% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % HsTypes: Abstract syntax: user-defined types \begin{code} {-# LANGUAGE DeriveDataTypeable #-} module HsTypes ( HsType(..), LHsType, HsKind, LHsKind, HsTyVarBndr(..), LHsTyVarBndr, LHsTyVarBndrs(..), HsWithBndrs(..), HsTupleSort(..), HsExplicitFlag(..), HsContext, LHsContext, HsQuasiQuote(..), HsTyWrapper(..), HsTyLit(..), HsIPName(..), hsIPNameFS, LBangType, BangType, HsBang(..), getBangType, getBangStrictness, ConDeclField(..), pprConDeclFields, mkHsQTvs, hsQTvBndrs, mkExplicitHsForAllTy, mkImplicitHsForAllTy, hsExplicitTvs, hsTyVarName, mkHsWithBndrs, hsLKiTyVarNames, hsLTyVarName, hsLTyVarNames, hsLTyVarLocName, hsLTyVarLocNames, splitLHsInstDeclTy_maybe, splitHsClassTy_maybe, splitLHsClassTy_maybe, splitHsFunType, splitHsAppTys, hsTyGetAppHead_maybe, mkHsAppTys, mkHsOpTy, -- Printing pprParendHsType, pprHsForAll, pprHsContext, ppr_hs_context, ) where import {-# SOURCE #-} HsExpr ( HsSplice, pprSplice ) import HsLit import NameSet( FreeVars ) import Name( Name ) import RdrName( RdrName ) import DataCon( HsBang(..) ) import Type import HsDoc import BasicTypes import SrcLoc import StaticFlags import Outputable import FastString import Data.Data \end{code} %************************************************************************ %* * Quasi quotes; used in types and elsewhere %* * %************************************************************************ \begin{code} data HsQuasiQuote id = HsQuasiQuote id -- The quasi-quoter SrcSpan -- The span of the enclosed string FastString -- The enclosed string deriving (Data, Typeable) instance OutputableBndr id => Outputable (HsQuasiQuote id) where ppr = ppr_qq ppr_qq :: OutputableBndr id => HsQuasiQuote id -> SDoc ppr_qq (HsQuasiQuote quoter _ quote) = char '[' <> ppr quoter <> ptext (sLit "|") <> ppr quote <> ptext (sLit "|]") \end{code} %************************************************************************ %* * \subsection{Bang annotations} %* * %************************************************************************ \begin{code} type LBangType name = Located (BangType name) type BangType name = HsType name -- Bangs are in the HsType data type getBangType :: LHsType a -> LHsType a getBangType (L _ (HsBangTy _ ty)) = ty getBangType ty = ty getBangStrictness :: LHsType a -> HsBang getBangStrictness (L _ (HsBangTy s _)) = s getBangStrictness _ = HsNoBang \end{code} %************************************************************************ %* * \subsection{Data types} %* * %************************************************************************ This is the syntax for types as seen in type signatures. Note [HsBSig binder lists] ~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider a binder (or pattern) decoarated with a type or kind, \ (x :: a -> a). blah forall (a :: k -> *) (b :: k). blah Then we use a LHsBndrSig on the binder, so that the renamer can decorate it with the variables bound by the pattern ('a' in the first example, 'k' in the second), assuming that neither of them is in scope already See also Note [Kind and type-variable binders] in RnTypes \begin{code} type LHsContext name = Located (HsContext name) type HsContext name = [LHsType name] type LHsType name = Located (HsType name) type HsKind name = HsType name type LHsKind name = Located (HsKind name) type LHsTyVarBndr name = Located (HsTyVarBndr name) data LHsTyVarBndrs name = HsQTvs { hsq_kvs :: [Name] -- Kind variables , hsq_tvs :: [LHsTyVarBndr name] -- Type variables -- See Note [HsForAllTy tyvar binders] } deriving( Data, Typeable ) mkHsQTvs :: [LHsTyVarBndr RdrName] -> LHsTyVarBndrs RdrName -- Just at RdrName because in the Name variant we should know just -- what the kind-variable binders are; and we don't -- We put an empty list (rather than a panic) for the kind vars so -- that the pretty printer works ok on them. mkHsQTvs tvs = HsQTvs { hsq_kvs = [], hsq_tvs = tvs } emptyHsQTvs :: LHsTyVarBndrs name -- Use only when you know there are no kind binders emptyHsQTvs = HsQTvs { hsq_kvs = [], hsq_tvs = [] } hsQTvBndrs :: LHsTyVarBndrs name -> [LHsTyVarBndr name] hsQTvBndrs = hsq_tvs data HsWithBndrs thing = HsWB { hswb_cts :: thing -- Main payload (type or list of types) , hswb_kvs :: [Name] -- Kind vars , hswb_tvs :: [Name] -- Type vars } deriving (Data, Typeable) mkHsWithBndrs :: thing -> HsWithBndrs thing mkHsWithBndrs x = HsWB { hswb_cts = x, hswb_kvs = panic "mkHsTyWithBndrs:kvs" , hswb_tvs = panic "mkHsTyWithBndrs:tvs" } -- | These names are used eary on to store the names of implicit -- parameters. They completely disappear after type-checking. newtype HsIPName = HsIPName FastString-- ?x deriving( Eq, Data, Typeable ) hsIPNameFS :: HsIPName -> FastString hsIPNameFS (HsIPName n) = n instance Outputable HsIPName where ppr (HsIPName n) = char '?' <> ftext n -- Ordinary implicit parameters instance OutputableBndr HsIPName where pprBndr _ n = ppr n -- Simple for now pprInfixOcc n = ppr n pprPrefixOcc n = ppr n data HsTyVarBndr name = UserTyVar -- no explicit kinding name | KindedTyVar name (LHsKind name) -- The user-supplied kind signature deriving (Data, Typeable) data HsType name = HsForAllTy HsExplicitFlag -- Renamer leaves this flag unchanged, to record the way -- the user wrote it originally, so that the printer can -- print it as the user wrote it (LHsTyVarBndrs name) (LHsContext name) (LHsType name) | HsTyVar name -- Type variable, type constructor, or data constructor -- see Note [Promotions (HsTyVar)] | HsAppTy (LHsType name) (LHsType name) | HsFunTy (LHsType name) -- function type (LHsType name) | HsListTy (LHsType name) -- Element type | HsPArrTy (LHsType name) -- Elem. type of parallel array: [:t:] | HsTupleTy HsTupleSort [LHsType name] -- Element types (length gives arity) | HsOpTy (LHsType name) (LHsTyOp name) (LHsType name) | HsParTy (LHsType name) -- See Note [Parens in HsSyn] in HsExpr -- Parenthesis preserved for the precedence re-arrangement in RnTypes -- It's important that a * (b + c) doesn't get rearranged to (a*b) + c! | HsIParamTy HsIPName -- (?x :: ty) (LHsType name) -- Implicit parameters as they occur in contexts | HsEqTy (LHsType name) -- ty1 ~ ty2 (LHsType name) -- Always allowed even without TypeOperators, and has special kinding rule | HsKindSig (LHsType name) -- (ty :: kind) (LHsKind name) -- A type with a kind signature | HsQuasiQuoteTy (HsQuasiQuote name) | HsSpliceTy (HsSplice name) FreeVars -- Variables free in the splice (filled in by renamer) PostTcKind | HsDocTy (LHsType name) LHsDocString -- A documented type | HsBangTy HsBang (LHsType name) -- Bang-style type annotations | HsRecTy [ConDeclField name] -- Only in data type declarations | HsCoreTy Type -- An escape hatch for tunnelling a *closed* -- Core Type through HsSyn. | HsExplicitListTy -- A promoted explicit list PostTcKind -- See Note [Promoted lists and tuples] [LHsType name] | HsExplicitTupleTy -- A promoted explicit tuple [PostTcKind] -- See Note [Promoted lists and tuples] [LHsType name] | HsTyLit HsTyLit -- A promoted numeric literal. | HsWrapTy HsTyWrapper (HsType name) -- only in typechecker output deriving (Data, Typeable) data HsTyLit = HsNumTy Integer | HsStrTy FastString deriving (Data, Typeable) data HsTyWrapper = WpKiApps [Kind] -- kind instantiation: [] k1 k2 .. kn deriving (Data, Typeable) type LHsTyOp name = HsTyOp (Located name) type HsTyOp name = (HsTyWrapper, name) mkHsOpTy :: LHsType name -> Located name -> LHsType name -> HsType name mkHsOpTy ty1 op ty2 = HsOpTy ty1 (WpKiApps [], op) ty2 \end{code} Note [HsForAllTy tyvar binders] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ After parsing: * Implicit => empty Explicit => the variables the user wrote After renaming * Implicit => the *type* variables free in the type Explicit => the variables the user wrote (renamed) The kind variables bound in the hsq_kvs field come both a) from the kind signatures on the kind vars (eg k1) b) from the scope of the forall (eg k2) Example: f :: forall (a::k1) b. T a (b::k2) Note [Unit tuples] ~~~~~~~~~~~~~~~~~~ Consider the type type instance F Int = () We want to parse that "()" as HsTupleTy HsBoxedOrConstraintTuple [], NOT as HsTyVar unitTyCon Why? Because F might have kind (* -> Constraint), so we when parsing we don't know if that tuple is going to be a constraint tuple or an ordinary unit tuple. The HsTupleSort flag is specifically designed to deal with that, but it has to work for unit tuples too. Note [Promotions (HsTyVar)] ~~~~~~~~~~~~~~~~~~~~~~~~~~~ HsTyVar: A name in a type or kind. Here are the allowed namespaces for the name. In a type: Var: not allowed Data: promoted data constructor Tv: type variable TcCls before renamer: type constructor, class constructor, or promoted data constructor TcCls after renamer: type constructor or class constructor In a kind: Var, Data: not allowed Tv: kind variable TcCls: kind constructor or promoted type constructor Note [Promoted lists and tuples] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Notice the difference between HsListTy HsExplicitListTy HsTupleTy HsExplicitListTupleTy E.g. f :: [Int] HsListTy g3 :: T '[] All these use g2 :: T '[True] HsExplicitListTy g1 :: T '[True,False] g1a :: T [True,False] (can omit ' where unambiguous) kind of T :: [Bool] -> * This kind uses HsListTy! E.g. h :: (Int,Bool) HsTupleTy; f is a pair k :: S '(True,False) HsExplicitTypleTy; S is indexed by a type-level pair of booleans kind of S :: (Bool,Bool) -> * This kind uses HsExplicitTupleTy Note [Distinguishing tuple kinds] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Apart from promotion, tuples can have one of three different kinds: x :: (Int, Bool) -- Regular boxed tuples f :: Int# -> (# Int#, Int# #) -- Unboxed tuples g :: (Eq a, Ord a) => a -- Constraint tuples For convenience, internally we use a single constructor for all of these, namely HsTupleTy, but keep track of the tuple kind (in the first