% % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % \section[HsBinds]{Abstract syntax: top-level bindings and signatures} Datatype for: @BindGroup@, @Bind@, @Sig@, @Bind@. \begin{code} module HsBinds where #include "HsVersions.h" import {-# SOURCE #-} HsExpr ( HsExpr, pprExpr, LHsExpr, MatchGroup, pprFunBind, GRHSs, pprPatBind ) import {-# SOURCE #-} HsPat ( LPat ) import HsTypes ( LHsType, PostTcType ) import Type ( Type ) import Name ( Name ) import NameSet ( NameSet, elemNameSet ) import BasicTypes ( IPName, RecFlag(..), InlineSpec(..), Fixity ) import Outputable import SrcLoc ( Located(..), SrcSpan, unLoc ) import Util ( sortLe ) import Var ( TyVar, DictId, Id ) import Bag ( Bag, emptyBag, isEmptyBag, bagToList, unionBags, unionManyBags ) \end{code} %************************************************************************ %* * \subsection{Bindings: @BindGroup@} %* * %************************************************************************ Global bindings (where clauses) \begin{code} data HsLocalBinds id -- Bindings in a 'let' expression -- or a 'where' clause = HsValBinds (HsValBinds id) | HsIPBinds (HsIPBinds id) | EmptyLocalBinds data HsValBinds id -- Value bindings (not implicit parameters) = ValBindsIn -- Before typechecking (LHsBinds id) [LSig id] -- Not dependency analysed -- Recursive by default | ValBindsOut -- After renaming [(RecFlag, LHsBinds id)] -- Dependency analysed [LSig Name] type LHsBinds id = Bag (LHsBind id) type DictBinds id = LHsBinds id -- Used for dictionary or method bindings type LHsBind id = Located (HsBind id) data HsBind id = FunBind { -- FunBind is used for both functions f x = e -- and variables f = \x -> e -- Reason 1: the Match stuff lets us have an optional -- result type sig f :: a->a = ...mentions a... -- -- Reason 2: Special case for type inference: see TcBinds.tcMonoBinds -- -- Reason 3: instance decls can only have FunBinds, which is convenient -- If you change this, you'll need tochange e.g. rnMethodBinds fun_id :: Located id, fun_infix :: Bool, -- True => infix declaration fun_matches :: MatchGroup id, -- The payload fun_co_fn :: ExprCoFn, -- Coercion from the type of the MatchGroup to the type of -- the Id. Example: -- f :: Int -> forall a. a -> a -- f x y = y -- Then the MatchGroup will have type (Int -> a' -> a') -- (with a free type variable a'). The coercion will take -- a CoreExpr of this type and convert it to a CoreExpr of -- type Int -> forall a'. a' -> a' -- Notice that the coercion captures the free a'. That's -- why coercions are (CoreExpr -> CoreExpr), rather than -- just CoreExpr (with a functional type) bind_fvs :: NameSet -- After the renamer, this contains a superset of the -- Names of the other binders in this binding group that -- are free in the RHS of the defn -- Before renaming, and after typechecking, -- the field is unused; it's just an error thunk } | PatBind { -- The pattern is never a simple variable; -- That case is done by FunBind pat_lhs :: LPat id, pat_rhs :: GRHSs id, pat_rhs_ty :: PostTcType, -- Type of the GRHSs bind_fvs :: NameSet -- Same as for FunBind } | VarBind { -- Dictionary binding and suchlike var_id :: id, -- All VarBinds are introduced by the type checker var_rhs :: LHsExpr id -- Located only for consistency } | AbsBinds { -- Binds abstraction; TRANSLATION abs_tvs :: [TyVar], abs_dicts :: [DictId], abs_exports :: [([TyVar], id, id, [Prag])], -- (tvs, poly_id, mono_id, prags) abs_binds :: LHsBinds id -- The dictionary bindings and typechecked user bindings -- mixed up together; you can tell the dict bindings because -- they are all VarBinds } -- Consider (AbsBinds tvs ds [(ftvs, poly_f, mono_f) binds] -- -- Creates bindings for (polymorphic, overloaded) poly_f -- in terms of monomorphic, non-overloaded mono_f -- -- Invariants: -- 1. 