% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % \begin{code} {-# OPTIONS -fno-warn-incomplete-patterns #-} -- The above warning supression flag is a temporary kludge. -- While working on this module you are encouraged to remove it and fix -- any warnings in the module. See -- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings -- for details {-# LANGUAGE DeriveDataTypeable #-} -- | Abstract syntax of global declarations. -- -- Definitions for: @TyDecl@ and @ConDecl@, @ClassDecl@, -- @InstDecl@, @DefaultDecl@ and @ForeignDecl@. module HsDecls ( -- * Toplevel declarations HsDecl(..), LHsDecl, -- ** Class or type declarations TyClDecl(..), LTyClDecl, isClassDecl, isSynDecl, isDataDecl, isTypeDecl, isFamilyDecl, isFamInstDecl, tcdName, tyClDeclTyVars, countTyClDecls, -- ** Instance declarations InstDecl(..), LInstDecl, NewOrData(..), FamilyFlavour(..), instDeclATs, -- ** Standalone deriving declarations DerivDecl(..), LDerivDecl, -- ** @RULE@ declarations RuleDecl(..), LRuleDecl, RuleBndr(..), collectRuleBndrSigTys, -- ** @VECTORISE@ declarations VectDecl(..), LVectDecl, -- ** @default@ declarations DefaultDecl(..), LDefaultDecl, -- ** Top-level template haskell splice SpliceDecl(..), -- ** Foreign function interface declarations ForeignDecl(..), LForeignDecl, ForeignImport(..), ForeignExport(..), CImportSpec(..), -- ** Data-constructor declarations ConDecl(..), LConDecl, ResType(..), HsConDeclDetails, hsConDeclArgTys, -- ** Document comments DocDecl(..), LDocDecl, docDeclDoc, -- ** Deprecations WarnDecl(..), LWarnDecl, -- ** Annotations AnnDecl(..), LAnnDecl, AnnProvenance(..), annProvenanceName_maybe, modifyAnnProvenanceNameM, -- * Grouping HsGroup(..), emptyRdrGroup, emptyRnGroup, appendGroups ) where -- friends: import {-# SOURCE #-} HsExpr( LHsExpr, HsExpr, pprExpr ) -- Because Expr imports Decls via HsBracket import HsBinds import HsPat import HsTypes import HsDoc import NameSet import {- Kind parts of -} Type import BasicTypes import ForeignCall -- others: import Class import Outputable import Util import SrcLoc import FastString import Control.Monad ( liftM ) import Data.Data import Data.Maybe ( isJust ) \end{code} %************************************************************************ %* * \subsection[HsDecl]{Declarations} %* * %************************************************************************ \begin{code} type LHsDecl id = Located (HsDecl id) -- | A Haskell Declaration data HsDecl id = TyClD (TyClDecl id) -- ^ A type or class declaration. | InstD (InstDecl id) -- ^ An instance declaration. | DerivD (DerivDecl id) | ValD (HsBind id) | SigD (Sig id) | DefD (DefaultDecl id) | ForD (ForeignDecl id) | WarningD (WarnDecl id) | AnnD (AnnDecl id) | RuleD (RuleDecl id) | VectD (VectDecl id) | SpliceD (SpliceDecl id) | DocD (DocDecl) | QuasiQuoteD (HsQuasiQuote id) deriving (Data, Typeable) -- NB: all top-level fixity decls are contained EITHER -- EITHER SigDs -- OR in the ClassDecls in TyClDs -- -- The former covers -- a) data constructors -- b) class methods (but they can be also done in the -- signatures of class decls) -- c) imported functions (that have an IfacSig) -- d) top level decls -- -- The latter is for class methods only -- | A 'HsDecl' is categorised into a 'HsGroup' before being -- fed to the renamer. data HsGroup id = HsGroup { hs_valds :: HsValBinds id, hs_tyclds :: [[LTyClDecl id]], -- A list of mutually-recursive groups -- Parser generates a singleton list; -- renamer does dependency analysis hs_instds :: [LInstDecl id], hs_derivds :: [LDerivDecl id], hs_fixds :: [LFixitySig id], -- Snaffled out of both top-level fixity signatures, -- and those in class declarations hs_defds :: [LDefaultDecl id], hs_fords :: [LForeignDecl id], hs_warnds :: [LWarnDecl id], hs_annds :: [LAnnDecl id], hs_ruleds :: [LRuleDecl id], hs_vects :: [LVectDecl id], hs_docs :: [LDocDecl] } deriving (Data, Typeable) emptyGroup, emptyRdrGroup, emptyRnGroup :: HsGroup a emptyRdrGroup = emptyGroup { hs_valds = emptyValBindsIn } emptyRnGroup = emptyGroup { hs_valds = emptyValBindsOut } emptyGroup = HsGroup { hs_tyclds = [], hs_instds = [], hs_derivds = [], hs_fixds = [], hs_defds = [], hs_annds = [], hs_fords = [], hs_warnds = [], hs_ruleds = [], hs_vects = [], hs_valds = error "emptyGroup hs_valds: Can't happen", hs_docs = [] } appendGroups :: HsGroup a -> HsGroup a -> HsGroup a appendGroups HsGroup { hs_valds = val_groups1, hs_tyclds = tyclds1, hs_instds = instds1, hs_derivds = derivds1, hs_fixds = fixds1, hs_defds = defds1, hs_annds = annds1, hs_fords = fords1, hs_warnds = warnds1, hs_ruleds = rulds1, hs_vects = vects1, hs_docs = docs1 } HsGroup { hs_valds = val_groups2, hs_tyclds = tyclds2, hs_instds = instds2, hs_derivds = derivds2, hs_fixds = fixds2, hs_defds = defds2, hs_annds = annds2, hs_fords = fords2, hs_warnds = warnds2, hs_ruleds = rulds2, hs_vects = vects2, hs_docs = docs2 } = HsGroup { hs_valds = val_groups1 `plusHsValBinds` val_groups2, hs_tyclds = tyclds1 ++ tyclds2, hs_instds = instds1 ++ instds2, hs_derivds = derivds1 ++ derivds2, hs_fixds = fixds1 ++ fixds2, hs_annds = annds1 ++ annds2, hs_defds = defds1 ++ defds2, hs_fords = fords1 ++ fords2, hs_warnds = warnds1 ++ warnds2, hs_ruleds = rulds1 ++ rulds2, hs_vects = vects1 ++ vects2, hs_docs = docs1 ++ docs2 } \end{code} \begin{code} instance OutputableBndr name => Outputable (HsDecl name) where ppr (TyClD dcl) = ppr dcl ppr (ValD binds) = ppr binds ppr (DefD def) = ppr def ppr (InstD inst) = ppr inst ppr (DerivD deriv) = ppr deriv ppr (ForD fd) = ppr fd ppr (SigD sd) = ppr sd ppr (RuleD rd) = ppr rd ppr (VectD vect) = ppr vect ppr (WarningD wd) = ppr wd ppr (AnnD ad) = ppr ad ppr (SpliceD dd) = ppr dd ppr (DocD doc) = ppr doc ppr (QuasiQuoteD qq) = ppr qq instance OutputableBndr name => Outputable (HsGroup name) where ppr (HsGroup { hs_valds = val_decls, hs_tyclds = tycl_decls, hs_instds = inst_decls, hs_derivds = deriv_decls, hs_fixds = fix_decls, hs_warnds = deprec_decls, hs_annds = ann_decls, hs_fords = foreign_decls, hs_defds = default_decls, hs_ruleds = rule_decls, hs_vects = vect_decls }) = vcat_mb empty [ppr_ds fix_decls, ppr_ds default_decls, ppr_ds deprec_decls, ppr_ds ann_decls, ppr_ds rule_decls, ppr_ds vect_decls, if isEmptyValBinds val_decls then Nothing else Just (ppr val_decls), ppr_ds (concat tycl_decls), ppr_ds inst_decls, ppr_ds deriv_decls, ppr_ds foreign_decls] where ppr_ds :: Outputable a => [a] -> Maybe SDoc ppr_ds [] = Nothing ppr_ds ds = Just (vcat (map ppr ds)) vcat_mb :: SDoc -> [Maybe SDoc] -> SDoc -- Concatenate vertically with white-space between non-blanks vcat_mb _ [] = empty vcat_mb gap (Nothing : ds) = vcat_mb gap ds vcat_mb gap (Just d : ds) = gap $$ d $$ vcat_mb blankLine ds data SpliceDecl id = SpliceDecl -- Top level splice (Located (HsExpr id)) HsExplicitFlag -- Explicit <=> $(f x y) -- Implicit <=> f x y, i.e. a naked top level expression deriving (Data, Typeable) instance OutputableBndr name => Outputable (SpliceDecl name) where ppr (SpliceDecl e _) = ptext (sLit "$") <> parens (pprExpr (unLoc e)) \end{code} %************************************************************************ %* * \subsection[TyDecl]{@data@, @newtype@ or @type@ (synonym) type declaration} %* * %************************************************************************ -------------------------------- THE NAMING STORY -------------------------------- Here is the story about the implicit names that go with type, class, and instance decls. It's a bit tricky, so pay attention! "Implicit" (or "system") binders ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Each data type decl defines a worker name for each constructor to-T and from-T convertors Each class decl defines a tycon for the class a data constructor for that tycon the worker for that constructor a selector for each superclass All have occurrence names that are derived uniquely from their parent declaration. None of these get separate definitions in an interface file; they are fully defined by the data or class decl. But they may *occur* in interface files, of course. Any such occurrence must haul in the relevant type or class decl. Plan of attack: - Ensure they "point to" the parent data/class decl when loading that decl from an interface file (See RnHiFiles.getSysBinders) - When typechecking the decl, we build the implicit TyCons and Ids. When doing so we look them up in the name cache (RnEnv.lookupSysName), to ensure correct module and provenance is set These are the two places that we have to conjure up the magic derived names. (The actual magic is in OccName.mkWorkerOcc, etc.) Default methods ~~~~~~~~~~~~~~~ - Occurrence name is derived uniquely from the method name E.g. $dmmax - If there is a default method name at all, it's recorded in the ClassOpSig (in HsBinds), in the DefMeth field. (DefMeth is