% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % \begin{code} {-# LANGUAGE CPP, DeriveDataTypeable, ScopedTypeVariables #-} -- | Abstract Haskell syntax for expressions. module HsExpr where #include "HsVersions.h" -- friends: import HsDecls import HsPat import HsLit import HsTypes import HsBinds -- others: import TcEvidence import CoreSyn import Var import RdrName import Name import BasicTypes import DataCon import SrcLoc import Util import StaticFlags( opt_PprStyle_Debug ) import Outputable import FastString -- libraries: import Data.Data hiding (Fixity) \end{code} %************************************************************************ %* * \subsection{Expressions proper} %* * %************************************************************************ \begin{code} -- * Expressions proper type LHsExpr id = Located (HsExpr id) ------------------------- -- | PostTcExpr is an evidence expression attached to the syntax tree by the -- type checker (c.f. postTcType). type PostTcExpr = HsExpr Id -- | We use a PostTcTable where there are a bunch of pieces of evidence, more -- than is convenient to keep individually. type PostTcTable = [(Name, PostTcExpr)] noPostTcExpr :: PostTcExpr noPostTcExpr = HsLit (HsString (fsLit "noPostTcExpr")) noPostTcTable :: PostTcTable noPostTcTable = [] ------------------------- -- | SyntaxExpr is like 'PostTcExpr', but it's filled in a little earlier, -- by the renamer. It's used for rebindable syntax. -- -- E.g. @(>>=)@ is filled in before the renamer by the appropriate 'Name' for -- @(>>=)@, and then instantiated by the type checker with its type args -- etc type SyntaxExpr id = HsExpr id noSyntaxExpr :: SyntaxExpr id -- Before renaming, and sometimes after, -- (if the syntax slot makes no sense) noSyntaxExpr = HsLit (HsString (fsLit "noSyntaxExpr")) type CmdSyntaxTable id = [(Name, SyntaxExpr id)] -- See Note [CmdSyntaxTable] \end{code} Note [CmdSyntaxtable] ~~~~~~~~~~~~~~~~~~~~~ Used only for arrow-syntax stuff (HsCmdTop), the CmdSyntaxTable keeps track of the methods needed for a Cmd. * Before the renamer, this list is an empty list * After the renamer, it takes the form @[(std_name, HsVar actual_name)]@ For example, for the 'arr' method * normal case: (GHC.Control.Arrow.arr, HsVar GHC.Control.Arrow.arr) * with rebindable syntax: (GHC.Control.Arrow.arr, arr_22) where @arr_22@ is whatever 'arr' is in scope * After the type checker, it takes the form [(std_name, )] where is the evidence for the method. This evidence is instantiated with the class, but is still polymorphic in everything else. For example, in the case of 'arr', the evidence has type forall b c. (b->c) -> a b c where 'a' is the ambient type of the arrow. This polymorphism is important because the desugarer uses the same evidence at multiple different types. This is Less Cool than what we normally do for rebindable syntax, which is to make fully-instantiated piece of evidence at every use site. The Cmd way is Less Cool because * The renamer has to predict which methods are needed. See the tedious RnExpr.methodNamesCmd. * The desugarer has to know the polymorphic type of the instantiated method. This is checked by Inst.tcSyntaxName, but is less flexible than the rest of rebindable syntax, where the type is less pre-ordained. (And this flexibility is useful; for example we can typecheck do-notation with (>>=) :: m1 a -> (a -> m2 b) -> m2 b.) \begin{code} -- | A Haskell expression. data HsExpr id = HsVar id -- ^ Variable | HsIPVar HsIPName -- ^ Implicit parameter | HsOverLit (HsOverLit id) -- ^ Overloaded literals | HsLit HsLit -- ^ Simple (non-overloaded) literals | HsLam (MatchGroup id (LHsExpr id)) -- ^ Lambda abstraction. Currently always a single match | HsLamCase PostTcType (MatchGroup id (LHsExpr id)) -- ^ Lambda-case | HsApp (LHsExpr id) (LHsExpr id) -- ^ Application -- | Operator applications: -- NB Bracketed ops such as (+) come out as Vars. -- NB We need an expr for the operator in an OpApp/Section since -- the typechecker may need to apply the operator to a few types. | OpApp (LHsExpr id) -- left operand (LHsExpr id) -- operator Fixity -- Renamer adds fixity; bottom until then (LHsExpr id) -- right operand -- | Negation operator. Contains the negated expression and the name -- of 'negate' | NegApp (LHsExpr id) (SyntaxExpr id) | HsPar (LHsExpr id) -- ^ Parenthesised expr; see Note [Parens in HsSyn] | SectionL (LHsExpr id) -- operand; see Note [Sections in HsSyn] (LHsExpr id) -- operator | SectionR (LHsExpr id) -- operator; see Note [Sections in HsSyn] (LHsExpr id) -- operand -- | Used for explicit tuples and sections thereof | ExplicitTuple [HsTupArg id] Boxity | HsCase (LHsExpr id) (MatchGroup id (LHsExpr id)) | HsIf (Maybe (SyntaxExpr id)) -- cond function -- Nothing => use the built-in 'if' -- See Note [Rebindable if] (LHsExpr id) -- predicate (LHsExpr id) -- then part (LHsExpr id) -- else part -- | Multi-way if | HsMultiIf PostTcType [LGRHS id (LHsExpr id)] -- | let(rec) | HsLet (HsLocalBinds id) (LHsExpr id) | HsDo (HsStmtContext Name) -- The parameterisation is unimportant -- because in this context we never use -- the PatGuard or ParStmt variant [ExprLStmt id] -- "do":one or more stmts PostTcType -- Type of the whole expression -- | Syntactic list: [a,b,c,...] | ExplicitList PostTcType -- Gives type of components of list (Maybe (SyntaxExpr id)) -- For OverloadedLists, the fromListN witness [LHsExpr id] -- | Syntactic parallel array: [:e1, ..., en:] | ExplicitPArr PostTcType -- type of elements of the parallel array [LHsExpr id] -- | Record construction | RecordCon (Located id) -- The constructor. After type checking -- it's the dataConWrapId of the constructor PostTcExpr -- Data con Id applied to type args (HsRecordBinds id) -- | Record update | RecordUpd (LHsExpr id) (HsRecordBinds id) -- (HsMatchGroup Id) -- Filled in by the type checker to be -- -- a match that does the job [DataCon] -- Filled in by the type checker to the -- _non-empty_ list of DataCons that have -- all the upd'd fields [PostTcType] -- Argument types of *input* record type [PostTcType] -- and *output* record type -- For a type family, the arg types are of the *instance* tycon, -- not the family tycon -- | Expression with an explicit type signature. @e :: type@ | ExprWithTySig (LHsExpr id) (LHsType id) | ExprWithTySigOut -- TRANSLATION (LHsExpr id) (LHsType Name) -- Retain the signature for -- round-tripping purposes -- | Arithmetic sequence | ArithSeq PostTcExpr (Maybe (SyntaxExpr id)) -- For OverloadedLists, the fromList witness (ArithSeqInfo id) -- | Arithmetic sequence for parallel array | PArrSeq PostTcExpr -- [:e1..e2:] or [:e1, e2..e3:] (ArithSeqInfo id) | HsSCC FastString -- "set cost centre" SCC pragma (LHsExpr id) -- expr whose cost is to be measured | HsCoreAnn FastString -- hdaume: core annotation (LHsExpr