'binds' binds mono_f -- 2. ftvs is a subset of tvs -- 3. ftvs includes all tyvars free in ds -- -- See section 9 of static semantics paper for more details. -- (You can get a PhD for explaining the True Meaning -- of this last construct.) placeHolderNames :: NameSet -- Used for the NameSet in FunBind and PatBind prior to the renamer placeHolderNames = panic "placeHolderNames" ------------ instance OutputableBndr id => Outputable (HsLocalBinds id) where ppr (HsValBinds bs) = ppr bs ppr (HsIPBinds bs) = ppr bs ppr EmptyLocalBinds = empty instance OutputableBndr id => Outputable (HsValBinds id) where ppr (ValBindsIn binds sigs) = pprValBindsForUser binds sigs ppr (ValBindsOut sccs sigs) = getPprStyle $ \ sty -> if debugStyle sty then -- Print with sccs showing vcat (map ppr sigs) $$ vcat (map ppr_scc sccs) else pprValBindsForUser (unionManyBags (map snd sccs)) sigs where ppr_scc (rec_flag, binds) = pp_rec rec_flag <+> pprLHsBinds binds pp_rec Recursive = ptext SLIT("rec") pp_rec NonRecursive = ptext SLIT("nonrec") -- *not* pprLHsBinds because we don't want braces; 'let' and -- 'where' include a list of HsBindGroups and we don't want -- several groups of bindings each with braces around. -- Sort by location before printing pprValBindsForUser binds sigs = vcat (map snd (sort_by_loc decls)) where decls :: [(SrcSpan, SDoc)] decls = [(loc, ppr sig) | L loc sig <- sigs] ++ [(loc, ppr bind) | L loc bind <- bagToList binds] sort_by_loc decls = sortLe (\(l1,_) (l2,_) -> l1 <= l2) decls pprLHsBinds :: OutputableBndr id => LHsBinds id -> SDoc pprLHsBinds binds | isEmptyLHsBinds binds = empty | otherwise = lbrace <+> vcat (map ppr (bagToList binds)) <+> rbrace ------------ emptyLocalBinds :: HsLocalBinds a emptyLocalBinds = EmptyLocalBinds isEmptyLocalBinds :: HsLocalBinds a -> Bool isEmptyLocalBinds (HsValBinds ds) = isEmptyValBinds ds isEmptyLocalBinds (HsIPBinds ds) = isEmptyIPBinds ds isEmptyLocalBinds EmptyLocalBinds = True isEmptyValBinds :: HsValBinds a -> Bool isEmptyValBinds (ValBindsIn ds sigs) = isEmptyLHsBinds ds && null sigs isEmptyValBinds (ValBindsOut ds sigs) = null ds && null sigs emptyValBindsIn, emptyValBindsOut :: HsValBinds a emptyValBindsIn = ValBindsIn emptyBag [] emptyValBindsOut = ValBindsOut [] [] emptyLHsBinds :: LHsBinds id emptyLHsBinds = emptyBag isEmptyLHsBinds :: LHsBinds id -> Bool isEmptyLHsBinds = isEmptyBag ------------ plusHsValBinds :: HsValBinds a -> HsValBinds a -> HsValBinds a plusHsValBinds (ValBindsIn ds1 sigs1) (ValBindsIn ds2 sigs2) = ValBindsIn (ds1 `unionBags` ds2) (sigs1 ++ sigs2) plusHsValBinds (ValBindsOut ds1 sigs1) (ValBindsOut ds2 sigs2) = ValBindsOut (ds1 ++ ds2) (sigs1 ++ sigs2) \end{code} What AbsBinds means ~~~~~~~~~~~~~~~~~~~ AbsBinds tvs [d1,d2] [(tvs1, f1p, f1m), (tvs2, f2p, f2m)] BIND means f1p = /\ tvs -> \ [d1,d2] -> letrec DBINDS and BIND in fm gp = ...same again, with gm instead of fm This is a pretty bad translation, because it duplicates all the bindings. So the desugarer tries to do a better job: fp = /\ [a,b] -> \ [d1,d2] -> case tp [a,b] [d1,d2] of (fm,gm) -> fm ..ditto for gp.. tp = /\ [a,b] -> \ [d1,d2] -> letrec DBINDS and BIND in (fm,gm) \begin{code} instance OutputableBndr id => Outputable (HsBind id) where ppr mbind = ppr_monobind mbind ppr_monobind :: OutputableBndr id => HsBind id -> SDoc ppr_monobind (PatBind { pat_lhs = pat, pat_rhs = grhss }) = pprPatBind pat grhss ppr_monobind (VarBind { var_id = var, var_rhs = rhs }) = ppr var <+> equals <+> pprExpr (unLoc rhs) ppr_monobind (FunBind { fun_id = fun, fun_matches = matches }) = pprFunBind (unLoc fun) matches -- ToDo: print infix if appropriate ppr_monobind (AbsBinds { abs_tvs = tyvars, abs_dicts = dictvars, abs_exports = exports, abs_binds = val_binds }) = sep [ptext SLIT("AbsBinds"), brackets (interpp'SP tyvars), brackets (interpp'SP dictvars), brackets (sep (punctuate comma (map ppr_exp exports)))] $$ nest 2 ( vcat [pprBndr LetBind x | (_,x,_,_) <- exports] -- Print type signatures $$ pprLHsBinds val_binds ) where ppr_exp (tvs, gbl, lcl, prags) = vcat [ppr gbl <+> ptext SLIT("<=") <+> ppr tvs <+> ppr lcl, nest 2 (vcat (map (pprPrag gbl) prags))] \end{code} %************************************************************************ %* * Implicit parameter bindings %* * %************************************************************************ \begin{code} data HsIPBinds id = IPBinds [LIPBind id] (DictBinds id) -- Only in typechecker output; binds -- uses of the implicit parameters isEmptyIPBinds :: HsIPBinds id -> Bool isEmptyIPBinds (IPBinds is ds) = null is && isEmptyBag ds type LIPBind id = Located (IPBind id) -- | Implicit parameter bindings. data IPBind id = IPBind (IPName id) (LHsExpr id) instance (OutputableBndr id) => Outputable (HsIPBinds id) where ppr (IPBinds bs ds) = vcat (map ppr bs) $$ pprLHsBinds ds instance (OutputableBndr id) => Outputable (IPBind id) where ppr (IPBind id rhs) = pprBndr LetBind id <+> equals <+> pprExpr (unLoc rhs) \end{code} %************************************************************************ %* * \subsection{Coercion functions} %* * %************************************************************************ \begin{code} -- A Coercion is an expression with a hole in it -- We need coercions to have concrete form so that we can zonk them data ExprCoFn = CoHole -- The identity coercion | CoCompose ExprCoFn ExprCoFn | CoApps ExprCoFn [Id] -- Non-empty list | CoTyApps ExprCoFn [Type] -- in all of these | CoLams [Id] ExprCoFn -- so that the identity coercion | CoTyLams [TyVar] ExprCoFn -- is just Hole | CoLet (LHsBinds Id) ExprCoFn -- Would be nicer to be core bindings (<.>) :: ExprCoFn -> ExprCoFn -> ExprCoFn (<.>) = CoCompose idCoercion :: ExprCoFn idCoercion = CoHole isIdCoercion :: ExprCoFn -> Bool isIdCoercion CoHole = True isIdCoercion other = False \end{code} %************************************************************************ %* * \subsection{@Sig@: type signatures and value-modifying user pragmas} %* * %************************************************************************ It is convenient to lump ``value-modifying'' user-pragmas (e.g., ``specialise this function to these four types...'') in with type signatures. Then all the machinery to move them into place, etc., serves for both. \begin{code} type LSig name = Located (Sig name) data Sig name = TypeSig (Located name) -- A bog-std type signature (LHsType name) | SpecSig (Located name) -- Specialise a function or datatype ... (LHsType name) -- ... to these types InlineSpec | InlineSig (Located name) -- Function name InlineSpec | SpecInstSig (LHsType name) -- (Class tys); should be a specialisation of the -- current instance decl | FixSig (FixitySig name) -- Fixity declaration type LFixitySig name = Located (FixitySig name) data FixitySig name = FixitySig (Located name) Fixity -- A Prag conveys pragmas from the type checker to the desugarer data Prag = InlinePrag InlineSpec | SpecPrag (HsExpr Id) -- An expression, of the given specialised type, which PostTcType -- specialises the polymorphic function [Id] -- Dicts mentioned free in the expression InlineSpec -- Inlining spec for the specialised function isInlinePrag (InlinePrag _) = True isInlinePrag prag = False