defined in Class.lhs) Source-code class decls and interface-code class decls are treated subtly differently, which has given me a great deal of confusion over the years. Here's the deal. (We distinguish the two cases because source-code decls have (Just binds) in the tcdMeths field, whereas interface decls have Nothing. In *source-code* class declarations: - When parsing, every ClassOpSig gets a DefMeth with a suitable RdrName This is done by RdrHsSyn.mkClassOpSigDM - The renamer renames it to a Name - During typechecking, we generate a binding for each $dm for which there's a programmer-supplied default method: class Foo a where op1 :: op2 :: op1 = ... We generate a binding for $dmop1 but not for $dmop2. The Class for Foo has a NoDefMeth for op2 and a DefMeth for op1. The Name for $dmop2 is simply discarded. In *interface-file* class declarations: - When parsing, we see if there's an explicit programmer-supplied default method because there's an '=' sign to indicate it: class Foo a where op1 = :: -- NB the '=' op2 :: We use this info to generate a DefMeth with a suitable RdrName for op1, and a NoDefMeth for op2 - The interface file has a separate definition for $dmop1, with unfolding etc. - The renamer renames it to a Name. - The renamer treats $dmop1 as a free variable of the declaration, so that the binding for $dmop1 will be sucked in. (See RnHsSyn.tyClDeclFVs) This doesn't happen for source code class decls, because they *bind* the default method. Dictionary functions ~~~~~~~~~~~~~~~~~~~~ Each instance declaration gives rise to one dictionary function binding. The type checker makes up new source-code instance declarations (e.g. from 'deriving' or generic default methods --- see TcInstDcls.tcInstDecls1). So we can't generate the names for dictionary functions in advance (we don't know how many we need). On the other hand for interface-file instance declarations, the decl specifies the name of the dictionary function, and it has a binding elsewhere in the interface file: instance {Eq Int} = dEqInt dEqInt :: {Eq Int} So again we treat source code and interface file code slightly differently. Source code: - Source code instance decls have a Nothing in the (Maybe name) field (see data InstDecl below) - The typechecker makes up a Local name for the dict fun for any source-code instance decl, whether it comes from a source-code instance decl, or whether the instance decl is derived from some other construct (e.g. 'deriving'). - The occurrence name it chooses is derived from the instance decl (just for documentation really) --- e.g. dNumInt. Two dict funs may share a common occurrence name, but will have different uniques. E.g. instance Foo [Int] where ... instance Foo [Bool] where ... These might both be dFooList - The CoreTidy phase externalises the name, and ensures the occurrence name is unique (this isn't special to dict funs). So we'd get dFooList and dFooList1. - We can take this relaxed approach (changing the occurrence name later) because dict fun Ids are not captured in a TyCon or Class (unlike default methods, say). Instead, they are kept separately in the InstEnv. This makes it easy to adjust them after compiling a module. (Once we've finished compiling that module, they don't change any more.) Interface file code: - The instance decl gives the dict fun name, so the InstDecl has a (Just name) in the (Maybe name) field. - RnHsSyn.instDeclFVs treats the dict fun name as free in the decl, so that we suck in the dfun binding \begin{code} -- Representation of indexed types -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- Family kind signatures are represented by the variant `TyFamily'. It -- covers "type family", "newtype family", and "data family" declarations, -- distinguished by the value of the field `tcdFlavour'. -- -- Indexed types are represented by 'TyData' and 'TySynonym' using the field -- 'tcdTyPats::Maybe [LHsType name]', with the following meaning: -- -- * If it is 'Nothing', we have a *vanilla* data type declaration or type -- synonym declaration and 'tcdVars' contains the type parameters of the -- type constructor. -- -- * If it is 'Just pats', we have the definition of an indexed type. Then, -- 'pats' are type patterns for the type-indexes of the type constructor -- and 'tcdTyVars' are the variables in those patterns. Hence, the arity of -- the indexed type (ie, the number of indexes) is 'length