% % (c) The University of Glasgow, 1992-2006 % Here we collect a variety of helper functions that construct or analyse HsSyn. All these functions deal with generic HsSyn; functions which deal with the instantiated versions are located elsewhere: Parameterised by Module ---------------- ------------- RdrName parser/RdrHsSyn Name rename/RnHsSyn Id typecheck/TcHsSyn \begin{code} {-# LANGUAGE CPP #-} {-# OPTIONS_GHC -fno-warn-tabs #-} -- The above warning supression flag is a temporary kludge. -- While working on this module you are encouraged to remove it and -- detab the module (please do the detabbing in a separate patch). See -- http://ghc.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces -- for details {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE FlexibleContexts #-} module HsUtils( -- Terms mkHsPar, mkHsApp, mkHsConApp, mkSimpleHsAlt, mkSimpleMatch, unguardedGRHSs, unguardedRHS, mkMatchGroup, mkMatchGroupName, mkMatch, mkHsLam, mkHsIf, mkHsWrap, mkLHsWrap, mkHsWrapCo, mkLHsWrapCo, coToHsWrapper, mkHsDictLet, mkHsLams, mkHsOpApp, mkHsDo, mkHsComp, mkHsWrapPat, mkHsWrapPatCo, mkLHsPar, mkHsCmdCast, nlHsTyApp, nlHsVar, nlHsLit, nlHsApp, nlHsApps, nlHsIntLit, nlHsVarApps, nlHsDo, nlHsOpApp, nlHsLam, nlHsPar, nlHsIf, nlHsCase, nlList, mkLHsTupleExpr, mkLHsVarTuple, missingTupArg, toHsType, toHsKind, -- Bindings mkFunBind, mkVarBind, mkHsVarBind, mk_easy_FunBind, mkTopFunBind, mkPatSynBind, -- Literals mkHsIntegral, mkHsFractional, mkHsIsString, mkHsString, -- Patterns mkNPat, mkNPlusKPat, nlVarPat, nlLitPat, nlConVarPat, nlConPat, nlConPatName, nlInfixConPat, nlNullaryConPat, nlWildConPat, nlWildPat, nlWildPatName, nlWildPatId, nlTuplePat, mkParPat, -- Types mkHsAppTy, userHsTyVarBndrs, nlHsAppTy, nlHsTyVar, nlHsFunTy, nlHsTyConApp, -- Stmts mkTransformStmt, mkTransformByStmt, mkBodyStmt, mkBindStmt, mkLastStmt, emptyTransStmt, mkGroupUsingStmt, mkGroupByUsingStmt, emptyRecStmt, emptyRecStmtName, emptyRecStmtId, mkRecStmt, -- Template Haskell mkHsSpliceTy, mkHsSpliceE, mkHsSpliceTE, mkHsSplice, mkHsQuasiQuote, unqualQuasiQuote, -- Flags noRebindableInfo, -- Collecting binders collectLocalBinders, collectHsValBinders, collectHsBindListBinders, collectHsBindsBinders, collectHsBindBinders, collectMethodBinders, collectPatBinders, collectPatsBinders, collectLStmtsBinders, collectStmtsBinders, collectLStmtBinders, collectStmtBinders, hsLTyClDeclBinders, hsTyClDeclsBinders, hsForeignDeclsBinders, hsGroupBinders, hsDataFamInstBinders, -- Collecting implicit binders lStmtsImplicits, hsValBindsImplicits, lPatImplicits ) where #include "HsVersions.h" import HsDecls import HsBinds import HsExpr import HsPat import HsTypes import HsLit import PlaceHolder import TcEvidence import RdrName import Var import TypeRep import TcType import Kind import DataCon import Name import NameSet import BasicTypes import SrcLoc import FastString import Util import Bag import Outputable import Data.Either import Data.Function import Data.List \end{code} %************************************************************************ %* * Some useful helpers for