x == '_') mk_cid :: String -> CImportSpec mk_cid = CFunction . StaticTarget . mkFastString lex_ccall_impent :: String -> Maybe [String] lex_ccall_impent "" = Just [] lex_ccall_impent ('&':xs) = fmap ("&":) $ lex_ccall_impent xs lex_ccall_impent (' ':xs) = lex_ccall_impent xs lex_ccall_impent ('\t':xs) = lex_ccall_impent xs lex_ccall_impent xs = case span is_valid xs of ("", _) -> Nothing (t, xs') -> fmap (t:) $ lex_ccall_impent xs' where is_valid :: Char -> Bool is_valid c = isAscii c && (isAlphaNum c || c `elem` "._") --------------------------------------------------- -- Declarations --------------------------------------------------- cvtDecs :: [TH.Dec] -> CvtM (HsLocalBinds RdrName) cvtDecs [] = return EmptyLocalBinds cvtDecs ds = do { (binds,sigs) <- cvtBindsAndSigs ds ; return (HsValBinds (ValBindsIn binds sigs)) } cvtBindsAndSigs ds = do { binds' <- mapM cvtBind binds; sigs' <- mapM cvtSig sigs ; return (listToBag binds', sigs') } where (sigs, binds) = partition is_sig ds is_sig (TH.SigD _ _) = True is_sig other = False cvtSig (TH.SigD nm ty) = do { nm' <- vNameL nm; ty' <- cvtType ty; returnL (Hs.TypeSig nm' ty') } cvtBind :: TH.Dec -> CvtM (LHsBind RdrName) -- Used only for declarations in a 'let/where' clause, -- not for top level decls cvtBind (TH.ValD (TH.VarP s) body ds) = do { s' <- vNameL s ; cl' <- cvtClause (Clause [] body ds) ; returnL $ mkFunBind s' [cl'] } cvtBind (TH.FunD nm cls) = do { nm' <- vNameL nm ; cls' <- mapM cvtClause cls ; returnL $ mkFunBind nm' cls' } cvtBind (TH.ValD p body ds) = do { p' <- cvtPat p ; g' <- cvtGuard body ; ds' <- cvtDecs ds ; returnL $ PatBind { pat_lhs = p', pat_rhs = GRHSs g' ds', pat_rhs_ty = void, bind_fvs = placeHolderNames } } cvtBind d = failWith (sep [ptext SLIT("Illegal kind of declaration in where clause"), nest 2 (text (TH.pprint d))]) cvtClause :: TH.Clause -> CvtM (Hs.LMatch RdrName) cvtClause (Clause ps body wheres) = do { ps' <- cvtPats ps ; g' <- cvtGuard body ; ds' <- cvtDecs wheres ; returnL $ Hs.Match ps' Nothing (GRHSs g' ds') } ------------------------------------------------------------------- -- Expressions ------------------------------------------------------------------- cvtl :: TH.Exp -> CvtM (LHsExpr RdrName) cvtl e = wrapL (cvt e) where cvt (VarE s) = do { s' <- vName s; return $ HsVar s' } cvt (ConE s) = do { s' <- cName s; return $ HsVar s' } cvt (LitE l) | overloadedLit l = do { l' <- cvtOverLit l; return $ HsOverLit l' } | otherwise = do { l' <- cvtLit l; return $ HsLit l' } cvt (AppE x y) = do { x' <- cvtl x; y' <- cvtl y; return $ HsApp x' y' } cvt (LamE ps e) = do { ps' <- cvtPats ps; e' <- cvtl e ; return $ HsLam (mkMatchGroup [mkSimpleMatch ps' e']) } cvt (TupE [e]) = cvt e cvt (TupE es) = do { es' <- mapM cvtl es; return $ ExplicitTuple es' Boxed } cvt (CondE x y z) = do { x' <- cvtl x; y' <- cvtl y; z' <- cvtl z ; return $ HsIf x' y' z' } cvt (LetE ds e) = do { ds' <- cvtDecs ds; e' <- cvtl e; return $ HsLet ds' e' } cvt (CaseE e ms) = do { e' <- cvtl e; ms' <- mapM cvtMatch ms ; return $ HsCase e' (mkMatchGroup ms') } cvt (DoE ss) = cvtHsDo DoExpr ss cvt (CompE ss) = cvtHsDo ListComp ss cvt (ArithSeqE dd) = do { dd' <- cvtDD dd; return $ ArithSeq noPostTcExpr dd' } cvt (ListE xs) = do { xs' <- mapM cvtl xs; return $ ExplicitList void xs' } cvt (InfixE (Just x) s (Just y)) = do { x' <- cvtl x; s' <- cvtl s; y' <- cvtl y ; e' <- returnL $ OpApp x' s' undefined y' ; return $ HsPar e' } cvt (InfixE Nothing s (Just y)) = do { s' <- cvtl s; y' <- cvtl y ; return $ SectionR s' y' } cvt (InfixE (Just x) s Nothing ) = do { x' <- cvtl x; s' <- cvtl s ; return $ SectionL x' s' } cvt (InfixE Nothing s Nothing ) = cvt s -- Can I indicate this is an infix thing? cvt (SigE e t) = do { e' <- cvtl e; t' <- cvtType t ; return $ ExprWithTySig e' t' } cvt (RecConE c flds) = do { c' <- cNameL c ; flds' <- mapM cvtFld flds ; return $ RecordCon c' noPostTcExpr flds' } cvt (RecUpdE e flds) = do { e' <- cvtl e ; flds' <- mapM cvtFld flds ; return $ RecordUpd e' flds' placeHolderType placeHolderType } cvtFld (v,e) = do { v' <- vNameL v; e' <- cvtl e; return (v',e') } cvtDD :: Range -> CvtM (ArithSeqInfo RdrName) cvtDD (FromR x) = do { x' <- cvtl x; return $ From x' } cvtDD (FromThenR x y) = do { x' <- cvtl x; y' <- cvtl y; return $ FromThen x' y' } cvtDD (FromToR x y) = do { x' <- cvtl x; y' <- cvtl y; return $ FromTo x' y' } cvtDD (FromThenToR x y z) = do { x' <- cvtl x; y' <- cvtl y; z' <- cvtl z; return $ FromThenTo x' y' z' } ------------------------------------- -- Do notation and statements ------------------------------------- cvtHsDo do_or_lc stmts = do { stmts' <- cvtStmts stmts ; let body = case last stmts' of L _ (ExprStmt body _ _) -> body ; return $ HsDo do_or_lc (init stmts') body void } cvtStmts = mapM cvtStmt cvtStmt :: TH.Stmt -> CvtM (Hs.LStmt RdrName) cvtStmt (NoBindS e) = do { e' <- cvtl e; returnL $ mkExprStmt e' } cvtStmt (TH.BindS p e) = do { p' <- cvtPat p; e' <- cvtl e; returnL $ mkBindStmt p' e' } cvtStmt (TH.LetS ds) = do { ds' <- cvtDecs ds; returnL $ LetStmt ds' } cvtStmt (TH.ParS dss) = do { dss' <- mapM cvt_one dss; returnL $ ParStmt dss' } where cvt_one ds = do { ds' <- cvtStmts ds; return (ds', undefined) } cvtMatch :: TH.Match -> CvtM (Hs.LMatch RdrName) cvtMatch (TH.Match p body decs) = do { p' <- cvtPat p ; g' <- cvtGuard body ; decs' <- cvtDecs decs ; returnL $ Hs.Match [p'] Nothing (GRHSs g' decs') } cvtGuard :: TH.Body -> CvtM [LGRHS RdrName] cvtGuard (GuardedB pairs) = mapM cvtpair pairs cvtGuard (NormalB e) = do { e' <- cvtl e; g' <- returnL $ GRHS [] e'; return [g'] } cvtpair :: (TH.Guard, TH.Exp) -> CvtM (LGRHS RdrName) cvtpair (NormalG ge,rhs) = do { ge' <- cvtl ge; rhs' <- cvtl rhs ; g' <- returnL $ mkBindStmt truePat ge' ; returnL $ GRHS [g'] rhs' } cvtpair (PatG gs,rhs) = do { gs' <- cvtStmts gs; rhs' <- cvtl rhs ; returnL $ GRHS gs' rhs' } cvtOverLit :: Lit -> CvtM (HsOverLit RdrName) cvtOverLit (IntegerL i) = do { force i; return $ mkHsIntegral i } cvtOverLit (RationalL r) = do { force r; return $ mkHsFractional r } -- An Integer is like an an (overloaded) '3' in a Haskell source program -- Similarly 3.5 for fractionals cvtLit :: Lit -> CvtM HsLit cvtLit (IntPrimL i) = do { force i; return $ HsIntPrim i } cvtLit (FloatPrimL f) = do { force f; return $ HsFloatPrim f } cvtLit (DoublePrimL f) = do { force f; return $ HsDoublePrim f } cvtLit (CharL c) = do { force c; return $ HsChar c } cvtLit (StringL s) = do { let { s' = mkFastString s }; force s'; return $ HsString s' } cvtPats :: [TH.Pat] -> CvtM [Hs.LPat RdrName] cvtPats pats = mapM cvtPat pats cvtPat :: TH.Pat -> CvtM (Hs.LPat RdrName) cvtPat pat = wrapL (cvtp pat) cvtp :: TH.Pat -> CvtM (Hs.Pat RdrName) cvtp (TH.LitP l) | overloadedLit l = do { l' <- cvtOverLit l ; return (mkNPat l' Nothing) } -- Not right for negative patterns; -- need to think about that! | otherwise = do { l' <- cvtLit l; return $ Hs.LitPat l' } cvtp (TH.VarP s) = do { s' <- vName s; return $ Hs.VarPat s' } cvtp (TupP [p]) = cvtp p cvtp (TupP ps) = do { ps' <- cvtPats ps; return $ TuplePat