tcdTyPats' and -- *not* 'length tcdVars'. -- -- In both cases, 'tcdVars' collects all variables we need to quantify over. type LTyClDecl name = Located (TyClDecl name) -- | A type or class declaration. data TyClDecl name = ForeignType { tcdLName :: Located name, tcdExtName :: Maybe FastString } | -- | @type/data family T :: *->*@ TyFamily { tcdFlavour:: FamilyFlavour, -- type or data tcdLName :: Located name, -- type constructor tcdTyVars :: [LHsTyVarBndr name], -- type variables tcdKind :: Maybe Kind -- result kind } | -- | Declares a data type or newtype, giving its construcors -- @ -- data/newtype T a = -- data/newtype instance T [a] = -- @ TyData { tcdND :: NewOrData, tcdCtxt :: LHsContext name, -- ^ Context tcdLName :: Located name, -- ^ Type constructor tcdTyVars :: [LHsTyVarBndr name], -- ^ Type variables tcdTyPats :: Maybe [LHsType name], -- ^ Type patterns. -- -- @Just [t1..tn]@ for @data instance T t1..tn = ...@ -- in this case @tcdTyVars = fv( tcdTyPats )@. -- @Nothing@ for everything else. tcdKindSig:: Maybe Kind, -- ^ Optional kind signature. -- -- @(Just k)@ for a GADT-style @data@, or @data -- instance@ decl with explicit kind sig tcdCons :: [LConDecl name], -- ^ Data constructors -- -- For @data T a = T1 | T2 a@ -- the 'LConDecl's all have 'ResTyH98'. -- For @data T a where { T1 :: T a }@ -- the 'LConDecls' all have 'ResTyGADT'. tcdDerivs :: Maybe [LHsType name] -- ^ Derivings; @Nothing@ => not specified, -- @Just []@ => derive exactly what is asked -- -- These "types" must be of form -- @ -- forall ab. C ty1 ty2 -- @ -- Typically the foralls and ty args are empty, but they -- are non-empty for the newtype-deriving case } | TySynonym { tcdLName :: Located name, -- ^ type constructor tcdTyVars :: [LHsTyVarBndr name], -- ^ type variables tcdTyPats :: Maybe [LHsType name], -- ^ Type patterns -- See comments for tcdTyPats in TyData -- 'Nothing' => vanilla type synonym tcdSynRhs :: LHsType name -- ^ synonym expansion } | ClassDecl { tcdCtxt :: LHsContext name, -- ^ Context... tcdLName :: Located name, -- ^ Name of the class tcdTyVars :: [LHsTyVarBndr name], -- ^ Class type variables tcdFDs :: [Located (FunDep name)], -- ^ Functional deps tcdSigs :: [LSig name], -- ^ Methods' signatures tcdMeths :: LHsBinds name, -- ^ Default methods tcdATs :: [LTyClDecl name], -- ^ Associated types; ie -- only 'TyFamily' and -- 'TySynonym'; the -- latter for defaults tcdDocs :: [LDocDecl] -- ^ Haddock docs } deriving (Data, Typeable) data NewOrData = NewType -- ^ @newtype Blah ...@ | DataType -- ^ @data Blah ...@ deriving( Eq, Data, Typeable ) -- Needed because Demand derives Eq data FamilyFlavour = TypeFamily -- ^ @type family ...@ | DataFamily -- ^ @data family ...@ deriving (Data, Typeable) \end{code} Simple classifiers \begin{code} -- | @True@ <=> argument is a @data@\/@newtype@ or @data@\/@newtype instance@ -- declaration. isDataDecl :: TyClDecl name -> Bool isDataDecl (TyData {}) = True isDataDecl _other = False -- | type or type instance declaration isTypeDecl :: TyClDecl name -> Bool isTypeDecl (TySynonym {}) = True isTypeDecl _other = False -- | vanilla Haskell type synonym (ie, not a type instance) isSynDecl :: TyClDecl name -> Bool isSynDecl (TySynonym {tcdTyPats = Nothing}) = True isSynDecl _other = False -- | type class isClassDecl :: TyClDecl name -> Bool isClassDecl (ClassDecl {}) = True isClassDecl _ = False -- | type family declaration isFamilyDecl :: TyClDecl name -> Bool isFamilyDecl (TyFamily {}) = True isFamilyDecl _other = False -- | family instance (types, newtypes, and data types) isFamInstDecl :: TyClDecl name -> Bool isFamInstDecl tydecl | isTypeDecl tydecl || isDataDecl tydecl = isJust (tcdTyPats tydecl) | otherwise = False \end{code} Dealing with names \begin{code} tcdName :: TyClDecl name -> name tcdName decl = unLoc (tcdLName decl) tyClDeclTyVars :: TyClDecl name -> [LHsTyVarBndr name] tyClDeclTyVars (TyFamily {tcdTyVars = tvs}) = tvs tyClDeclTyVars (TySynonym {tcdTyVars = tvs}) = tvs tyClDeclTyVars (TyData {tcdTyVars = tvs}) = tvs tyClDeclTyVars (ClassDecl {tcdTyVars = tvs}) = tvs tyClDeclTyVars (ForeignType {}) = [] \end{code} \begin{code} countTyClDecls :: [TyClDecl name] -> (Int, Int, Int, Int, Int, Int) -- class, synonym decls, data, newtype, family decls, family instances countTyClDecls decls = (count isClassDecl decls, count isSynDecl decls, -- excluding... count isDataTy decls, -- ...family... count