isSpecPrag (SpecPrag _ _ _ _) = True isSpecPrag prag = False \end{code} \begin{code} okBindSig :: NameSet -> LSig Name -> Bool okBindSig ns sig = sigForThisGroup ns sig okHsBootSig :: LSig Name -> Bool okHsBootSig (L _ (TypeSig _ _)) = True okHsBootSig (L _ (FixSig _)) = True okHsBootSig sig = False okClsDclSig :: LSig Name -> Bool okClsDclSig (L _ (SpecInstSig _)) = False okClsDclSig sig = True -- All others OK okInstDclSig :: NameSet -> LSig Name -> Bool okInstDclSig ns lsig@(L _ sig) = ok ns sig where ok ns (TypeSig _ _) = False ok ns (FixSig _) = False ok ns (SpecInstSig _) = True ok ns sig = sigForThisGroup ns lsig sigForThisGroup :: NameSet -> LSig Name -> Bool sigForThisGroup ns sig = case sigName sig of Nothing -> False Just n -> n `elemNameSet` ns sigName :: LSig name -> Maybe name sigName (L _ sig) = f sig where f (TypeSig n _) = Just (unLoc n) f (SpecSig n _ _) = Just (unLoc n) f (InlineSig n _) = Just (unLoc n) f (FixSig (FixitySig n _)) = Just (unLoc n) f other = Nothing isFixityLSig :: LSig name -> Bool isFixityLSig (L _ (FixSig {})) = True isFixityLSig _ = False isVanillaLSig :: LSig name -> Bool isVanillaLSig (L _(TypeSig {})) = True isVanillaLSig sig = False isSpecLSig :: LSig name -> Bool isSpecLSig (L _(SpecSig {})) = True isSpecLSig sig = False isSpecInstLSig (L _ (SpecInstSig {})) = True isSpecInstLSig sig = False isPragLSig :: LSig name -> Bool -- Identifies pragmas isPragLSig (L _ (SpecSig {})) = True isPragLSig (L _ (InlineSig {})) = True isPragLSig other = False isInlineLSig :: LSig name -> Bool -- Identifies inline pragmas isInlineLSig (L _ (InlineSig {})) = True isInlineLSig other = False hsSigDoc (TypeSig {}) = ptext SLIT("type signature") hsSigDoc (SpecSig {}) = ptext SLIT("SPECIALISE pragma") hsSigDoc (InlineSig _ spec) = ppr spec <+> ptext SLIT("pragma") hsSigDoc (SpecInstSig {}) = ptext SLIT("SPECIALISE instance pragma") hsSigDoc (FixSig {}) = ptext SLIT("fixity declaration") \end{code} Signature equality is used when checking for duplicate signatures \begin{code} eqHsSig :: LSig Name -> LSig Name -> Bool eqHsSig (L _ (FixSig (FixitySig n1 _))) (L _ (FixSig (FixitySig n2 _))) = unLoc n1 == unLoc n2 eqHsSig (L _ (TypeSig n1 _)) (L _ (TypeSig n2 _)) = unLoc n1 == unLoc n2 eqHsSig (L _ (InlineSig n1 s1)) (L _ (InlineSig n2 s2)) = s1 == s2 && unLoc n1 == unLoc n2 -- For specialisations, we don't have equality over -- HsType, so it's not convenient to spot duplicate -- specialisations here. Check for this later, when we're in Type land eqHsSig _other1 _other2 = False \end{code} \begin{code} instance (OutputableBndr name) => Outputable (Sig name) where ppr sig = ppr_sig sig ppr_sig :: OutputableBndr name => Sig name -> SDoc ppr_sig (TypeSig var ty) = pprVarSig (unLoc var) ty ppr_sig (FixSig fix_sig) = ppr fix_sig ppr_sig (SpecSig var ty inl) = pragBrackets (pprSpec var ty inl) ppr_sig (InlineSig var inl) = pragBrackets (ppr inl <+> ppr var) ppr_sig (SpecInstSig ty) = pragBrackets (ptext SLIT("SPECIALIZE instance") <+> ppr ty) instance Outputable name => Outputable (FixitySig name) where ppr (FixitySig name fixity) = sep [ppr fixity, ppr name] pragBrackets :: SDoc -> SDoc pragBrackets doc = ptext SLIT("{-#") <+> doc <+> ptext SLIT("#-}") pprVarSig :: (Outputable id, Outputable ty) => id -> ty -> SDoc pprVarSig var ty = sep [ppr var <+> dcolon, nest 2 (ppr ty)] pprSpec :: (Outputable id, Outputable ty) => id -> ty -> InlineSpec -> SDoc pprSpec var ty inl = sep [ptext SLIT("SPECIALIZE") <+> ppr inl <+> pprVarSig var ty] pprPrag :: Outputable id => id -> Prag -> SDoc pprPrag var (InlinePrag inl) = ppr inl <+> ppr var pprPrag var (SpecPrag expr ty _ inl) = pprSpec var ty inl \end{code}