id) ----------------------------------------------------------- -- MetaHaskell Extensions | HsBracket (HsBracket id) -- See Note [Pending Splices] | HsRnBracketOut (HsBracket Name) -- Output of the renamer is the *original* renamed -- expression, plus [PendingRnSplice] -- _renamed_ splices to be type checked | HsTcBracketOut (HsBracket Name) -- Output of the type checker is the *original* -- renamed expression, plus [PendingTcSplice] -- _typechecked_ splices to be -- pasted back in by the desugarer | HsSpliceE Bool -- True <=> typed splice (HsSplice id) -- False <=> untyped | HsQuasiQuoteE (HsQuasiQuote id) -- See Note [Quasi-quote overview] in TcSplice ----------------------------------------------------------- -- Arrow notation extension -- | @proc@ notation for Arrows | HsProc (LPat id) -- arrow abstraction, proc (LHsCmdTop id) -- body of the abstraction -- always has an empty stack --------------------------------------- -- The following are commands, not expressions proper -- They are only used in the parsing stage and are removed -- immediately in parser.RdrHsSyn.checkCommand | HsArrApp -- Arrow tail, or arrow application (f -< arg) (LHsExpr id) -- arrow expression, f (LHsExpr id) -- input expression, arg PostTcType -- type of the arrow expressions f, -- of the form a t t', where arg :: t HsArrAppType -- higher-order (-<<) or first-order (-<) Bool -- True => right-to-left (f -< arg) -- False => left-to-right (arg >- f) | HsArrForm -- Command formation, (| e cmd1 .. cmdn |) (LHsExpr id) -- the operator -- after type-checking, a type abstraction to be -- applied to the type of the local environment tuple (Maybe Fixity) -- fixity (filled in by the renamer), for forms that -- were converted from OpApp's by the renamer [LHsCmdTop id] -- argument commands --------------------------------------- -- Haskell program coverage (Hpc) Support | HsTick (Tickish id) (LHsExpr id) -- sub-expression | HsBinTick Int -- module-local tick number for True Int -- module-local tick number for False (LHsExpr id) -- sub-expression | HsTickPragma -- A pragma introduced tick (FastString,(Int,Int),(Int,Int)) -- external span for this tick (LHsExpr id) --------------------------------------- -- These constructors only appear temporarily in the parser. -- The renamer translates them into the Right Thing. | EWildPat -- wildcard | EAsPat (Located id) -- as pattern (LHsExpr id) | EViewPat (LHsExpr id) -- view pattern (LHsExpr id) | ELazyPat (LHsExpr id) -- ~ pattern | HsType (LHsType id) -- Explicit type argument; e.g f {| Int |} x y --------------------------------------- -- Finally, HsWrap appears only in typechecker output | HsWrap HsWrapper -- TRANSLATION (HsExpr id) | HsUnboundVar RdrName deriving (Data, Typeable) -- | HsTupArg is used for tuple sections -- (,a,) is represented by ExplicitTuple [Mising ty1, Present a, Missing ty3] -- Which in turn stands for (\x:ty1 \y:ty2. (x,a,y)) data HsTupArg id = Present (LHsExpr id) -- ^ The argument | Missing PostTcType -- ^ The argument is missing, but this is its type deriving (Data, Typeable) tupArgPresent :: HsTupArg id -> Bool tupArgPresent (Present {}) = True tupArgPresent (Missing {}) = False -- See Note [Pending Splices] data PendingRnSplice = PendingRnExpSplice (HsSplice Name) | PendingRnPatSplice (HsSplice Name) | PendingRnTypeSplice (HsSplice Name) | PendingRnDeclSplice (HsSplice Name) | PendingRnCrossStageSplice Name deriving (Data, Typeable) type PendingTcSplice = (Name, LHsExpr Id) \end{code} Note [Pending Splices] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Now that untyped brackets are not type checked, we need a mechanism to ensure that splices contained in untyped brackets *are* type checked. Therefore the renamer now renames every HsBracket into a HsRnBracketOut, which contains the splices that need to be type checked. There are four varieties of pending splices generated by the renamer: * Pending expression splices (PendingRnExpSplice), e.g., [|$(f x) + 2|] * Pending pattern splices (PendingRnPatSplice), e.g., [|\ $(f x) -> x|] * Pending type splices (PendingRnTypeSplice), e.g., [|f :: $(g x)|] * Pending cross-stage splices (PendingRnCrossStageSplice), e.g., \x -> [| x |] There is a fifth variety of pending splice, which is generated by the type checker: * Pending *typed* expression splices, (PendingTcSplice), e.g., [||1 + $$(f 2)||] It would be possible to eliminate HsRnBracketOut and use HsBracketOut for the output of the renamer. However, when pretty printing the output of the renamer, e.g., in a type error message, we *do not* want to print out the pending splices. In contrast, when pretty printing the output of the type checker, we *do* want to print the pending splices. So splitting them up seems to make sense, although I hate to add another constructor to HsExpr. Note [Parens in HsSyn] ~~~~~~~~~~~~~~~~~~~~~~ HsPar (and ParPat in patterns, HsParTy in types) is used as follows * Generally HsPar is optional; the pretty printer adds parens where necessary. Eg (HsApp f (HsApp g x)) is fine, and prints 'f (g x)' * HsPars are pretty printed as '( .. )' regardless of whether or not they are strictly necssary * HsPars are respected when rearranging operator fixities. So a * (b + c) means what it says (where the parens are an HsPar) Note [Sections in HsSyn] ~~~~~~~~~~~~~~~~~~~~~~~~ Sections should always appear wrapped in an HsPar, thus HsPar (SectionR ...) The parser parses sections in a wider variety of situations (See Note [Parsing sections]), but the renamer checks for those parens. This invariant makes pretty-printing easier; we don't need a special case for adding the parens round sections. Note [Rebindable if] ~~~~~~~~~~~~~~~~~~~~ The rebindable syntax for 'if' is a bit special, because when rebindable syntax is *off* we do not want to treat (if c then t else e) as if it was an application (ifThenElse c t e). Why not? Because we allow an 'if' to return *unboxed* results, thus if blah then 3# else 4# whereas that would not be possible using a all to a polymorphic function (because you can't call a polymorphic function at an unboxed type). So we use Nothing to mean "use the old built-in typing rule". \begin{code} instance OutputableBndr id => Outputable (HsExpr id) where ppr expr = pprExpr expr \end{code} \begin{code} ----------------------- -- pprExpr, pprLExpr, pprBinds call pprDeeper; -- the underscore versions do not pprLExpr :: OutputableBndr id => LHsExpr id -> SDoc pprLExpr (L _ e) = pprExpr e pprExpr :: OutputableBndr id => HsExpr id -> SDoc pprExpr e | isAtomicHsExpr e || isQuietHsExpr e = ppr_expr e | otherwise = pprDeeper (ppr_expr e) isQuietHsExpr :: HsExpr id -> Bool -- Parentheses do display something, but it gives little info and -- if we go deeper when we go inside them then we get ugly things -- like (...) isQuietHsExpr (HsPar _) = True -- applications don't display anything themselves isQuietHsExpr (HsApp _ _) = True isQuietHsExpr (OpApp _ _ _ _) = True isQuietHsExpr _ = False pprBinds :: (OutputableBndr idL, OutputableBndr idR) => HsLocalBindsLR idL idR -> SDoc pprBinds b = pprDeeper (ppr b) ----------------------- ppr_lexpr :: OutputableBndr id => LHsExpr id -> SDoc ppr_lexpr e = ppr_expr (unLoc e) ppr_expr :: forall id. OutputableBndr id => HsExpr id -> SDoc ppr_expr (HsVar v) = pprPrefixOcc v ppr_expr (HsIPVar v) = ppr v ppr_expr (HsLit lit) = ppr lit ppr_expr (HsOverLit lit) = ppr lit ppr_expr (HsPar e) = parens (ppr_lexpr e) ppr_expr (HsCoreAnn s e) = vcat [ptext (sLit "HsCoreAnn") <+> ftext s, ppr_lexpr e] ppr_expr (HsApp e1 e2) = let (fun, args) = collect_args e1 [e2] in hang (ppr_lexpr fun) 2 (sep (map pprParendExpr args)) where collect_args (L _ (HsApp fun arg)) args = collect_args fun (arg:args) collect_args fun args = (fun, args) ppr_expr (OpApp e1 op _ e2) = case unLoc op of HsVar v -> pp_infixly v _ -> pp_prefixly where pp_e1 = pprDebugParendExpr e1 -- In debug mode, add parens pp_e2 = pprDebugParendExpr e2 -- to make precedence clear pp_prefixly = hang (ppr op) 2 (sep [pp_e1, pp_e2]) pp_infixly v = sep [pp_e1, sep [pprInfixOcc v, nest 2 pp_e2]] ppr_expr (NegApp e _) = char '-' <+> pprDebugParendExpr e ppr_expr (SectionL expr op) = case unLoc op of HsVar v -> pp_infixly v _ -> pp_prefixly where pp_expr = pprDebugParendExpr expr pp_prefixly = hang (hsep [text " \\ x_ ->", ppr op]) 4 (hsep [pp_expr, ptext (sLit "x_ )")]) pp_infixly v = (sep [pp_expr, pprInfixOcc v]) ppr_expr (SectionR op expr) = case unLoc op of HsVar v -> pp_infixly v _ -> pp_prefixly where pp_expr = pprDebugParendExpr expr pp_prefixly = hang (hsep [text "( \\ x_ ->", ppr op, ptext (sLit "x_")]) 4 (pp_expr <> rparen) pp_infixly v = sep [pprInfixOcc v, pp_expr] ppr_expr (ExplicitTuple exprs boxity) = tupleParens (boxityNormalTupleSort boxity) (fcat (ppr_tup_args exprs)) where ppr_tup_args [] = [] ppr_tup_args (Present e : es) = (ppr_lexpr e <> punc es) : ppr_tup_args es ppr_tup_args (Missing _ : es) = punc es : ppr_tup_args es punc (Present {} : _) = comma <> space punc (Missing {} : _) = comma punc [] = empty --avoid using PatternSignatures for stage1 code portability ppr_expr (HsLam matches) = pprMatches (LambdaExpr :: HsMatchContext id) matches ppr_expr (HsLamCase _ matches) = sep [ sep [ptext (sLit "\\case {")], nest 2 (pprMatches (CaseAlt :: HsMatchContext id) matches <+> char '}') ] ppr_expr (HsCase expr matches) = sep [ sep [ptext (sLit "case"), nest 4 (ppr expr), ptext (sLit "of {")], nest 2 (pprMatches (CaseAlt :: HsMatchContext id) matches <+> char '}') ] ppr_expr (HsIf _ e1 e2 e3) = sep [hsep [ptext (sLit "if"), nest 2 (ppr e1), ptext (sLit "then")], nest 4 (ppr e2), ptext (sLit "else"), nest 4 (ppr e3)] ppr_expr (HsMultiIf _ alts) = sep $ ptext (sLit "if") : map ppr_alt alts where ppr_alt (L _ (GRHS guards expr)) = sep [ char '|' <+> interpp'SP guards , ptext (sLit "->") <+> pprDeeper (ppr expr) ] -- special case: let ... in let ... ppr_expr (HsLet binds expr@(L _ (HsLet _ _))) = sep [hang (ptext (sLit "let")) 2 (hsep [pprBinds binds, ptext (sLit "in")]), ppr_lexpr expr] ppr_expr (HsLet binds expr) = sep [hang (ptext (sLit "let")) 2 (pprBinds binds), hang (ptext (sLit "in")) 2 (ppr expr)] ppr_expr (HsDo do_or_list_comp stmts _) = pprDo do_or_list_comp stmts ppr_expr (ExplicitList _ _ exprs) = brackets (pprDeeperList fsep (punctuate comma (map ppr_lexpr exprs))) ppr_expr (ExplicitPArr _ exprs) = paBrackets (pprDeeperList fsep (punctuate comma (map ppr_lexpr exprs))) ppr_expr (RecordCon con_id _ rbinds) = hang (ppr con_id) 2 (ppr rbinds) ppr_expr (RecordUpd aexp rbinds _ _ _) = hang (pprParendExpr aexp) 2 (ppr rbinds) ppr_expr (ExprWithTySig expr sig) = hang (nest 2 (ppr_lexpr expr) <+> dcolon) 4 (ppr sig) ppr_expr (ExprWithTySigOut expr sig) = hang (nest 2 (ppr_lexpr expr) <+> dcolon) 4 (ppr sig) ppr_expr (ArithSeq _ _ info) = brackets (ppr info) ppr_expr (PArrSeq _ info) = paBrackets (ppr info) ppr_expr EWildPat = char '_' ppr_expr (ELazyPat e) = char '~' <> pprParendExpr e ppr_expr (EAsPat v e) = ppr v <> char '@' <> pprParendExpr e ppr_expr (EViewPat p e) = ppr p <+> ptext (sLit "->") <+> ppr e ppr_expr (HsSCC lbl expr) = sep [ ptext (sLit "{-# SCC") <+> doubleQuotes (ftext lbl) <+> ptext (sLit "#-}"), pprParendExpr expr ] ppr_expr (HsWrap co_fn e) = pprHsWrapper (pprExpr e) co_fn ppr_expr (HsType id) = ppr id ppr_expr (HsSpliceE t s) = pprSplice t s ppr_expr (HsBracket b) = pprHsBracket b ppr_expr (HsRnBracketOut e []) = ppr e ppr_expr (HsRnBracketOut e ps) = ppr e $$ ptext (sLit "pending(rn)") <+> ppr ps ppr_expr (HsTcBracketOut e []) = ppr e ppr_expr (HsTcBracketOut e ps) = ppr e $$ ptext (sLit "pending(tc)") <+> ppr ps ppr_expr (HsQuasiQuoteE qq) = ppr qq ppr_expr (HsProc pat (L _ (HsCmdTop cmd _ _ _))) = hsep [ptext (sLit "proc"), ppr pat, ptext (sLit "->"), ppr cmd] ppr_expr (HsTick tickish exp) = pprTicks (ppr exp) $ ppr tickish <+> ppr exp ppr_expr (HsBinTick tickIdTrue tickIdFalse exp) = pprTicks (ppr exp) $ hcat [ptext (sLit "bintick<"), ppr tickIdTrue, ptext (sLit ","), ppr tickIdFalse, ptext (sLit ">("), ppr exp,ptext (sLit ")")] ppr_expr (HsTickPragma externalSrcLoc exp) = pprTicks (ppr exp) $ hcat [ptext (sLit "tickpragma<"), ppr externalSrcLoc, ptext (sLit ">("), ppr exp, ptext (sLit ")")] ppr_expr (HsArrApp arrow arg _ HsFirstOrderApp True) = hsep [ppr_lexpr arrow, larrowt, ppr_lexpr arg] ppr_expr (HsArrApp arrow arg _ HsFirstOrderApp False) = hsep [ppr_lexpr arg, arrowt, ppr_lexpr arrow] ppr_expr (HsArrApp arrow arg _ HsHigherOrderApp True) = hsep [ppr_lexpr arrow, larrowtt, ppr_lexpr arg] ppr_expr (HsArrApp arrow arg _ HsHigherOrderApp False) = hsep [ppr_lexpr arg, arrowtt, ppr_lexpr arrow] ppr_expr (HsArrForm (L _ (HsVar v)) (Just _) [arg1, arg2]) = sep [pprCmdArg (unLoc arg1), hsep [pprInfixOcc v, pprCmdArg (unLoc arg2)]] ppr_expr (HsArrForm op _ args) = hang (ptext (sLit "(|") <+> ppr_lexpr op) 4 (sep (map (pprCmdArg.unLoc) args) <+> ptext (sLit "|)")) ppr_expr (HsUnboundVar nm) = ppr nm \end{code} HsSyn records exactly where the user put parens, with HsPar. So generally speaking we print without adding any parens. However, some code is internally generated, and in some places parens are absolutely required; so for these places we use pprParendExpr (but don't print double parens of course). For operator applications we don't add parens, because the oprerator fixities should do the job, except in debug mode (-dppr-debug) so we can see the structure of the parse tree. \begin{code} pprDebugParendExpr :: OutputableBndr id => LHsExpr id -> SDoc pprDebugParendExpr expr = getPprStyle (\sty -> if debugStyle sty then pprParendExpr expr else pprLExpr expr) pprParendExpr :: OutputableBndr id => LHsExpr id -> SDoc pprParendExpr