ps' Boxed void } cvtp (ConP s ps) = do { s' <- cNameL s; ps' <- cvtPats ps; return $ ConPatIn s' (PrefixCon ps') } cvtp (InfixP p1 s p2) = do { s' <- cNameL s; p1' <- cvtPat p1; p2' <- cvtPat p2 ; return $ ConPatIn s' (InfixCon p1' p2') } cvtp (TildeP p) = do { p' <- cvtPat p; return $ LazyPat p' } cvtp (TH.AsP s p) = do { s' <- vNameL s; p' <- cvtPat p; return $ AsPat s' p' } cvtp TH.WildP = return $ WildPat void cvtp (RecP c fs) = do { c' <- cNameL c; fs' <- mapM cvtPatFld fs ; return $ ConPatIn c' $ Hs.RecCon fs' } cvtp (ListP ps) = do { ps' <- cvtPats ps; return $ ListPat ps' void } cvtp (SigP p t) = do { p' <- cvtPat p; t' <- cvtType t; return $ SigPatIn p' t' } cvtPatFld (s,p) = do { s' <- vNameL s; p' <- cvtPat p; return (mkRecField s' p') } ----------------------------------------------------------- -- Types and type variables cvtTvs :: [TH.Name] -> CvtM [LHsTyVarBndr RdrName] cvtTvs tvs = mapM cvt_tv tvs cvt_tv tv = do { tv' <- tName tv; returnL $ UserTyVar tv' } cvtContext :: Cxt -> CvtM (LHsContext RdrName) cvtContext tys = do { preds' <- mapM cvtPred tys; returnL preds' } cvtPred :: TH.Type -> CvtM (LHsPred RdrName) cvtPred ty = do { (head, tys') <- split_ty_app ty ; case head of ConT tc -> do { tc' <- tconName tc; returnL $ HsClassP tc' tys' } VarT tv -> do { tv' <- tName tv; returnL $ HsClassP tv' tys' } other -> failWith (ptext SLIT("Malformed predicate") <+> text (TH.pprint ty)) } cvtType :: TH.Type -> CvtM (LHsType RdrName) cvtType ty = do { (head, tys') <- split_ty_app ty ; case head of TupleT n | length tys' == n -> returnL (HsTupleTy Boxed tys') | n == 0 -> mk_apps (HsTyVar (getRdrName unitTyCon)) tys' | otherwise -> mk_apps (HsTyVar (getRdrName (tupleTyCon Boxed n))) tys' ArrowT | [x',y'] <- tys' -> returnL (HsFunTy x' y') ListT | [x'] <- tys' -> returnL (HsListTy x') VarT nm -> do { nm' <- tName nm; mk_apps (HsTyVar nm') tys' } ConT nm -> do { nm' <- tconName nm; mk_apps (HsTyVar nm') tys' } ForallT tvs cxt ty | null tys' -> do { tvs' <- cvtTvs tvs ; cxt' <- cvtContext cxt ; ty' <- cvtType ty ; returnL $ mkExplicitHsForAllTy tvs' cxt' ty' } otherwise -> failWith (ptext SLIT("Malformed type") <+> text (show ty)) } where mk_apps head [] = returnL head mk_apps head (ty:tys) = do { head' <- returnL head; mk_apps (HsAppTy head' ty) tys } split_ty_app :: TH.Type -> CvtM (TH.Type, [LHsType RdrName]) split_ty_app ty = go ty [] where go (AppT f a) as' = do { a' <- cvtType a; go f (a':as') } go f as = return (f,as) ----------------------------------------------------------- ----------------------------------------------------------- -- some useful things truePat = nlConPat (getRdrName trueDataCon) [] overloadedLit :: Lit -> Bool -- True for literals that Haskell treats as overloaded overloadedLit (IntegerL l) = True overloadedLit (RationalL l) = True overloadedLit l = False void :: Type.Type void = placeHolderType -------------------------------------------------------------------- -- Turning Name back into RdrName -------------------------------------------------------------------- -- variable names vNameL, cNameL, tconNameL :: TH.Name -> CvtM (Located RdrName) vName, cName, tName, tconName :: TH.Name -> CvtM RdrName vNameL n = wrapL (vName n) vName n = cvtName OccName.varName n -- Constructor function names; this is Haskell source, hence srcDataName cNameL n = wrapL (cName n) cName n = cvtName OccName.dataName n -- Type variable names tName n = cvtName OccName.tvName n -- Type Constructor names tconNameL n = wrapL (tconName n) tconName n = cvtName