isNewTy decls, -- ...instances count isFamilyDecl decls, count isFamInstDecl decls) where isDataTy TyData{tcdND = DataType, tcdTyPats = Nothing} = True isDataTy _ = False isNewTy TyData{tcdND = NewType, tcdTyPats = Nothing} = True isNewTy _ = False \end{code} \begin{code} instance OutputableBndr name => Outputable (TyClDecl name) where ppr (ForeignType {tcdLName = ltycon}) = hsep [ptext (sLit "foreign import type dotnet"), ppr ltycon] ppr (TyFamily {tcdFlavour = flavour, tcdLName = ltycon, tcdTyVars = tyvars, tcdKind = mb_kind}) = pp_flavour <+> pp_decl_head [] ltycon tyvars Nothing <+> pp_kind where pp_flavour = case flavour of TypeFamily -> ptext (sLit "type family") DataFamily -> ptext (sLit "data family") pp_kind = case mb_kind of Nothing -> empty Just kind -> dcolon <+> pprKind kind ppr (TySynonym {tcdLName = ltycon, tcdTyVars = tyvars, tcdTyPats = typats, tcdSynRhs = mono_ty}) = hang (ptext (sLit "type") <+> (if isJust typats then ptext (sLit "instance") else empty) <+> pp_decl_head [] ltycon tyvars typats <+> equals) 4 (ppr mono_ty) ppr (TyData {tcdND = new_or_data, tcdCtxt = context, tcdLName = ltycon, tcdTyVars = tyvars, tcdTyPats = typats, tcdKindSig = mb_sig, tcdCons = condecls, tcdDerivs = derivings}) = pp_tydecl (null condecls && isJust mb_sig) (ppr new_or_data <+> (if isJust typats then ptext (sLit "instance") else empty) <+> pp_decl_head (unLoc context) ltycon tyvars typats <+> ppr_sig mb_sig) (pp_condecls condecls) derivings where ppr_sig Nothing = empty ppr_sig (Just kind) = dcolon <+> pprKind kind ppr (ClassDecl {tcdCtxt = context, tcdLName = lclas, tcdTyVars = tyvars, tcdFDs = fds, tcdSigs = sigs, tcdMeths = methods, tcdATs = ats}) | null sigs && null ats -- No "where" part = top_matter | otherwise -- Laid out = sep [hsep [top_matter, ptext (sLit "where {")], nest 4 (sep [ sep (map ppr_semi ats) , sep (map ppr_semi sigs) , pprLHsBinds methods , char '}'])] where top_matter = ptext (sLit "class") <+> pp_decl_head (unLoc context) lclas tyvars Nothing <+> pprFundeps (map unLoc fds) ppr_semi :: Outputable a => a -> SDoc ppr_semi decl = ppr decl <> semi pp_decl_head :: OutputableBndr name => HsContext name -> Located name -> [LHsTyVarBndr name] -> Maybe [LHsType name] -> SDoc pp_decl_head context thing tyvars Nothing -- no explicit type patterns = hsep [pprHsContext context, ppr thing, interppSP tyvars] pp_decl_head context thing _ (Just typats) -- explicit type patterns = hsep [ pprHsContext context, ppr thing , hsep (map (pprParendHsType.unLoc) typats)] pp_condecls :: OutputableBndr name => [LConDecl name] -> SDoc pp_condecls cs@(L _ ConDecl{ con_res = ResTyGADT _ } : _) -- In GADT syntax = hang (ptext (sLit "where")) 2 (vcat (map ppr cs)) pp_condecls cs -- In H98 syntax = equals <+> sep (punctuate (ptext (sLit " |")) (map ppr cs)) pp_tydecl :: OutputableBndr name => Bool -> SDoc -> SDoc -> Maybe [LHsType name] -> SDoc pp_tydecl True pp_head _ _ = pp_head pp_tydecl False pp_head pp_decl_rhs derivings = hang pp_head 4 (sep [ pp_decl_rhs, case derivings of Nothing -> empty Just ds -> hsep [ptext (sLit "deriving"), parens (interpp'SP ds)] ]) instance Outputable NewOrData where ppr NewType = ptext (sLit "newtype") ppr DataType = ptext (sLit "data") \end{code} %************************************************************************ %* * \subsection[ConDecl]{A data-constructor declaration} %* * %************************************************************************ \begin{code} type LConDecl name = Located (ConDecl name) -- data T b = forall a. Eq a => MkT a b -- MkT :: forall b a. Eq a => MkT a b -- data T b where -- MkT1 :: Int -> T Int -- data T = Int `MkT` Int -- | MkT2 -- data T a where -- Int `MkT` Int :: T Int data ConDecl name = ConDecl { con_name :: Located name -- ^ Constructor name. This is used for the DataCon itself, and for -- the user-callable wrapper Id. , con_explicit :: HsExplicitFlag -- ^ Is there an user-written forall? (cf. 