expr | hsExprNeedsParens (unLoc expr) = parens (pprLExpr expr) | otherwise = pprLExpr expr -- Using pprLExpr makes sure that we go 'deeper' -- I think that is usually (always?) right hsExprNeedsParens :: HsExpr id -> Bool -- True of expressions for which '(e)' and 'e' -- mean the same thing hsExprNeedsParens (ArithSeq {}) = False hsExprNeedsParens (PArrSeq {}) = False hsExprNeedsParens (HsLit {}) = False hsExprNeedsParens (HsOverLit {}) = False hsExprNeedsParens (HsVar {}) = False hsExprNeedsParens (HsUnboundVar {}) = False hsExprNeedsParens (HsIPVar {}) = False hsExprNeedsParens (ExplicitTuple {}) = False hsExprNeedsParens (ExplicitList {}) = False hsExprNeedsParens (ExplicitPArr {}) = False hsExprNeedsParens (HsPar {}) = False hsExprNeedsParens (HsBracket {}) = False hsExprNeedsParens (HsRnBracketOut {}) = False hsExprNeedsParens (HsTcBracketOut {}) = False hsExprNeedsParens (HsDo sc _ _) | isListCompExpr sc = False hsExprNeedsParens _ = True isAtomicHsExpr :: HsExpr id -> Bool -- True of a single token isAtomicHsExpr (HsVar {}) = True isAtomicHsExpr (HsLit {}) = True isAtomicHsExpr (HsOverLit {}) = True isAtomicHsExpr (HsIPVar {}) = True isAtomicHsExpr (HsUnboundVar {}) = True isAtomicHsExpr (HsWrap _ e) = isAtomicHsExpr e isAtomicHsExpr (HsPar e) = isAtomicHsExpr (unLoc e) isAtomicHsExpr _ = False \end{code} %************************************************************************ %* * \subsection{Commands (in arrow abstractions)} %* * %************************************************************************ We re-use HsExpr to represent these. \begin{code} type LHsCmd id = Located (HsCmd id) data HsCmd id = HsCmdArrApp -- Arrow tail, or arrow application (f -< arg) (LHsExpr id) -- arrow expression, f (LHsExpr id) -- input expression, arg PostTcType -- type of the arrow expressions f, -- of the form a t t', where arg :: t HsArrAppType -- higher-order (-<<) or first-order (-<) Bool -- True => right-to-left (f -< arg) -- False => left-to-right (arg >- f) | HsCmdArrForm -- Command formation, (| e cmd1 .. cmdn |) (LHsExpr id) -- the operator -- after type-checking, a type abstraction to be -- applied to the type of the local environment tuple (Maybe Fixity) -- fixity (filled in by the renamer), for forms that -- were converted from OpApp's by the renamer [LHsCmdTop id] -- argument commands | HsCmdApp (LHsCmd id) (LHsExpr id) | HsCmdLam (MatchGroup id (LHsCmd id)) -- kappa | HsCmdPar (LHsCmd id) -- parenthesised command | HsCmdCase (LHsExpr id) (MatchGroup id (LHsCmd id)) -- bodies are HsCmd's | HsCmdIf (Maybe (SyntaxExpr id)) -- cond function (LHsExpr id) -- predicate (LHsCmd id) -- then part (LHsCmd id) -- else part | HsCmdLet (HsLocalBinds id) -- let(rec) (LHsCmd id) | HsCmdDo [CmdLStmt id] PostTcType -- Type of the whole expression | HsCmdCast TcCoercion -- A simpler version of HsWrap in HsExpr (HsCmd id) -- If cmd :: arg1 --> res -- co :: arg1 ~ arg2 -- Then (HsCmdCast co cmd) :: arg2 --> res deriving (Data, Typeable) data HsArrAppType = HsHigherOrderApp | HsFirstOrderApp deriving (Data, Typeable) \end{code} Top-level command, introducing a new arrow. This may occur inside a proc (where the stack is empty) or as an argument of a command-forming operator. \begin{code} type LHsCmdTop id = Located (HsCmdTop id) data HsCmdTop id = HsCmdTop (LHsCmd id) PostTcType -- Nested tuple of inputs on the command's stack PostTcType -- return type of the command (CmdSyntaxTable id) -- See Note [CmdSyntaxTable] deriving (Data, Typeable) \end{code} \begin{code} instance OutputableBndr id => Outputable (HsCmd id) where ppr cmd = pprCmd cmd ----------------------- -- pprCmd and pprLCmd call pprDeeper; -- the underscore versions do not pprLCmd :: OutputableBndr id => LHsCmd id -> SDoc pprLCmd (L _ c) = pprCmd c pprCmd :: OutputableBndr id => HsCmd id -> SDoc pprCmd c | isQuietHsCmd c = ppr_cmd c | otherwise = pprDeeper (ppr_cmd c) isQuietHsCmd :: HsCmd id -> Bool -- Parentheses do display something, but it gives little info and -- if we go deeper when we go inside them then we get ugly things -- like (...) isQuietHsCmd (HsCmdPar _) = True -- applications don't display anything themselves isQuietHsCmd (HsCmdApp _ _) = True isQuietHsCmd _ = False ----------------------- ppr_lcmd :: OutputableBndr id => LHsCmd id -> SDoc ppr_lcmd c = ppr_cmd (unLoc c) ppr_cmd :: forall id. OutputableBndr id => HsCmd id -> SDoc ppr_cmd (HsCmdPar c) = parens (ppr_lcmd c) ppr_cmd (HsCmdApp c e) = let (fun, args) = collect_args c [e] in hang (ppr_lcmd fun) 2 (sep (map pprParendExpr args)) where collect_args (L _ (HsCmdApp fun arg)) args = collect_args fun (arg:args) collect_args fun args = (fun, args) --avoid using PatternSignatures for stage1 code portability ppr_cmd (HsCmdLam matches) = pprMatches (LambdaExpr :: HsMatchContext id) matches ppr_cmd (HsCmdCase expr matches) = sep [ sep [ptext (sLit "case"), nest 4 (ppr expr), ptext (sLit "of {")], nest 2 (pprMatches (CaseAlt :: HsMatchContext id) matches <+> char '}') ] ppr_cmd (HsCmdIf _ e ct ce) = sep [hsep [ptext (sLit "if"), nest 2 (ppr e), ptext (sLit "then")], nest 4 (ppr ct), ptext (sLit "else"), nest 4 (ppr ce)] -- special case: let ... in let ... ppr_cmd (HsCmdLet binds cmd@(L _ (HsCmdLet _ _))) = sep [hang (ptext (sLit "let")) 2 (hsep [pprBinds binds, ptext (sLit "in")]), ppr_lcmd cmd] ppr_cmd (HsCmdLet binds cmd) = sep [hang (ptext (sLit "let")) 2 (pprBinds binds), hang (ptext (sLit "in")) 2 (ppr cmd)] ppr_cmd (HsCmdDo stmts _) = pprDo ArrowExpr stmts ppr_cmd (HsCmdCast co cmd) = sep [ ppr_cmd cmd , ptext (sLit "|>") <+> ppr co ] ppr_cmd (HsCmdArrApp arrow arg _ HsFirstOrderApp True) = hsep [ppr_lexpr arrow, larrowt, ppr_lexpr arg] ppr_cmd (HsCmdArrApp arrow arg _ HsFirstOrderApp False) = hsep [ppr_lexpr arg, arrowt, ppr_lexpr arrow] ppr_cmd (HsCmdArrApp arrow arg _ HsHigherOrderApp True) = hsep [ppr_lexpr arrow, larrowtt, ppr_lexpr arg] ppr_cmd (HsCmdArrApp arrow arg _ HsHigherOrderApp False) = hsep [ppr_lexpr arg, arrowtt, ppr_lexpr arrow] ppr_cmd (HsCmdArrForm (L _ (HsVar v)) (Just _) [arg1, arg2]) = sep [pprCmdArg (unLoc arg1), hsep [pprInfixOcc v, pprCmdArg (unLoc arg2)]] ppr_cmd (HsCmdArrForm op _ args) = hang (ptext (sLit "(|") <> ppr_lexpr op) 4 (sep (map (pprCmdArg.unLoc) args) <> ptext (sLit "|)")) pprCmdArg :: OutputableBndr id => HsCmdTop id -> SDoc pprCmdArg (HsCmdTop cmd@(L _ (HsCmdArrForm _ Nothing [])) _ _ _) = ppr_lcmd cmd pprCmdArg (HsCmdTop cmd _ _ _) = parens (ppr_lcmd cmd) instance OutputableBndr id => Outputable (HsCmdTop id) where ppr = pprCmdArg \end{code} %************************************************************************ %* * \subsection{Record binds} %* * %************************************************************************ \begin{code} type HsRecordBinds id = HsRecFields id (LHsExpr id) \end{code} %************************************************************************ %* * \subsection{@Match@, @GRHSs@, and @GRHS@ datatypes} %* * %************************************************************************ @Match@es are sets of pattern bindings and right hand sides for functions, patterns or case branches. For example, if a function @g@ is defined as: \begin{verbatim} g (x,y) = y g ((x:ys),y) = y+1, \end{verbatim} then \tr{g} has two @Match@es: @(x,y) = y@ and @((x:ys),y) = y+1@. It is always the case that each element of an @[Match]@ list has the same number of @pats@s inside it. This corresponds to saying that a function defined by pattern matching must have the same number of patterns in each equation. \begin{code} data MatchGroup id body = MG { mg_alts :: [LMatch id body] -- The alternatives , mg_arg_tys :: [PostTcType] -- Types of the arguments, t1..tn , mg_res_ty :: PostTcType -- Type of the result, tr , mg_origin :: Origin } -- The type is the type of the entire group -- t1 -> ... -> tn -> tr -- where there are n patterns deriving (Data, Typeable) type LMatch id body = Located (Match id body) data Match id body = Match [LPat id] -- The patterns (Maybe (LHsType id)) -- A type signature for the result of the match -- Nothing after typechecking (GRHSs id body) deriving (Data, Typeable) isEmptyMatchGroup :: MatchGroup id body -> Bool isEmptyMatchGroup (MG { mg_alts = ms }) = null ms matchGroupArity :: MatchGroup id body -> Arity -- Precondition: MatchGroup is non-empty -- This is called before type checking, when mg_arg_tys is not set matchGroupArity (MG { mg_alts = alts }) | (alt1:_) <- alts = length (hsLMatchPats alt1) | otherwise = panic "matchGroupArity" hsLMatchPats :: LMatch id body -> [LPat id] hsLMatchPats (L _ (Match pats _ _)) = pats -- | GRHSs are used both for pattern bindings and for Matches data GRHSs id body = GRHSs { grhssGRHSs :: [LGRHS id body], -- ^ Guarded RHSs grhssLocalBinds :: (HsLocalBinds id) -- ^ The where clause } deriving (Data, Typeable) type LGRHS id body = Located (GRHS id body) -- | Guarded Right Hand Side. data GRHS id body = GRHS [GuardLStmt id] -- Guards body -- Right hand side deriving (Data, Typeable) \end{code} We know the list must have at least one @Match@ in it. \begin{code} pprMatches :: (OutputableBndr idL, OutputableBndr idR, Outputable body) => HsMatchContext idL -> MatchGroup idR body -> SDoc pprMatches ctxt (MG { mg_alts = matches }) = vcat (map (pprMatch ctxt) (map unLoc matches)) -- Don't print the type; it's only a place-holder before typechecking -- Exported to HsBinds, which can't see the defn of HsMatchContext pprFunBind :: (OutputableBndr idL, OutputableBndr idR, Outputable body) => idL -> Bool -> MatchGroup idR body -> SDoc pprFunBind fun inf matches = pprMatches (FunRhs fun inf) matches -- Exported to HsBinds, which can't see the defn of HsMatchContext pprPatBind :: forall bndr id body. (OutputableBndr bndr, OutputableBndr id, Outputable body) => LPat bndr -> GRHSs id body -> SDoc pprPatBind pat (grhss) = sep [ppr pat, nest 2 (pprGRHSs (PatBindRhs :: HsMatchContext id) grhss)] pprMatch :: (OutputableBndr idL, OutputableBndr idR, Outputable body) => HsMatchContext idL -> Match idR body -> SDoc pprMatch ctxt (Match pats maybe_ty grhss) = sep [ sep (herald : map (nest 2 . pprParendLPat) other_pats) , nest 2 ppr_maybe_ty , nest 2 (pprGRHSs ctxt grhss) ] where (herald, other_pats) = case ctxt of FunRhs fun is_infix | not is_infix -> (pprPrefixOcc fun, pats) -- f x y z = e -- Not pprBndr; the AbsBinds will -- have printed the signature | null pats2 -> (pp_infix, []) -- x &&& y = e | otherwise -> (parens pp_infix, pats2) -- (x &&& y) z = e where pp_infix = pprParendLPat pat1 <+> pprInfixOcc fun <+> pprParendLPat pat2 LambdaExpr -> (char '\\', pats) _ -> ASSERT( null pats1 ) (ppr pat1, []) -- No parens around the single pat (pat1:pats1) = pats (pat2:pats2) = pats1 ppr_maybe_ty = case maybe_ty of Just ty -> dcolon <+> ppr ty Nothing -> empty pprGRHSs :: (OutputableBndr idL, OutputableBndr idR, Outputable body) => HsMatchContext idL -> GRHSs idR body -> SDoc pprGRHSs ctxt (GRHSs grhss binds) = vcat (map (pprGRHS ctxt . unLoc) grhss) $$ ppUnless (isEmptyLocalBinds binds) (text "where" $$ nest 4 (pprBinds binds)) pprGRHS :: (OutputableBndr idL, OutputableBndr idR, Outputable body) => HsMatchContext idL -> GRHS idR body -> SDoc pprGRHS ctxt (GRHS [] body) = pp_rhs ctxt body pprGRHS ctxt (GRHS guards body) = sep [char '|' <+> interpp'SP guards, pp_rhs ctxt body] pp_rhs :: Outputable body => HsMatchContext idL -> body -> SDoc pp_rhs ctxt rhs = matchSeparator ctxt <+> pprDeeper (ppr rhs) \end{code} %************************************************************************ %* * \subsection{Do stmts and list comprehensions} %* * %************************************************************************ \begin{code} type LStmt id body = Located (StmtLR id id body) type LStmtLR idL idR body = Located (StmtLR idL idR body) type Stmt id body = StmtLR id id body type CmdLStmt id = LStmt id (LHsCmd id) type CmdStmt id = Stmt id (LHsCmd id) type ExprLStmt id = LStmt id (LHsExpr id) type ExprStmt id = Stmt id (LHsExpr id) type GuardLStmt id = LStmt id (LHsExpr id) type GuardStmt id = Stmt id (LHsExpr id) type GhciLStmt id = LStmt id (LHsExpr id) type GhciStmt id = Stmt id (LHsExpr id) -- The SyntaxExprs in here are used *only* for do-notation and monad -- comprehensions, which have rebindable syntax. Otherwise they are unused. data StmtLR idL idR body -- body should always be (LHs**** idR) = LastStmt -- Always the last Stmt in ListComp, MonadComp, PArrComp, -- and (after the renamer) DoExpr, MDoExpr -- Not used for GhciStmtCtxt, PatGuard, which scope over other stuff body (SyntaxExpr idR) -- The return operator, used only for MonadComp -- For ListComp, PArrComp, we use the baked-in 'return' -- For DoExpr, MDoExpr, we don't appply a 'return' at all -- See Note [Monad Comprehensions] | BindStmt (LPat idL) body (SyntaxExpr idR) -- The (>>=) operator; see Note [The type of bind] (SyntaxExpr idR) -- The fail operator -- The fail operator is noSyntaxExpr -- if the pattern match can't fail | BodyStmt body -- See Note [BodyStmt] (SyntaxExpr idR) -- The (>>) operator (SyntaxExpr idR) -- The `guard` operator; used only in MonadComp -- See notes [Monad Comprehensions] PostTcType -- Element type of the RHS (used for arrows) | LetStmt (HsLocalBindsLR idL idR) -- ParStmts only occur in a list/monad comprehension | ParStmt [ParStmtBlock idL idR] (SyntaxExpr idR) -- Polymorphic `mzip` for monad comprehensions (SyntaxExpr idR) -- The `>>=` operator -- See notes [Monad Comprehensions] -- After renaming, the ids are the binders -- bound by the stmts and used after themp | TransStmt { trS_form :: TransForm, trS_stmts :: [ExprLStmt idL], -- Stmts to the *left* of the 'group' -- which generates the tuples to be grouped