OccName.tcClsName n cvtName :: OccName.NameSpace -> TH.Name -> CvtM RdrName cvtName ctxt_ns (TH.Name occ flavour) | not (okOcc ctxt_ns occ_str) = failWith (badOcc ctxt_ns occ_str) | otherwise = force (thRdrName ctxt_ns occ_str flavour) where occ_str = TH.occString occ okOcc :: OccName.NameSpace -> String -> Bool okOcc _ [] = False okOcc ns str@(c:_) | OccName.isVarName ns = startsVarId c || startsVarSym c | otherwise = startsConId c || startsConSym c || str == "[]" badOcc :: OccName.NameSpace -> String -> SDoc badOcc ctxt_ns occ = ptext SLIT("Illegal") <+> pprNameSpace ctxt_ns <+> ptext SLIT("name:") <+> quotes (text occ) thRdrName :: OccName.NameSpace -> String -> TH.NameFlavour -> RdrName -- This turns a Name into a RdrName -- The passed-in name space tells what the context is expecting; -- use it unless the TH name knows what name-space it comes -- from, in which case use the latter -- -- ToDo: we may generate silly RdrNames, by passing a name space -- that doesn't match the string, like VarName ":+", -- which will give confusing error messages later -- -- The strict applications ensure that any buried exceptions get forced thRdrName ctxt_ns occ (TH.NameG th_ns pkg mod) = (mkOrig $! (mkModule (mk_pkg pkg) (mk_mod mod))) $! (mk_occ (mk_ghc_ns th_ns) occ) thRdrName ctxt_ns occ (TH.NameL uniq) = nameRdrName $! (((Name.mkInternalName $! (mk_uniq uniq)) $! (mk_occ ctxt_ns occ)) noSrcLoc) thRdrName ctxt_ns occ (TH.NameQ mod) = (mkRdrQual $! (mk_mod mod)) $! (mk_occ ctxt_ns occ) thRdrName ctxt_ns occ (TH.NameU uniq) = mkRdrUnqual $! (mk_uniq_occ ctxt_ns occ uniq) thRdrName ctxt_ns occ TH.NameS | Just name <- isBuiltInOcc ctxt_ns occ = nameRdrName $! name | otherwise = mkRdrUnqual $! (mk_occ ctxt_ns occ) isBuiltInOcc :: OccName.NameSpace -> String -> Maybe Name.Name -- Built in syntax isn't "in scope" so an Unqual RdrName won't do -- We must generate an Exact name, just as the parser does isBuiltInOcc ctxt_ns occ = case occ of ":" -> Just (Name.getName consDataCon) "[]" -> Just (Name.getName nilDataCon) "()" -> Just (tup_name 0) '(' : ',' : rest -> go_tuple 2 rest other -> Nothing where go_tuple n ")" = Just (tup_name n) go_tuple n (',' : rest) = go_tuple (n+1) rest go_tuple n other = Nothing tup_name n | OccName.isTcClsName ctxt_ns = Name.getName (tupleTyCon Boxed n) | otherwise = Name.getName (tupleCon Boxed n) mk_uniq_occ :: OccName.NameSpace -> String -> Int# -> OccName.OccName mk_uniq_occ ns occ uniq = OccName.mkOccName ns (occ ++ '[' : shows (mk_uniq uniq) "]") -- The idea here is to make a name that -- a) the user could not possibly write, and -- b) cannot clash with another NameU -- Previously I generated an Exact RdrName with mkInternalName. -- This works fine for local binders, but does not work at all for -- top-level binders, which must have External Names, since they are -- rapidly baked into data constructors and the like. Baling out -- and generating an unqualified RdrName here is the simple solution -- The packing and unpacking is rather turgid :-( mk_occ :: OccName.NameSpace -> String -> OccName.OccName mk_occ ns occ = OccName.mkOccNameFS ns (mkFastString occ) mk_ghc_ns :: TH.NameSpace -> OccName.NameSpace mk_ghc_ns TH.DataName = OccName.dataName mk_ghc_ns TH.TcClsName = OccName.tcClsName mk_ghc_ns TH.VarName = OccName.varName mk_mod :: TH.ModName -> ModuleName mk_mod mod = mkModuleName (TH.modString mod) mk_pkg :: TH.ModName -> PackageId mk_pkg pkg = stringToPackageId (TH.pkgString pkg) mk_uniq :: Int# -> Unique mk_uniq u = mkUniqueGrimily (I# u) \end{code}