% % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % \section[HsTypes]{Abstract syntax: user-defined types} \begin{code} module HsTypes ( HsType(..), LHsType, HsTyVarBndr(..), LHsTyVarBndr, HsExplicitForAll(..), HsContext, LHsContext, HsPred(..), LHsPred, LBangType, BangType, HsBang(..), getBangType, getBangStrictness, mkExplicitHsForAllTy, mkImplicitHsForAllTy, hsTyVarName, hsTyVarNames, replaceTyVarName, hsLTyVarName, hsLTyVarNames, hsLTyVarLocName, hsLTyVarLocNames, splitHsInstDeclTy, splitHsFunType, -- Type place holder PostTcType, placeHolderType, -- Printing pprParendHsType, pprHsForAll, pprHsContext, ppr_hs_context, pprHsTyVarBndr ) where #include "HsVersions.h" import {-# SOURCE #-} HsExpr ( HsSplice, pprSplice ) import Type ( Type ) import Kind ( {- instance Outputable Kind -}, Kind, pprParendKind, pprKind, isLiftedTypeKind ) import BasicTypes ( IPName, Boxity, tupleParens ) import SrcLoc ( Located(..), unLoc, noSrcSpan ) import StaticFlags ( opt_PprStyle_Debug ) import Outputable \end{code} %************************************************************************ %* * \subsection{Annotating the syntax} %* * %************************************************************************ \begin{code} type PostTcType = Type -- Used for slots in the abstract syntax -- where we want to keep slot for a type -- to be added by the type checker...but -- before typechecking it's just bogus placeHolderType :: PostTcType -- Used before typechecking placeHolderType = panic "Evaluated the place holder for a PostTcType" \end{code} %************************************************************************ %* * \subsection{Bang annotations} %* * %************************************************************************ \begin{code} type LBangType name = Located (BangType name) type BangType name = HsType name -- Bangs are in the HsType data type data HsBang = HsNoBang -- Only used as a return value for getBangStrictness, -- never appears on a HsBangTy | HsStrict -- ! | HsUnbox -- {-# UNPACK #-} ! (GHC extension, meaning "unbox") instance Outputable HsBang where ppr (HsNoBang) = empty ppr (HsStrict) = char '!' ppr (HsUnbox) = ptext SLIT("!!") getBangType :: LHsType a -> LHsType a getBangType (L _ (HsBangTy _ ty)) = ty getBangType ty = ty getBangStrictness :: LHsType a -> HsBang getBangStrictness (L _ (HsBangTy s _)) = s getBangStrictness _ = HsNoBang \end{code} %************************************************************************ %* * \subsection{Data types} %* * %************************************************************************ This is the syntax for types as seen in type signatures. \begin{code} type LHsContext name = Located (HsContext name) type HsContext name = [LHsPred name] type LHsPred name = Located (HsPred name) data HsPred name = HsClassP name [LHsType name] | HsIParam (IPName name) (LHsType name) type LHsType name = Located (HsType name) data HsType name = HsForAllTy HsExplicitForAll -- Renamer leaves this flag unchanged, to record the way -- the user wrote it originally, so that the printer can -- print it as the user wrote it [LHsTyVarBndr name] -- With ImplicitForAll, this is the empty list -- until the renamer fills in the variables (LHsContext name) (LHsType name) | HsTyVar name -- Type variable or type constructor | HsBangTy HsBang (LHsType name) -- Bang-style type annotations | HsAppTy (LHsType name) (LHsType name) | HsFunTy (LHsType name) -- function type (LHsType name) | HsListTy (LHsType name) -- Element type | HsPArrTy (LHsType name) -- Elem. type of parallel array: [:t:] | HsTupleTy Boxity [LHsType name] -- Element types (length gives arity) | HsOpTy (LHsType name) (Located name) (LHsType name) | HsParTy (LHsType name) -- Parenthesis preserved for the precedence re-arrangement in RnTypes -- It's important that a * (b + c) doesn't get rearranged to (a*b) + c! -- -- However, NB that toHsType doesn't add HsParTys (in an effort to keep -- interface files smaller), so when printing a HsType we may need to -- add