argument to HsTupleTy, a HsTupleSort). We can tell if a tuple is unboxed while parsing, because of the #. However, with -XConstraintKinds we can only distinguish between constraint and boxed tuples during type checking, in general. Hence the four constructors of HsTupleSort: HsUnboxedTuple -> Produced by the parser HsBoxedTuple -> Certainly a boxed tuple HsConstraintTuple -> Certainly a constraint tuple HsBoxedOrConstraintTuple -> Could be a boxed or a constraint tuple. Produced by the parser only, disappears after type checking \begin{code} data HsTupleSort = HsUnboxedTuple | HsBoxedTuple | HsConstraintTuple | HsBoxedOrConstraintTuple deriving (Data, Typeable) data HsExplicitFlag = Explicit | Implicit deriving (Data, Typeable) data ConDeclField name -- Record fields have Haddoc docs on them = ConDeclField { cd_fld_name :: Located name, cd_fld_type :: LBangType name, cd_fld_doc :: Maybe LHsDocString } deriving (Data, Typeable) ----------------------- -- Combine adjacent for-alls. -- The following awkward situation can happen otherwise: -- f :: forall a. ((Num a) => Int) -- might generate HsForAll (Just [a]) [] (HsForAll Nothing [Num a] t) -- Then a isn't discovered as ambiguous, and we abstract the AbsBinds wrt [] -- but the export list abstracts f wrt [a]. Disaster. -- -- A valid type must have one for-all at the top of the type, or of the fn arg types mkImplicitHsForAllTy :: LHsContext RdrName -> LHsType RdrName -> HsType RdrName mkExplicitHsForAllTy :: [LHsTyVarBndr RdrName] -> LHsContext RdrName -> LHsType RdrName -> HsType RdrName mkImplicitHsForAllTy ctxt ty = mkHsForAllTy Implicit [] ctxt ty mkExplicitHsForAllTy tvs ctxt ty = mkHsForAllTy Explicit tvs ctxt ty mkHsForAllTy :: HsExplicitFlag -> [LHsTyVarBndr RdrName] -> LHsContext RdrName -> LHsType RdrName -> HsType RdrName -- Smart constructor for HsForAllTy mkHsForAllTy exp tvs (L _ []) ty = mk_forall_ty exp tvs ty mkHsForAllTy exp tvs ctxt ty = HsForAllTy exp (mkHsQTvs tvs) ctxt ty -- mk_forall_ty makes a pure for-all type (no context) mk_forall_ty :: HsExplicitFlag -> [LHsTyVarBndr RdrName] -> LHsType RdrName -> HsType RdrName mk_forall_ty exp tvs (L _ (HsParTy ty)) = mk_forall_ty exp tvs ty mk_forall_ty exp1 tvs1 (L _ (HsForAllTy exp2 qtvs2 ctxt ty)) = mkHsForAllTy (exp1 `plus` exp2) (tvs1 ++ hsq_tvs qtvs2) ctxt ty mk_forall_ty exp tvs ty = HsForAllTy exp (mkHsQTvs tvs) (noLoc []) ty -- Even if tvs is empty, we still make a HsForAll! -- In the Implicit case, this signals the place to do implicit quantification -- In the Explicit case, it prevents implicit quantification -- (see the sigtype production in Parser.y.pp) -- so that (forall. ty) isn't implicitly quantified plus :: HsExplicitFlag -> HsExplicitFlag -> HsExplicitFlag Implicit `plus` Implicit = Implicit _ `plus` _ = Explicit hsExplicitTvs :: LHsType name -> [name] -- The explicitly-given forall'd type variables of a HsType hsExplicitTvs (L _ (HsForAllTy Explicit tvs _ _)) = hsLTyVarNames tvs hsExplicitTvs _ = [] --------------------- hsTyVarName :: HsTyVarBndr name -> name hsTyVarName (UserTyVar n) = n hsTyVarName (KindedTyVar n _) = n hsLTyVarName :: LHsTyVarBndr name -> name hsLTyVarName = hsTyVarName . unLoc hsLTyVarNames :: LHsTyVarBndrs name -> [name] -- Type variables only hsLTyVarNames qtvs = map hsLTyVarName (hsQTvBndrs