constructing syntax %* * %************************************************************************ These functions attempt to construct a not-completely-useless SrcSpan from their components, compared with the nl* functions below which just attach noSrcSpan to everything. \begin{code} mkHsPar :: LHsExpr id -> LHsExpr id mkHsPar e = L (getLoc e) (HsPar e) mkSimpleMatch :: [LPat id] -> Located (body id) -> LMatch id (Located (body id)) mkSimpleMatch pats rhs = L loc $ Match pats Nothing (unguardedGRHSs rhs) where loc = case pats of [] -> getLoc rhs (pat:_) -> combineSrcSpans (getLoc pat) (getLoc rhs) unguardedGRHSs :: Located (body id) -> GRHSs id (Located (body id)) unguardedGRHSs rhs = GRHSs (unguardedRHS rhs) emptyLocalBinds unguardedRHS :: Located (body id) -> [LGRHS id (Located (body id))] unguardedRHS rhs@(L loc _) = [L loc (GRHS [] rhs)] mkMatchGroup :: Origin -> [LMatch RdrName (Located (body RdrName))] -> MatchGroup RdrName (Located (body RdrName)) mkMatchGroup origin matches = MG { mg_alts = matches, mg_arg_tys = [] , mg_res_ty = placeHolderType , mg_origin = origin } mkMatchGroupName :: Origin -> [LMatch Name (Located (body Name))] -> MatchGroup Name (Located (body Name)) mkMatchGroupName origin matches = MG { mg_alts = matches, mg_arg_tys = [] , mg_res_ty = placeHolderType , mg_origin = origin } mkHsAppTy :: LHsType name -> LHsType name -> LHsType name mkHsAppTy t1 t2 = addCLoc t1 t2 (HsAppTy t1 t2) mkHsApp :: LHsExpr name -> LHsExpr name -> LHsExpr name mkHsApp e1 e2 = addCLoc e1 e2 (HsApp e1 e2) mkHsLam :: [LPat RdrName] -> LHsExpr RdrName -> LHsExpr RdrName mkHsLam pats body = mkHsPar (L (getLoc body) (HsLam matches)) where matches = mkMatchGroup Generated [mkSimpleMatch pats body] mkHsLams :: [TyVar] -> [EvVar] -> LHsExpr Id -> LHsExpr Id mkHsLams tyvars dicts expr = mkLHsWrap (mkWpTyLams tyvars <.> mkWpLams dicts) expr mkHsConApp :: DataCon -> [Type] -> [HsExpr Id] -> LHsExpr Id -- Used for constructing dictionary terms etc, so no locations mkHsConApp data_con tys args = foldl mk_app (nlHsTyApp (dataConWrapId data_con) tys) args where mk_app f a = noLoc (HsApp f (noLoc a)) mkSimpleHsAlt :: LPat id -> (Located (body id)) -> LMatch id (Located (body id)) -- A simple lambda with a single pattern, no binds, no guards; pre-typechecking mkSimpleHsAlt pat expr = mkSimpleMatch [pat] expr nlHsTyApp :: name -> [Type] -> LHsExpr name nlHsTyApp fun_id tys = noLoc (HsWrap (mkWpTyApps tys) (HsVar fun_id)) --------- Adding parens --------- mkLHsPar :: LHsExpr name -> LHsExpr name -- Wrap in parens if hsExprNeedsParens says it needs them -- So 'f x' becomes '(f x)', but '3' stays as '3' mkLHsPar le@(L loc e) | hsExprNeedsParens e = L loc (HsPar le) | otherwise = le mkParPat :: LPat name -> LPat name mkParPat lp@(L loc p) | hsPatNeedsParens p = L loc (ParPat lp) | otherwise = lp ------------------------------- -- These are the bits of syntax that contain rebindable names -- See RnEnv.lookupSyntaxName mkHsIntegral :: Integer -> PostTc RdrName Type -> HsOverLit RdrName mkHsFractional :: FractionalLit -> PostTc RdrName Type -> HsOverLit RdrName