'HsTypes.HsForAllTy') , con_qvars :: [LHsTyVarBndr name] -- ^ Type variables. Depending on 'con_res' this describes the -- follewing entities -- -- - ResTyH98: the constructor's *existential* type variables -- - ResTyGADT: *all* the constructor's quantified type variables , con_cxt :: LHsContext name -- ^ The context. This /does not/ include the \"stupid theta\" which -- lives only in the 'TyData' decl. , con_details :: HsConDeclDetails name -- ^ The main payload , con_res :: ResType name -- ^ Result type of the constructor , con_doc :: Maybe LHsDocString -- ^ A possible Haddock comment. , con_old_rec :: Bool -- ^ TEMPORARY field; True <=> user has employed now-deprecated syntax for -- GADT-style record decl C { blah } :: T a b -- Remove this when we no longer parse this stuff, and hence do not -- need to report decprecated use } deriving (Data, Typeable) type HsConDeclDetails name = HsConDetails (LBangType name) [ConDeclField name] hsConDeclArgTys :: HsConDeclDetails name -> [LBangType name] hsConDeclArgTys (PrefixCon tys) = tys hsConDeclArgTys (InfixCon ty1 ty2) = [ty1,ty2] hsConDeclArgTys (RecCon flds) = map cd_fld_type flds data ResType name = ResTyH98 -- Constructor was declared using Haskell 98 syntax | ResTyGADT (LHsType name) -- Constructor was declared using GADT-style syntax, -- and here is its result type deriving (Data, Typeable) instance OutputableBndr name => Outputable (ResType name) where -- Debugging only ppr ResTyH98 = ptext (sLit "ResTyH98") ppr (ResTyGADT ty) = ptext (sLit "ResTyGADT") <+> pprParendHsType (unLoc ty) \end{code} \begin{code} instance (OutputableBndr name) => Outputable (ConDecl name) where ppr = pprConDecl pprConDecl :: OutputableBndr name => ConDecl name -> SDoc pprConDecl (ConDecl { con_name =con, con_explicit = expl, con_qvars = tvs , con_cxt = cxt, con_details = details , con_res = ResTyH98, con_doc = doc }) = sep [ppr_mbDoc doc, pprHsForAll expl tvs cxt, ppr_details con details] where ppr_details con (InfixCon t1 t2) = hsep [ppr t1, pprHsInfix con, ppr t2] ppr_details con (PrefixCon tys) = hsep (pprHsVar con : map ppr tys) ppr_details con (RecCon fields) = ppr con <+> pprConDeclFields fields pprConDecl (ConDecl { con_name = con, con_explicit = expl, con_qvars = tvs , con_cxt = cxt, con_details = PrefixCon arg_tys , con_res = ResTyGADT res_ty }) = ppr con <+> dcolon <+> sep [pprHsForAll expl tvs cxt, ppr (foldr mk_fun_ty res_ty arg_tys)] where mk_fun_ty a b = noLoc (HsFunTy a b) pprConDecl (ConDecl { con_name = con, con_explicit = expl, con_qvars = tvs , con_cxt = cxt, con_details = RecCon fields, con_res = ResTyGADT res_ty }) = sep [ppr con <+> dcolon <+> pprHsForAll expl tvs cxt, pprConDeclFields fields <+> arrow <+> ppr res_ty] pprConDecl (ConDecl {con_name = con, con_details = InfixCon {}, con_res = ResTyGADT {} }) = pprPanic "pprConDecl" (ppr con) -- In GADT syntax we don't allow infix constructors \end{code} %************************************************************************ %* * \subsection[InstDecl]{An instance declaration %* * %************************************************************************ \begin{code} type LInstDecl name = Located (InstDecl name) data InstDecl name = InstDecl (LHsType name) -- Context => Class Instance-type -- Using a polytype means that the renamer conveniently -- figures out the quantified type variables for us. (LHsBinds name) [LSig name] -- User-supplied pragmatic info [LTyClDecl name]-- Associated types (ie, 'TyData' and -- 'TySynonym' only) deriving (Data, Typeable) instance (OutputableBndr name) => Outputable (InstDecl name) where ppr (InstDecl inst_ty binds uprags ats) = vcat [hsep [ptext (sLit "instance"), ppr inst_ty, ptext (sLit "where")] , nest 4 $ vcat (map ppr ats) , nest 4 $ vcat (map ppr uprags) , nest 4 $ pprLHsBinds binds ] -- Extract the declarations of associated types from an instance -- instDeclATs :: [LInstDecl name] -> [LTyClDecl name] instDeclATs inst_decls = [at | L _ (InstDecl _ _ _ ats) <- inst_decls, at <- ats] \end{code} %************************************************************************ %* * \subsection[DerivDecl]{A stand-alone instance deriving declaration %* * %************************************************************************ \begin{code} type LDerivDecl name = Located (DerivDecl name) data DerivDecl name = DerivDecl (LHsType name) deriving (Data, Typeable) instance (OutputableBndr name) => Outputable (DerivDecl name) where ppr (DerivDecl ty) = hsep [ptext (sLit "deriving instance"), ppr ty] \end{code} %************************************************************************ %* * \subsection[DefaultDecl]{A @default@ declaration} %* * %************************************************************************ There can only be one default declaration per module, but it is hard for the parser to check that; we pass them all through in the abstract syntax, and that