qtvs) hsLKiTyVarNames :: LHsTyVarBndrs Name -> [Name] -- Kind and type variables hsLKiTyVarNames (HsQTvs { hsq_kvs = kvs, hsq_tvs = tvs }) = kvs ++ map hsLTyVarName tvs hsLTyVarLocName :: LHsTyVarBndr name -> Located name hsLTyVarLocName = fmap hsTyVarName hsLTyVarLocNames :: LHsTyVarBndrs name -> [Located name] hsLTyVarLocNames qtvs = map hsLTyVarLocName (hsQTvBndrs qtvs) \end{code} \begin{code} splitHsAppTys :: LHsType n -> [LHsType n] -> (LHsType n, [LHsType n]) splitHsAppTys (L _ (HsAppTy f a)) as = splitHsAppTys f (a:as) splitHsAppTys (L _ (HsParTy f)) as = splitHsAppTys f as splitHsAppTys f as = (f,as) -- retrieve the name of the "head" of a nested type application -- somewhat like splitHsAppTys, but a little more thorough -- used to examine the result of a GADT-like datacon, so it doesn't handle -- *all* cases (like lists, tuples, (~), etc.) hsTyGetAppHead_maybe :: LHsType n -> Maybe (n, [LHsType n]) hsTyGetAppHead_maybe = go [] where go tys (L _ (HsTyVar n)) = Just (n, tys) go tys (L _ (HsAppTy l r)) = go (r : tys) l go tys (L _ (HsOpTy l (_, L _ n) r)) = Just (n, l : r : tys) go tys (L _ (HsParTy t)) = go tys t go tys (L _ (HsKindSig t _)) = go tys t go _ _ = Nothing mkHsAppTys :: OutputableBndr n => LHsType n -> [LHsType n] -> HsType n mkHsAppTys fun_ty [] = pprPanic "mkHsAppTys" (ppr fun_ty) mkHsAppTys fun_ty (arg_ty:arg_tys) = foldl mk_app (HsAppTy fun_ty arg_ty) arg_tys where mk_app fun arg = HsAppTy (noLoc fun) arg -- Add noLocs for inner nodes of the application; -- they are never used splitLHsInstDeclTy_maybe :: LHsType name -> Maybe (LHsTyVarBndrs name, HsContext name, Located name, [LHsType name]) -- Split up an instance decl type, returning the pieces splitLHsInstDeclTy_maybe inst_ty = do let (tvs, cxt, ty) = splitLHsForAllTy inst_ty (cls, tys) <- splitLHsClassTy_maybe ty return (tvs, cxt, cls, tys) splitLHsForAllTy :: LHsType name -> (LHsTyVarBndrs name, HsContext name, LHsType name) splitLHsForAllTy poly_ty = case unLoc poly_ty of HsParTy ty -> splitLHsForAllTy ty HsForAllTy _ tvs cxt ty -> (tvs, unLoc cxt, ty) _ -> (emptyHsQTvs, [], poly_ty) -- The type vars should have been computed by now, even if they were implicit splitHsClassTy_maybe :: HsType name -> Maybe (name, [LHsType name]) splitHsClassTy_maybe ty = fmap (\(L _ n, tys) -> (n, tys)) $ splitLHsClassTy_maybe (noLoc ty) splitLHsClassTy_maybe :: LHsType name -> Maybe (Located name, [LHsType name]) --- Watch out.. in ...deriving( Show )... we use this on --- the list of partially applied predicates in the deriving, --- so there can be zero args. -- In TcDeriv we also use this to figure out what data type is being -- mentioned in a deriving (Generic (Foo bar baz)) declaration (i.e. "Foo"). splitLHsClassTy_maybe ty = checkl ty [] where checkl (L l ty) args = case ty of HsTyVar t -> Just (L l t, args) HsAppTy l r -> checkl l (r:args) HsOpTy l (_, tc) r -> checkl (fmap HsTyVar tc) (l:r:args) HsParTy t -> checkl t args HsKindSig ty _ -> checkl ty args _ -> Nothing -- Splits HsType into the (init, last) parts -- Breaks up any parens in the result type: -- splitHsFunType (a -> (b -> c)) = ([a,b], c) splitHsFunType :: LHsType name -> ([LHsType name], LHsType name) splitHsFunType (L _ (HsFunTy x y)) = (x:args, res) where (args, res) = splitHsFunType y splitHsFunType (L _ (HsParTy