trS_bndrs :: [(idR, idR)], -- See Note [TransStmt binder map] trS_using :: LHsExpr idR, trS_by :: Maybe (LHsExpr idR), -- "by e" (optional) -- Invariant: if trS_form = GroupBy, then grp_by = Just e trS_ret :: SyntaxExpr idR, -- The monomorphic 'return' function for -- the inner monad comprehensions trS_bind :: SyntaxExpr idR, -- The '(>>=)' operator trS_fmap :: SyntaxExpr idR -- The polymorphic 'fmap' function for desugaring -- Only for 'group' forms } -- See Note [Monad Comprehensions] -- Recursive statement (see Note [How RecStmt works] below) | RecStmt { recS_stmts :: [LStmtLR idL idR body] -- The next two fields are only valid after renaming , recS_later_ids :: [idR] -- The ids are a subset of the variables bound by the -- stmts that are used in stmts that follow the RecStmt , recS_rec_ids :: [idR] -- Ditto, but these variables are the "recursive" ones, -- that are used before they are bound in the stmts of -- the RecStmt. -- An Id can be in both groups -- Both sets of Ids are (now) treated monomorphically -- See Note [How RecStmt works] for why they are separate -- Rebindable syntax , recS_bind_fn :: SyntaxExpr idR -- The bind function , recS_ret_fn :: SyntaxExpr idR -- The return function , recS_mfix_fn :: SyntaxExpr idR -- The mfix function -- These fields are only valid after typechecking , recS_later_rets :: [PostTcExpr] -- (only used in the arrow version) , recS_rec_rets :: [PostTcExpr] -- These expressions correspond 1-to-1 -- with recS_later_ids and recS_rec_ids, -- and are the expressions that should be -- returned by the recursion. -- They may not quite be the Ids themselves, -- because the Id may be *polymorphic*, but -- the returned thing has to be *monomorphic*, -- so they may be type applications , recS_ret_ty :: PostTcType -- The type of of do { stmts; return (a,b,c) } -- With rebindable syntax the type might not -- be quite as simple as (m (tya, tyb, tyc)). } deriving (Data, Typeable) data TransForm -- The 'f' below is the 'using' function, 'e' is the by function = ThenForm -- then f or then f by e (depending on trS_by) | GroupForm -- then group using f or then group by e using f (depending on trS_by) deriving (Data, Typeable) data ParStmtBlock idL idR = ParStmtBlock [ExprLStmt idL] [idR] -- The variables to be returned (SyntaxExpr idR) -- The return operator deriving( Data, Typeable ) \end{code} Note [The type of bind in Stmts] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Some Stmts, notably BindStmt, keep the (>>=) bind operator. We do NOT assume that it has type (>>=) :: m a -> (a -> m b) -> m b In some cases (see Trac #303, #1537) it might have a more exotic type, such as (>>=) :: m i j a -> (a -> m j k b) -> m i k b So we must be careful not to make assumptions about the type. In particular, the monad may not be uniform throughout. Note [TransStmt binder map] ~~~~~~~~~~~~~~~~~~~~~~~~~~~ The [(idR,idR)] in a TransStmt behaves as follows: * Before renaming: [] * After renaming: [ (x27,x27), ..., (z35,z35) ] These are the variables bound by the stmts to the left of the 'group' and used either in the 'by' clause, or in the stmts following the 'group' Each item is a pair of identical variables. * After typechecking: [ (x27:Int, x27:[Int]), ..., (z35:Bool, z35:[Bool]) ] Each pair has the same unique, but different *types*. Note [BodyStmt] ~~~~~~~~~~~~~~~ BodyStmts are a bit tricky, because what they mean depends on the context. Consider the following contexts: A do expression of type (m res_ty) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * BodyStmt E any_ty: do { ....; E; ... } E :: m any_ty Translation: E >> ... A list comprehensions of type [elt_ty] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * BodyStmt E Bool: [ .. | .... E ] [ .. | ..., E, ... ] [ .. | .... | ..., E | ... ] E :: Bool Translation: if E then fail else ... A guard list, guarding a RHS of type rhs_ty ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * BodyStmt E BooParStmtBlockl: f x | ..., E, ... = ...rhs... E :: Bool Translation: if E then fail else ... A monad comprehension of type (m res_ty) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * BodyStmt E Bool: [ .. | .... E ] E :: Bool Translation: guard E >> ... Array comprehensions are handled like list comprehensions. Note [How RecStmt works] ~~~~~~~~~~~~~~~~~~~~~~~~ Example: HsDo [ BindStmt x ex , RecStmt { recS_rec_ids = [a, c] , recS_stmts = [ BindStmt b (return (a,c)) , LetStmt a = ...b... , BindStmt c ec ] , recS_later_ids = [a, b] , return (a b) ] Here, the RecStmt binds a,b,c; but - Only a,b are used in the stmts *following* the RecStmt, - Only a,c are used in the stmts *inside* the RecStmt *before* their bindings Why do we need *both* rec_ids and later_ids? For monads they could be combined into a single set of variables, but not for arrows. That follows from the types of the respective feedback operators: mfix :: MonadFix m => (a -> m a) -> m a loop :: ArrowLoop a => a (b,d) (c,d) -> a b c * For mfix, the 'a' covers the union of the later_ids and the rec_ids * For 'loop', 'c' is the later_ids and 'd' is the rec_ids Note [Typing a RecStmt] ~~~~~~~~~~~~~~~~~~~~~~~ A (RecStmt stmts) types as if you had written (v1,..,vn, _, ..., _) <- mfix (\~(_, ..., _, r1, ..., rm) -> do { stmts ; return (v1,..vn, r1, ..., rm) }) where v1..vn are the later_ids r1..rm are the rec_ids Note [Monad Comprehensions] ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Monad comprehensions require separate functions like 'return' and '>>=' for desugaring. These functions are stored in the statements used in monad comprehensions. For example, the 'return' of the 'LastStmt' expression is used to lift the body of the monad comprehension: [ body | stmts ] => stmts >>= \bndrs -> return body In transform and grouping statements ('then ..' and 'then group ..') the 'return' function is required for nested monad comprehensions, for example: [ body | stmts, then f, rest ] => f [ env | stmts ] >>= \bndrs -> [ body | rest ] BodyStmts require the 'Control.Monad.guard' function for boolean expressions: [ body | exp, stmts ] => guard exp >> [ body | stmts ] Parallel statements require the 'Control.Monad.Zip.mzip' function: [ body | stmts1 | stmts2 | .. ] => mzip stmts1 (mzip stmts2 (..)) >>= \(bndrs1, (bndrs2, ..)) -> return body In any other context than 'MonadComp', the fields for most of these 'SyntaxExpr's stay bottom. \begin{code} instance (OutputableBndr idL, OutputableBndr idR) => Outputable (ParStmtBlock idL idR) where ppr (ParStmtBlock stmts _ _) = interpp'SP stmts instance (OutputableBndr idL, OutputableBndr idR, Outputable body) => Outputable (StmtLR idL idR body) where ppr stmt = pprStmt stmt pprStmt :: (OutputableBndr idL, OutputableBndr idR, Outputable body) => (StmtLR idL idR body) -> SDoc pprStmt (LastStmt expr _) = ifPprDebug (ptext (sLit "[last]")) <+> ppr expr pprStmt (BindStmt pat expr _ _) = hsep [ppr pat, larrow, ppr expr] pprStmt (LetStmt binds) = hsep [ptext (sLit "let"), pprBinds binds] pprStmt (BodyStmt expr _ _ _) = ppr expr pprStmt (ParStmt stmtss _ _) = sep (punctuate (ptext (sLit " | ")) (map ppr stmtss)) pprStmt (TransStmt { trS_stmts = stmts, trS_by = by, trS_using = using, trS_form = form }) = sep $ punctuate comma (map ppr stmts ++ [pprTransStmt by using form]) pprStmt (RecStmt { recS_stmts = segment, recS_rec_ids = rec_ids , recS_later_ids = later_ids }) = ptext (sLit "rec") <+> vcat [ ppr_do_stmts segment , ifPprDebug (vcat [ ptext (sLit "rec_ids=") <> ppr rec_ids , ptext (sLit "later_ids=") <> ppr later_ids])] pprTransformStmt :: OutputableBndr id => [id] -> LHsExpr id -> Maybe (LHsExpr id) -> SDoc pprTransformStmt bndrs using by = sep [ ptext (sLit "then") <+> ifPprDebug (braces (ppr bndrs)) , nest 2 (ppr using) , nest 2 (pprBy by)] pprTransStmt :: Outputable body => Maybe body -> body -> TransForm -> SDoc pprTransStmt by using ThenForm = sep [ ptext (sLit "then"), nest 2 (ppr using), nest 2 (pprBy by)] pprTransStmt by using GroupForm = sep [ ptext (sLit "then group"), nest 2 (pprBy by), nest 2 (ptext (sLit "using") <+> ppr using)] pprBy :: Outputable body => Maybe body -> SDoc pprBy Nothing = empty pprBy (Just e) = ptext (sLit "by") <+> ppr e pprDo :: (OutputableBndr id, Outputable body) => HsStmtContext any -> [LStmt id body] -> SDoc pprDo DoExpr stmts = ptext (sLit "do") <+> ppr_do_stmts stmts pprDo GhciStmtCtxt stmts = ptext (sLit "do") <+> ppr_do_stmts stmts pprDo ArrowExpr stmts = ptext (sLit "do") <+> ppr_do_stmts stmts pprDo MDoExpr stmts = ptext (sLit "mdo") <+> ppr_do_stmts stmts pprDo ListComp stmts = brackets $ pprComp stmts pprDo PArrComp stmts = paBrackets $ pprComp stmts pprDo MonadComp stmts = brackets $ pprComp stmts pprDo _ _ = panic "pprDo" -- PatGuard, ParStmtCxt ppr_do_stmts :: (OutputableBndr idL, OutputableBndr idR, Outputable body) => [LStmtLR idL idR body] -> SDoc -- Print a bunch of do stmts, with explicit braces and semicolons, -- so that we are not vulnerable to layout bugs ppr_do_stmts stmts = lbrace <+> pprDeeperList vcat (punctuate semi (map ppr stmts)) <+> rbrace pprComp :: (OutputableBndr id, Outputable body) => [LStmt id body] -> SDoc pprComp quals -- Prints: body | qual1, ..., qualn | not (null quals) , L _ (LastStmt body _) <- last quals = hang (ppr body <+> char '|') 2 (pprQuals (dropTail 1 quals)) | otherwise = pprPanic "pprComp" (pprQuals quals) pprQuals :: (OutputableBndr id, Outputable body) => [LStmt id body] -> SDoc -- Show list comprehension qualifiers separated by commas pprQuals quals = interpp'SP quals \end{code} %************************************************************************ %* * Template Haskell quotation brackets %* * %************************************************************************ \begin{code} data HsSplice id = HsSplice -- $z or $(f 4) id -- The id is just a unique name to (LHsExpr id) -- identify this splice point deriving (Data, Typeable) instance OutputableBndr id => Outputable (HsSplice id) where ppr (HsSplice n e) = angleBrackets (ppr n <> comma <+> ppr e) pprUntypedSplice :: OutputableBndr id => HsSplice id -> SDoc pprUntypedSplice = pprSplice False pprTypedSplice :: OutputableBndr id => HsSplice id -> SDoc pprTypedSplice = pprSplice True pprSplice :: OutputableBndr id => Bool -> HsSplice id -> SDoc pprSplice is_typed (HsSplice n e) = (if is_typed then ptext (sLit "$$") else char '$') <> ifPprDebug (brackets (ppr n)) <> eDoc where -- We use pprLExpr to match pprParendExpr: -- Using pprLExpr makes sure that we go 'deeper' -- I think that is usually (always?) right pp_as_was = pprLExpr e eDoc = case unLoc e of HsPar _ -> pp_as_was HsVar _ -> pp_as_was _ -> parens pp_as_was data HsBracket id = ExpBr (LHsExpr id) -- [| expr |] | PatBr (LPat id) -- [p| pat |] | DecBrL [LHsDecl id] -- [d| decls |]; result of parser | DecBrG (HsGroup id) -- [d| decls |]; result of renamer | TypBr (LHsType id) -- [t| type |] | VarBr Bool id -- True: 'x, False: ''T -- (The Bool flag is used only in pprHsBracket) | TExpBr (LHsExpr id) -- [|| expr ||] deriving (Data, Typeable) isTypedBracket :: HsBracket id -> Bool isTypedBracket (TExpBr {}) = True isTypedBracket _ = False instance OutputableBndr id => Outputable (HsBracket id) where ppr = pprHsBracket pprHsBracket :: OutputableBndr id => HsBracket id -> SDoc pprHsBracket (ExpBr e) = thBrackets empty (ppr e) pprHsBracket (PatBr p) = thBrackets (char 'p') (ppr p) pprHsBracket (DecBrG gp) = thBrackets (char 'd') (ppr gp) pprHsBracket (DecBrL ds) = thBrackets (char 'd') (vcat (map ppr ds)) pprHsBracket (TypBr t) = thBrackets (char 't') (ppr t) pprHsBracket (VarBr True n) = char '\'' <> ppr n pprHsBracket (VarBr False n) = ptext (sLit "''") <> ppr n pprHsBracket (TExpBr e) = thTyBrackets (ppr e) thBrackets :: SDoc -> SDoc -> SDoc thBrackets pp_kind pp_body = char '[' <> pp_kind <> char '|' <+> pp_body <+> ptext (sLit "|]") thTyBrackets :: SDoc -> SDoc thTyBrackets pp_body = ptext (sLit "[||") <+> pp_body <+> ptext (sLit "||]") instance Outputable PendingRnSplice where ppr (PendingRnExpSplice s) = ppr s ppr (PendingRnPatSplice s) = ppr s ppr (PendingRnTypeSplice s) = ppr s ppr (PendingRnDeclSplice s) = ppr s ppr (PendingRnCrossStageSplice name) = ppr name \end{code} %************************************************************************ %* * \subsection{Enumerations and list comprehensions} %* * %************************************************************************ \begin{code} data ArithSeqInfo id = From (LHsExpr id) | FromThen (LHsExpr id) (LHsExpr id) | FromTo (LHsExpr id) (LHsExpr id) | FromThenTo (LHsExpr id) (LHsExpr id) (LHsExpr id) deriving (Data, Typeable) \end{code} \begin{code} instance OutputableBndr id => Outputable (ArithSeqInfo id) where ppr (From e1) = hcat [ppr e1, pp_dotdot] ppr (FromThen e1 e2) = hcat [ppr e1, comma, space, ppr e2, pp_dotdot] ppr (FromTo e1 e3) = hcat [ppr e1, pp_dotdot, ppr e3] ppr (FromThenTo e1 e2 e3) = hcat [ppr e1, comma, space, ppr e2, pp_dotdot, ppr e3] pp_dotdot :: SDoc pp_dotdot = ptext (sLit " .. ") \end{code} %************************************************************************ %* * \subsection{HsMatchCtxt} %* * %************************************************************************ \begin{code} data HsMatchContext id -- Context of a Match = FunRhs id Bool -- Function binding for f; True <=> written infix | LambdaExpr -- Patterns of a lambda | CaseAlt -- Patterns and guards on a case alternative | IfAlt -- Guards of a multi-way if alternative | ProcExpr -- Patterns of a proc | PatBindRhs -- A pattern binding eg [y] <- e = e | RecUpd -- Record update [used only in DsExpr to -- tell matchWrapper what sort of -- runtime error message to generate] | StmtCtxt (HsStmtContext