parens. | HsNumTy Integer -- Generics only | HsPredTy (HsPred name) -- Only used in the type of an instance -- declaration, eg. Eq [a] -> Eq a -- ^^^^ -- HsPredTy -- Note no need for location info on the -- enclosed HsPred; the one on the type will do | HsKindSig (LHsType name) -- (ty :: kind) Kind -- A type with a kind signature | HsSpliceTy (HsSplice name) data HsExplicitForAll = Explicit | Implicit ----------------------- -- Combine adjacent for-alls. -- The following awkward situation can happen otherwise: -- f :: forall a. ((Num a) => Int) -- might generate HsForAll (Just [a]) [] (HsForAll Nothing [Num a] t) -- Then a isn't discovered as ambiguous, and we abstract the AbsBinds wrt [] -- but the export list abstracts f wrt [a]. Disaster. -- -- A valid type must have one for-all at the top of the type, or of the fn arg types mkImplicitHsForAllTy ctxt ty = mkHsForAllTy Implicit [] ctxt ty mkExplicitHsForAllTy tvs ctxt ty = mkHsForAllTy Explicit tvs ctxt ty mkHsForAllTy :: HsExplicitForAll -> [LHsTyVarBndr name] -> LHsContext name -> LHsType name -> HsType name -- Smart constructor for HsForAllTy mkHsForAllTy exp tvs (L _ []) ty = mk_forall_ty exp tvs ty mkHsForAllTy exp tvs ctxt ty = HsForAllTy exp tvs ctxt ty -- mk_forall_ty makes a pure for-all type (no context) mk_forall_ty exp tvs (L _ (HsParTy ty)) = mk_forall_ty exp tvs ty mk_forall_ty exp1 tvs1 (L _ (HsForAllTy exp2 tvs2 ctxt ty)) = mkHsForAllTy (exp1 `plus` exp2) (tvs1 ++ tvs2) ctxt ty mk_forall_ty exp tvs ty = HsForAllTy exp tvs (L noSrcSpan []) ty -- Even if tvs is empty, we still make a HsForAll! -- In the Implicit case, this signals the place to do implicit quantification -- In the Explicit case, it prevents implicit quantification -- (see the sigtype production in Parser.y.pp) -- so that (forall. ty) isn't implicitly quantified Implicit `plus` Implicit = Implicit exp1 `plus` exp2 = Explicit type LHsTyVarBndr name = Located (HsTyVarBndr name) data HsTyVarBndr name = UserTyVar name | KindedTyVar name Kind -- *** NOTA BENE *** A "monotype" in a pragma can have -- for-alls in it, (mostly to do with dictionaries). These -- must be explicitly Kinded. hsTyVarName :: HsTyVarBndr name -> name hsTyVarName (UserTyVar n) = n hsTyVarName (KindedTyVar n _) = n hsLTyVarName :: LHsTyVarBndr name -> name hsLTyVarName = hsTyVarName . unLoc hsTyVarNames :: [HsTyVarBndr name] -> [name] hsTyVarNames tvs = map hsTyVarName tvs hsLTyVarNames :: [LHsTyVarBndr name] -> [name] hsLTyVarNames = map hsLTyVarName hsLTyVarLocName :: LHsTyVarBndr name -> Located name hsLTyVarLocName = fmap hsTyVarName hsLTyVarLocNames :: [LHsTyVarBndr name] -> [Located name] hsLTyVarLocNames = map hsLTyVarLocName replaceTyVarName :: HsTyVarBndr name1 -> name2 -> HsTyVarBndr name2 replaceTyVarName (UserTyVar n) n' = UserTyVar n' replaceTyVarName (KindedTyVar n k) n' = KindedTyVar n' k \end{code} \begin{code} splitHsInstDeclTy :: OutputableBndr name => HsType name -> ([LHsTyVarBndr name], HsContext name, name, [LHsType name]) -- Split up an instance decl type, returning the pieces splitHsInstDeclTy inst_ty = case inst_ty of HsParTy (L _ ty) -> splitHsInstDeclTy ty HsForAllTy _ tvs cxt (L _ ty) -> split_tau tvs (unLoc cxt) ty other -> split_tau [] [] other -- The type vars should have been computed by now, even if they were implicit where split_tau tvs cxt (HsPredTy (HsClassP cls tys)) = (tvs, cxt, cls, tys) split_tau tvs cxt (HsParTy (L _ ty)) = split_tau tvs cxt ty -- Splits HsType into the (init, last) parts -- Breaks up any parens in the result type: -- splitHsFunType (a -> (b -> c)) = ([a,b], c) splitHsFunType :: LHsType name -> ([LHsType name], LHsType name) splitHsFunType (L l (HsFunTy x y)) = (x:args, res) where (args, res) = splitHsFunType y splitHsFunType (L _ (HsParTy ty)) = splitHsFunType ty splitHsFunType other = ([], other) \end{code} %************************************************************************ %* * \subsection{Pretty printing} %* * %************************************************************************ NB: these types get printed into interface files, so don't change the printing format lightly \begin{code} instance (OutputableBndr name) => Outputable (HsType name) where ppr ty = pprHsType ty instance (Outputable name) => Outputable (HsTyVarBndr name) where ppr (UserTyVar name) = ppr name ppr (KindedTyVar name kind) = pprHsTyVarBndr name kind instance OutputableBndr name => Outputable (HsPred name) where ppr (HsClassP clas tys) = ppr clas <+> hsep (map (pprParendHsType.unLoc) tys) ppr (HsIParam n ty) = hsep [ppr n, dcolon, ppr ty] pprHsTyVarBndr :: Outputable name => name -> Kind -> SDoc pprHsTyVarBndr name kind | isLiftedTypeKind kind = ppr name | otherwise = hsep [ppr name, dcolon, pprParendKind kind] pprHsForAll exp tvs cxt | show_forall = forall_part <+> pprHsContext (unLoc cxt) | otherwise = pprHsContext (unLoc cxt) where show_forall = opt_PprStyle_Debug || (not (null tvs) && is_explicit) is_explicit = case exp of {Explicit -> True; Implicit -> False} forall_part = ptext SLIT("forall") <+> interppSP tvs <> dot pprHsContext :: (OutputableBndr name) => HsContext name -> SDoc pprHsContext [] = empty pprHsContext cxt = ppr_hs_context cxt <+> ptext SLIT("=>") ppr_hs_context [] = empty ppr_hs_context cxt = parens (interpp'SP cxt) \end{code} \begin{code} pREC_TOP = (0 :: Int) -- type in ParseIface.y pREC_FUN = (1 :: Int) -- btype in ParseIface.y -- Used for LH arg of (->) pREC_OP = (2 :: Int) -- Used for arg of any infix operator -- (we don't keep their fixities around) pREC_CON = (3 :: Int) -- Used for arg of type applicn: -- always parenthesise unless atomic maybeParen :: Int -- Precedence of context -> Int -- Precedence of top-level operator -> SDoc -> SDoc -- Wrap in parens if (ctxt >= op) maybeParen ctxt_prec op_prec p | ctxt_prec >= op_prec = parens p | otherwise = p -- printing works more-or-less as for Types pprHsType, pprParendHsType :: (OutputableBndr name) => HsType name -> SDoc pprHsType ty = getPprStyle $ \sty -> ppr_mono_ty pREC_TOP (prepare sty ty) pprParendHsType ty = ppr_mono_ty pREC_CON ty -- Before printing a type -- (a) Remove outermost HsParTy parens -- (b) Drop top-level for-all type variables in user style -- since they are implicit in Haskell prepare sty (HsParTy ty) = prepare sty (unLoc ty) prepare sty ty = ty ppr_mono_lty ctxt_prec ty = ppr_mono_ty ctxt_prec (unLoc ty) ppr_mono_ty ctxt_prec (HsForAllTy exp tvs ctxt ty) = maybeParen ctxt_prec pREC_FUN $ sep [pprHsForAll exp tvs ctxt, ppr_mono_lty pREC_TOP ty] -- gaw 2004 ppr_mono_ty ctxt_prec (HsBangTy b ty) = ppr b <> ppr ty ppr_mono_ty ctxt_prec (HsTyVar name) = ppr name ppr_mono_ty ctxt_prec (HsFunTy ty1 ty2) = ppr_fun_ty ctxt_prec ty1 ty2 ppr_mono_ty ctxt_prec (HsTupleTy con tys) = tupleParens con (interpp'SP tys) ppr_mono_ty ctxt_prec (HsKindSig ty kind) = parens (ppr_mono_lty pREC_TOP ty <+> dcolon <+> pprKind kind) ppr_mono_ty ctxt_prec (HsListTy ty) = brackets (ppr_mono_lty pREC_TOP ty) ppr_mono_ty ctxt_prec (HsPArrTy ty) = pabrackets (ppr_mono_lty pREC_TOP ty) ppr_mono_ty ctxt_prec (HsPredTy pred) = braces (ppr pred) ppr_mono_ty ctxt_prec (HsNumTy n) = integer n -- generics only ppr_mono_ty ctxt_prec (HsSpliceTy s) = pprSplice s ppr_mono_ty ctxt_prec (HsAppTy fun_ty arg_ty) = maybeParen ctxt_prec pREC_CON $ hsep [ppr_mono_lty pREC_FUN fun_ty, ppr_mono_lty pREC_CON arg_ty] ppr_mono_ty ctxt_prec (HsOpTy ty1 op ty2) = maybeParen ctxt_prec pREC_OP $ ppr_mono_lty pREC_OP ty1 <+> ppr op <+> ppr_mono_lty pREC_OP ty2 ppr_mono_ty ctxt_prec (HsParTy ty) = parens (ppr_mono_lty pREC_TOP ty) -- Put the parens in where the user did -- But we still use the precedence stuff to add parens because -- toHsType doesn't put in any HsParTys, so we may still need them -------------------------- ppr_fun_ty ctxt_prec ty1 ty2 = let p1 = ppr_mono_lty pREC_FUN ty1 p2 = ppr_mono_lty pREC_TOP ty2 in maybeParen ctxt_prec pREC_FUN $ sep [p1, ptext SLIT("->") <+> p2] -------------------------- pabrackets p = ptext SLIT("[:") <> p <> ptext SLIT(":]") \end{code}