ty)) = splitHsFunType ty splitHsFunType other = ([], other) \end{code} %************************************************************************ %* * \subsection{Pretty printing} %* * %************************************************************************ \begin{code} instance (OutputableBndr name) => Outputable (HsType name) where ppr ty = pprHsType ty instance Outputable HsTyLit where ppr = ppr_tylit instance (OutputableBndr name) => Outputable (LHsTyVarBndrs name) where ppr (HsQTvs { hsq_kvs = kvs, hsq_tvs = tvs }) = sep [ ifPprDebug $ braces (interppSP kvs), interppSP tvs ] instance (OutputableBndr name) => Outputable (HsTyVarBndr name) where ppr (UserTyVar n) = ppr n ppr (KindedTyVar n k) = parens $ hsep [ppr n, dcolon, ppr k] instance (Outputable thing) => Outputable (HsWithBndrs thing) where ppr (HsWB { hswb_cts = ty }) = ppr ty pprHsForAll :: OutputableBndr name => HsExplicitFlag -> LHsTyVarBndrs name -> LHsContext name -> SDoc pprHsForAll exp qtvs cxt | show_forall = forall_part <+> pprHsContext (unLoc cxt) | otherwise = pprHsContext (unLoc cxt) where show_forall = opt_PprStyle_Debug || (not (null (hsQTvBndrs qtvs)) && is_explicit) is_explicit = case exp of {Explicit -> True; Implicit -> False} forall_part = ptext (sLit "forall") <+> ppr qtvs <> dot pprHsContext :: (OutputableBndr name) => HsContext name -> SDoc pprHsContext [] = empty pprHsContext [L _ pred] = ppr pred <+> darrow pprHsContext cxt = ppr_hs_context cxt <+> darrow ppr_hs_context :: (OutputableBndr name) => HsContext name -> SDoc ppr_hs_context [] = empty ppr_hs_context cxt = parens (interpp'SP cxt) pprConDeclFields :: OutputableBndr name => [ConDeclField name] -> SDoc pprConDeclFields fields = braces (sep (punctuate comma (map ppr_fld fields))) where ppr_fld (ConDeclField { cd_fld_name = n, cd_fld_type = ty, cd_fld_doc = doc }) = ppr n <+> dcolon <+> ppr ty <+> ppr_mbDoc doc \end{code} Note [Printing KindedTyVars] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Trac #3830 reminded me that we should really only print the kind signature on a KindedTyVar if the kind signature was put there by the programmer. During kind inference GHC now adds a PostTcKind to UserTyVars, rather than converting to KindedTyVars as before. (As it happens, the message in #3830 comes out a different way now, and the problem doesn't show up; but having the flag on a KindedTyVar seems like the Right Thing anyway.) \begin{code} pREC_TOP, pREC_FUN, pREC_OP, pREC_CON :: Int pREC_TOP = 0 -- type in ParseIface.y pREC_FUN = 1 -- btype in ParseIface.y -- Used for LH arg of (->) pREC_OP = 2 -- Used for arg of any infix operator -- (we don't keep their fixities around) pREC_CON = 3 -- Used for arg of type applicn: -- always parenthesise unless atomic maybeParen :: Int -- Precedence of context -> Int -- Precedence of top-level operator -> SDoc -> SDoc -- Wrap in parens if (ctxt >= op) maybeParen ctxt_prec op_prec p | ctxt_prec >= op_prec = parens p | otherwise = p -- printing works more-or-less as for Types pprHsType, pprParendHsType :: (OutputableBndr name) => HsType name -> SDoc pprHsType ty = getPprStyle $ \sty -> ppr_mono_ty pREC_TOP (prepare sty ty) pprParendHsType ty = ppr_mono_ty pREC_CON ty -- Before printing a type -- (a) Remove outermost HsParTy parens -- (b) Drop top-level for-all type