id) -- Pattern of a do-stmt, list comprehension, -- pattern guard, etc | ThPatSplice -- A Template Haskell pattern splice | ThPatQuote -- A Template Haskell pattern quotation [p| (a,b) |] | PatSyn -- A pattern synonym declaration deriving (Data, Typeable) data HsStmtContext id = ListComp | MonadComp | PArrComp -- Parallel array comprehension | DoExpr -- do { ... } | MDoExpr -- mdo { ... } ie recursive do-expression | ArrowExpr -- do-notation in an arrow-command context | GhciStmtCtxt -- A command-line Stmt in GHCi pat <- rhs | PatGuard (HsMatchContext id) -- Pattern guard for specified thing | ParStmtCtxt (HsStmtContext id) -- A branch of a parallel stmt | TransStmtCtxt (HsStmtContext id) -- A branch of a transform stmt deriving (Data, Typeable) \end{code} \begin{code} isListCompExpr :: HsStmtContext id -> Bool -- Uses syntax [ e | quals ] isListCompExpr ListComp = True isListCompExpr PArrComp = True isListCompExpr MonadComp = True isListCompExpr (ParStmtCtxt c) = isListCompExpr c isListCompExpr (TransStmtCtxt c) = isListCompExpr c isListCompExpr _ = False isMonadCompExpr :: HsStmtContext id -> Bool isMonadCompExpr MonadComp = True isMonadCompExpr (ParStmtCtxt ctxt) = isMonadCompExpr ctxt isMonadCompExpr (TransStmtCtxt ctxt) = isMonadCompExpr ctxt isMonadCompExpr _ = False \end{code} \begin{code} matchSeparator :: HsMatchContext id -> SDoc matchSeparator (FunRhs {}) = ptext (sLit "=") matchSeparator CaseAlt = ptext (sLit "->") matchSeparator IfAlt = ptext (sLit "->") matchSeparator LambdaExpr = ptext (sLit "->") matchSeparator ProcExpr = ptext (sLit "->") matchSeparator PatBindRhs = ptext (sLit "=") matchSeparator (StmtCtxt _) = ptext (sLit "<-") matchSeparator RecUpd = panic "unused" matchSeparator ThPatSplice = panic "unused" matchSeparator ThPatQuote = panic "unused" matchSeparator PatSyn = panic "unused" \end{code} \begin{code} pprMatchContext :: Outputable id => HsMatchContext id -> SDoc pprMatchContext ctxt | want_an ctxt = ptext (sLit "an") <+> pprMatchContextNoun ctxt | otherwise = ptext (sLit "a") <+> pprMatchContextNoun ctxt where want_an (FunRhs {}) = True -- Use "an" in front want_an ProcExpr = True want_an _ = False pprMatchContextNoun :: Outputable id => HsMatchContext id -> SDoc pprMatchContextNoun (FunRhs fun _) = ptext (sLit "equation for") <+> quotes (ppr fun) pprMatchContextNoun CaseAlt = ptext (sLit "case alternative") pprMatchContextNoun IfAlt = ptext (sLit "multi-way if alternative") pprMatchContextNoun RecUpd = ptext (sLit "record-update construct") pprMatchContextNoun ThPatSplice = ptext (sLit "Template Haskell pattern splice") pprMatchContextNoun ThPatQuote = ptext (sLit "Template Haskell pattern quotation") pprMatchContextNoun PatBindRhs = ptext (sLit "pattern binding") pprMatchContextNoun LambdaExpr = ptext (sLit "lambda abstraction") pprMatchContextNoun ProcExpr = ptext (sLit "arrow abstraction") pprMatchContextNoun (StmtCtxt ctxt) = ptext (sLit "pattern binding in") $$ pprStmtContext ctxt pprMatchContextNoun PatSyn = ptext (sLit "pattern synonym declaration") ----------------- pprAStmtContext, pprStmtContext :: Outputable id => HsStmtContext id -> SDoc pprAStmtContext ctxt = article <+> pprStmtContext ctxt where pp_an = ptext (sLit "an") pp_a = ptext (sLit "a") article = case ctxt of MDoExpr -> pp_an PArrComp -> pp_an GhciStmtCtxt -> pp_an _ -> pp_a ----------------- pprStmtContext GhciStmtCtxt = ptext (sLit "interactive GHCi command") pprStmtContext DoExpr = ptext (sLit "'do' block") pprStmtContext MDoExpr = ptext (sLit "'mdo' block") pprStmtContext ArrowExpr = ptext (sLit "'do' block in an arrow command") pprStmtContext ListComp = ptext (sLit "list comprehension") pprStmtContext MonadComp = ptext (sLit "monad comprehension") pprStmtContext PArrComp = ptext (sLit "array comprehension") pprStmtContext (PatGuard ctxt) = ptext (sLit "pattern guard for") $$ pprMatchContext ctxt -- Drop the inner contexts when reporting errors, else we get -- Unexpected transform statement -- in a transformed branch of -- transformed branch of -- transformed branch of monad comprehension pprStmtContext (ParStmtCtxt c) | opt_PprStyle_Debug = sep [ptext (sLit "parallel branch of"), pprAStmtContext c] | otherwise = pprStmtContext c pprStmtContext (TransStmtCtxt c) | opt_PprStyle_Debug = sep [ptext (sLit "transformed branch of"), pprAStmtContext c] | otherwise = pprStmtContext c -- Used to generate the string for a *runtime* error message matchContextErrString :: Outputable id => HsMatchContext id -> SDoc matchContextErrString (FunRhs fun _) = ptext (sLit "function") <+> ppr fun matchContextErrString CaseAlt = ptext (sLit "case") matchContextErrString IfAlt = ptext (sLit "multi-way if") matchContextErrString PatBindRhs = ptext (sLit "pattern binding") matchContextErrString RecUpd = ptext (sLit "record update") matchContextErrString LambdaExpr = ptext (sLit "lambda") matchContextErrString ProcExpr = ptext (sLit "proc") matchContextErrString ThPatSplice = panic "matchContextErrString" -- Not used at runtime matchContextErrString ThPatQuote = panic "matchContextErrString" -- Not used at runtime matchContextErrString PatSyn = panic "matchContextErrString" -- Not used at runtime matchContextErrString (StmtCtxt (ParStmtCtxt c)) = matchContextErrString (StmtCtxt c) matchContextErrString (StmtCtxt (TransStmtCtxt c)) = matchContextErrString (StmtCtxt c) matchContextErrString (StmtCtxt (PatGuard _)) = ptext (sLit "pattern guard") matchContextErrString (StmtCtxt GhciStmtCtxt) = ptext (sLit "interactive GHCi command") matchContextErrString (StmtCtxt DoExpr) = ptext (sLit "'do' block") matchContextErrString (StmtCtxt ArrowExpr) = ptext (sLit "'do' block") matchContextErrString (StmtCtxt MDoExpr) = ptext (sLit "'mdo' block") matchContextErrString (StmtCtxt ListComp) = ptext (sLit "list comprehension") matchContextErrString (StmtCtxt MonadComp) = ptext (sLit "monad comprehension") matchContextErrString (StmtCtxt PArrComp) = ptext (sLit "array comprehension") \end{code} \begin{code} pprMatchInCtxt :: (OutputableBndr idL, OutputableBndr idR, Outputable body) => HsMatchContext idL -> Match idR body -> SDoc pprMatchInCtxt ctxt match = hang (ptext (sLit "In") <+> pprMatchContext ctxt <> colon) 4 (pprMatch ctxt match) pprStmtInCtxt :: (OutputableBndr idL, OutputableBndr idR, Outputable body) => HsStmtContext idL -> StmtLR idL idR body -> SDoc pprStmtInCtxt ctxt (LastStmt e _) | isListCompExpr ctxt -- For [ e | .. ], do not mutter about "stmts" = hang (ptext (sLit "In the expression:")) 2 (ppr e) pprStmtInCtxt ctxt stmt = hang (ptext (sLit "In a stmt of") <+> pprAStmtContext ctxt <> colon) 2 (ppr_stmt stmt) where -- For Group and Transform Stmts, don't print the nested stmts! ppr_stmt (TransStmt { trS_by = by, trS_using = using , trS_form = form }) = pprTransStmt by using form ppr_stmt stmt = pprStmt stmt \end{code}