restriction must be checked in the front end. \begin{code} type LDefaultDecl name = Located (DefaultDecl name) data DefaultDecl name = DefaultDecl [LHsType name] deriving (Data, Typeable) instance (OutputableBndr name) => Outputable (DefaultDecl name) where ppr (DefaultDecl tys) = ptext (sLit "default") <+> parens (interpp'SP tys) \end{code} %************************************************************************ %* * \subsection{Foreign function interface declaration} %* * %************************************************************************ \begin{code} -- foreign declarations are distinguished as to whether they define or use a -- Haskell name -- -- * the Boolean value indicates whether the pre-standard deprecated syntax -- has been used -- type LForeignDecl name = Located (ForeignDecl name) data ForeignDecl name = ForeignImport (Located name) (LHsType name) ForeignImport -- defines name | ForeignExport (Located name) (LHsType name) ForeignExport -- uses name deriving (Data, Typeable) -- Specification Of an imported external entity in dependence on the calling -- convention -- data ForeignImport = -- import of a C entity -- -- * the two strings specifying a header file or library -- may be empty, which indicates the absence of a -- header or object specification (both are not used -- in the case of `CWrapper' and when `CFunction' -- has a dynamic target) -- -- * the calling convention is irrelevant for code -- generation in the case of `CLabel', but is needed -- for pretty printing -- -- * `Safety' is irrelevant for `CLabel' and `CWrapper' -- CImport CCallConv -- ccall or stdcall Safety -- interruptible, safe or unsafe FastString -- name of C header CImportSpec -- details of the C entity deriving (Data, Typeable) -- details of an external C entity -- data CImportSpec = CLabel CLabelString -- import address of a C label | CFunction CCallTarget -- static or dynamic function | CWrapper -- wrapper to expose closures -- (former f.e.d.) deriving (Data, Typeable) -- specification of an externally exported entity in dependence on the calling -- convention -- data ForeignExport = CExport CExportSpec -- contains the calling convention deriving (Data, Typeable) -- pretty printing of foreign declarations -- instance OutputableBndr name => Outputable (ForeignDecl name) where ppr (ForeignImport n ty fimport) = hang (ptext (sLit "foreign import") <+> ppr fimport <+> ppr n) 2 (dcolon <+> ppr ty) ppr (ForeignExport n ty fexport) = hang (ptext (sLit "foreign export") <+> ppr fexport <+> ppr n) 2 (dcolon <+> ppr ty) instance Outputable ForeignImport where ppr (CImport cconv safety header spec) = ppr cconv <+> ppr safety <+> char '"' <> pprCEntity spec <> char '"' where pp_hdr = if nullFS header then empty else ftext header pprCEntity (CLabel lbl) = ptext (sLit "static") <+> pp_hdr <+> char '&' <> ppr lbl pprCEntity (CFunction (StaticTarget lbl _)) = ptext (sLit "static") <+> pp_hdr <+> ppr lbl pprCEntity (CFunction (DynamicTarget)) = ptext (sLit "dynamic") pprCEntity (CWrapper) = ptext (sLit "wrapper") instance Outputable ForeignExport where ppr (CExport (CExportStatic lbl cconv)) = ppr cconv <+> char '"' <> ppr lbl <> char '"' \end{code} %************************************************************************ %* * \subsection{Transformation rules} %* * %************************************************************************ \begin{code} type LRuleDecl name = Located (RuleDecl name) data RuleDecl name = HsRule -- Source rule RuleName -- Rule name Activation [RuleBndr name] -- Forall'd vars; after typechecking this includes tyvars (Located (HsExpr name)) -- LHS NameSet -- Free-vars from the LHS (Located (HsExpr name)) -- RHS NameSet -- Free-vars from the RHS deriving (Data, Typeable) data RuleBndr name = RuleBndr (Located name) | RuleBndrSig (Located name) (LHsType name) deriving (Data, Typeable) collectRuleBndrSigTys :: [RuleBndr name] -> [LHsType name] collectRuleBndrSigTys bndrs = [ty | RuleBndrSig _ ty <- bndrs] instance OutputableBndr name => Outputable (RuleDecl name) where ppr (HsRule name act ns lhs _fv_lhs rhs _fv_rhs) = sep [text "{-# RULES" <+> doubleQuotes (ftext name) <+> ppr act, nest 4 (pp_forall <+> pprExpr (unLoc lhs)), nest 4 (equals <+> pprExpr (unLoc rhs) <+> text "#-}") ] where pp_forall | null ns = empty | otherwise = text "forall" <+> fsep (map ppr ns) <> dot instance OutputableBndr name => Outputable (RuleBndr