variables in user style -- since they are implicit in Haskell prepare :: PprStyle -> HsType name -> HsType name prepare sty (HsParTy ty) = prepare sty (unLoc ty) prepare _ ty = ty ppr_mono_lty :: (OutputableBndr name) => Int -> LHsType name -> SDoc ppr_mono_lty ctxt_prec ty = ppr_mono_ty ctxt_prec (unLoc ty) ppr_mono_ty :: (OutputableBndr name) => Int -> HsType name -> SDoc ppr_mono_ty ctxt_prec (HsForAllTy exp tvs ctxt ty) = maybeParen ctxt_prec pREC_FUN $ sep [pprHsForAll exp tvs ctxt, ppr_mono_lty pREC_TOP ty] ppr_mono_ty _ (HsBangTy b ty) = ppr b <> ppr_mono_lty pREC_CON ty ppr_mono_ty _ (HsQuasiQuoteTy qq) = ppr qq ppr_mono_ty _ (HsRecTy flds) = pprConDeclFields flds ppr_mono_ty _ (HsTyVar name) = pprPrefixOcc name ppr_mono_ty prec (HsFunTy ty1 ty2) = ppr_fun_ty prec ty1 ty2 ppr_mono_ty _ (HsTupleTy con tys) = tupleParens std_con (interpp'SP tys) where std_con = case con of HsUnboxedTuple -> UnboxedTuple _ -> BoxedTuple ppr_mono_ty _ (HsKindSig ty kind) = parens (ppr_mono_lty pREC_TOP ty <+> dcolon <+> ppr kind) ppr_mono_ty _ (HsListTy ty) = brackets (ppr_mono_lty pREC_TOP ty) ppr_mono_ty _ (HsPArrTy ty) = paBrackets (ppr_mono_lty pREC_TOP ty) ppr_mono_ty prec (HsIParamTy n ty) = maybeParen prec pREC_FUN (ppr n <+> dcolon <+> ppr_mono_lty pREC_TOP ty) ppr_mono_ty _ (HsSpliceTy s _ _) = pprSplice s ppr_mono_ty _ (HsCoreTy ty) = ppr ty ppr_mono_ty _ (HsExplicitListTy _ tys) = quote $ brackets (interpp'SP tys) ppr_mono_ty _ (HsExplicitTupleTy _ tys) = quote $ parens (interpp'SP tys) ppr_mono_ty _ (HsTyLit t) = ppr_tylit t ppr_mono_ty ctxt_prec (HsWrapTy (WpKiApps _kis) ty) = ppr_mono_ty ctxt_prec ty -- We are not printing kind applications. If we wanted to do so, we should do -- something like this: {- = go ctxt_prec kis ty where go ctxt_prec [] ty = ppr_mono_ty ctxt_prec ty go ctxt_prec (ki:kis) ty = maybeParen ctxt_prec pREC_CON $ hsep [ go pREC_FUN kis ty , ptext (sLit "@") <> pprParendKind ki ] -} ppr_mono_ty ctxt_prec (HsEqTy ty1 ty2) = maybeParen ctxt_prec pREC_OP $ ppr_mono_lty pREC_OP ty1 <+> char '~' <+> ppr_mono_lty pREC_OP ty2 ppr_mono_ty ctxt_prec (HsAppTy fun_ty arg_ty) = maybeParen ctxt_prec pREC_CON $ hsep [ppr_mono_lty pREC_FUN fun_ty, ppr_mono_lty pREC_CON arg_ty] ppr_mono_ty ctxt_prec (HsOpTy ty1 (_wrapper, L _ op) ty2) = maybeParen ctxt_prec pREC_OP $ sep [ ppr_mono_lty pREC_OP ty1 , sep [pprInfixOcc op, ppr_mono_lty pREC_OP ty2 ] ] -- Don't print the wrapper (= kind applications) -- c.f. HsWrapTy ppr_mono_ty _ (HsParTy ty) = parens (ppr_mono_lty pREC_TOP ty) -- Put the parens in where the user did -- But we still use the precedence stuff to add parens because -- toHsType doesn't put in any HsParTys, so we may still need them ppr_mono_ty ctxt_prec (HsDocTy ty doc) = maybeParen ctxt_prec pREC_OP $ ppr_mono_lty pREC_OP ty <+> ppr (unLoc doc) -- we pretty print Haddock comments on types as if they were -- postfix operators -------------------------- ppr_fun_ty :: (OutputableBndr name) => Int -> LHsType name -> LHsType name -> SDoc ppr_fun_ty ctxt_prec ty1 ty2 = let p1 = ppr_mono_lty pREC_FUN ty1 p2 = ppr_mono_lty pREC_TOP ty2 in maybeParen ctxt_prec pREC_FUN $ sep [p1, ptext (sLit "->") <+> p2] -------------------------- ppr_tylit :: HsTyLit -> SDoc ppr_tylit (HsNumTy i) = integer i ppr_tylit (HsStrTy s) = text (show s) \end{code}