name) where ppr (RuleBndr name) = ppr name ppr (RuleBndrSig name ty) = ppr name <> dcolon <> ppr ty \end{code} %************************************************************************ %* * \subsection{Vectorisation declarations} %* * %************************************************************************ A vectorisation pragma {-# VECTORISE f = closure1 g (scalar_map g) #-} OR {-# VECTORISE SCALAR f #-} Note [Typechecked vectorisation pragmas] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In case of the first variant of vectorisation pragmas (with an explicit expression), we need to infer the type of that expression during type checking and then keep that type around until vectorisation, so that it can be checked against the *vectorised* type of 'f'. (We cannot determine vectorised types during type checking due to internal information of the vectoriser being needed.) To this end, we annotate the 'Id' of 'f' (the variable mentioned in the PRAGMA) with the inferred type of the expression. This is slightly dodgy, as this is really the type of '$v_f' (the name of the vectorised function). \begin{code} type LVectDecl name = Located (VectDecl name) data VectDecl name = HsVect (Located name) (Maybe (LHsExpr name)) -- 'Nothing' => SCALAR declaration deriving (Data, Typeable) instance OutputableBndr name => Outputable (VectDecl name) where ppr (HsVect v rhs) = sep [text "{-# VECTORISE" <+> ppr v, nest 4 (case rhs of Nothing -> text "SCALAR #-}" Just rhs -> pprExpr (unLoc rhs) <+> text "#-}") ] \end{code} %************************************************************************ %* * \subsection[DocDecl]{Document comments} %* * %************************************************************************ \begin{code} type LDocDecl = Located (DocDecl) data DocDecl = DocCommentNext HsDocString | DocCommentPrev HsDocString | DocCommentNamed String HsDocString | DocGroup Int HsDocString deriving (Data, Typeable) -- Okay, I need to reconstruct the document comments, but for now: instance Outputable DocDecl where ppr _ = text "" docDeclDoc :: DocDecl -> HsDocString docDeclDoc (DocCommentNext d) = d docDeclDoc (DocCommentPrev d) = d docDeclDoc (DocCommentNamed _ d) = d docDeclDoc (DocGroup _ d) = d \end{code} %************************************************************************ %* * \subsection[DeprecDecl]{Deprecations} %* * %************************************************************************ We use exported entities for things to deprecate. \begin{code} type LWarnDecl name = Located (WarnDecl name) data WarnDecl name = Warning name WarningTxt deriving (Data, Typeable) instance OutputableBndr name => Outputable (WarnDecl name) where ppr (Warning thing txt) = hsep [text "{-# DEPRECATED", ppr thing, doubleQuotes (ppr txt), text "#-}"] \end{code} %************************************************************************ %* * \subsection[AnnDecl]{Annotations} %* * %************************************************************************ \begin{code} type LAnnDecl name = Located (AnnDecl name) data AnnDecl name = HsAnnotation (AnnProvenance name) (Located (HsExpr name)) deriving (Data, Typeable) instance (OutputableBndr name) => Outputable (AnnDecl name) where ppr (HsAnnotation provenance expr) = hsep [text "{-#", pprAnnProvenance provenance, pprExpr (unLoc expr), text "#-}"] data AnnProvenance name = ValueAnnProvenance name | TypeAnnProvenance name | ModuleAnnProvenance deriving (Data, Typeable) annProvenanceName_maybe :: AnnProvenance name -> Maybe name annProvenanceName_maybe (ValueAnnProvenance name) = Just name annProvenanceName_maybe (TypeAnnProvenance name) = Just name annProvenanceName_maybe ModuleAnnProvenance = Nothing -- TODO: Replace with Traversable instance when GHC bootstrap version rises high enough modifyAnnProvenanceNameM :: Monad m => (before -> m after) -> AnnProvenance before -> m (AnnProvenance after) modifyAnnProvenanceNameM fm prov = case prov of ValueAnnProvenance name -> liftM ValueAnnProvenance (fm name) TypeAnnProvenance name -> liftM TypeAnnProvenance (fm name) ModuleAnnProvenance -> return ModuleAnnProvenance pprAnnProvenance :: OutputableBndr name => AnnProvenance name -> SDoc pprAnnProvenance ModuleAnnProvenance = ptext (sLit "ANN module") pprAnnProvenance (ValueAnnProvenance name) = ptext (sLit "ANN") <+> ppr name pprAnnProvenance (TypeAnnProvenance name) = ptext (sLit "ANN type") <+> ppr name \end{code}