mkHsIsString :: FastString -> PostTc RdrName Type -> HsOverLit RdrName mkHsDo :: HsStmtContext Name -> [ExprLStmt RdrName] -> HsExpr RdrName mkHsComp :: HsStmtContext Name -> [ExprLStmt RdrName] -> LHsExpr RdrName -> HsExpr RdrName mkNPat :: HsOverLit id -> Maybe (SyntaxExpr id) -> Pat id mkNPlusKPat :: Located id -> HsOverLit id -> Pat id mkLastStmt :: Located (bodyR idR) -> StmtLR idL idR (Located (bodyR idR)) mkBodyStmt :: Located (bodyR RdrName) -> StmtLR idL RdrName (Located (bodyR RdrName)) mkBindStmt :: LPat idL -> Located (bodyR idR) -> StmtLR idL idR (Located (bodyR idR)) emptyRecStmt :: StmtLR idL RdrName bodyR emptyRecStmtName :: StmtLR Name Name bodyR emptyRecStmtId :: StmtLR Id Id bodyR mkRecStmt :: [LStmtLR idL RdrName bodyR] -> StmtLR idL RdrName bodyR mkHsIntegral i = OverLit (HsIntegral i) noRebindableInfo noSyntaxExpr mkHsFractional f = OverLit (HsFractional f) noRebindableInfo noSyntaxExpr mkHsIsString s = OverLit (HsIsString s) noRebindableInfo noSyntaxExpr noRebindableInfo :: PlaceHolder noRebindableInfo = PlaceHolder -- Just another placeholder; mkHsDo ctxt stmts = HsDo ctxt stmts placeHolderType mkHsComp ctxt stmts expr = mkHsDo ctxt (stmts ++ [last_stmt]) where last_stmt = L (getLoc expr) $ mkLastStmt expr mkHsIf :: LHsExpr id -> LHsExpr id -> LHsExpr id -> HsExpr id mkHsIf c a b = HsIf (Just noSyntaxExpr) c a b mkNPat lit neg = NPat lit neg noSyntaxExpr mkNPlusKPat id lit = NPlusKPat id lit noSyntaxExpr noSyntaxExpr mkTransformStmt :: [ExprLStmt idL] -> LHsExpr idR -> StmtLR idL idR (LHsExpr idL) mkTransformByStmt :: [ExprLStmt idL] -> LHsExpr idR -> LHsExpr idR -> StmtLR idL idR (LHsExpr idL) mkGroupUsingStmt :: [ExprLStmt idL] -> LHsExpr idR -> StmtLR idL idR (LHsExpr idL) mkGroupByUsingStmt :: [ExprLStmt idL] -> LHsExpr idR -> LHsExpr idR -> StmtLR idL idR (LHsExpr idL) emptyTransStmt :: StmtLR idL idR (LHsExpr idR) emptyTransStmt = TransStmt { trS_form = panic "emptyTransStmt: form" , trS_stmts = [], trS_bndrs = [] , trS_by = Nothing, trS_using = noLoc noSyntaxExpr , trS_ret = noSyntaxExpr, trS_bind = noSyntaxExpr , trS_fmap = noSyntaxExpr } mkTransformStmt ss u = emptyTransStmt { trS_form = ThenForm, trS_stmts = ss, trS_using = u } mkTransformByStmt ss u b = emptyTransStmt { trS_form = ThenForm, trS_stmts = ss, trS_using = u, trS_by = Just b } mkGroupUsingStmt ss u = emptyTransStmt { trS_form = GroupForm, trS_stmts = ss, trS_using = u } mkGroupByUsingStmt ss b u = emptyTransStmt { trS_form = GroupForm, trS_stmts = ss, trS_using = u, trS_by = Just b } mkLastStmt body = LastStmt body noSyntaxExpr mkBodyStmt body = BodyStmt body noSyntaxExpr noSyntaxExpr placeHolderType mkBindStmt pat body = BindStmt pat body noSyntaxExpr noSyntaxExpr emptyRecStmt' :: forall idL idR body. PostTc idR Type -> StmtLR idL idR body emptyRecStmt' tyVal = RecStmt { recS_stmts = [], recS_later_ids = [] , recS_rec_ids = [] , recS_ret_fn = noSyntaxExpr , recS_mfix_fn = noSyntaxExpr , recS_bind_fn = noSyntaxExpr, recS_later_rets = [] , recS_rec_rets = [], recS_ret_ty = tyVal } emptyRecStmt = emptyRecStmt' placeHolderType emptyRecStmtName = emptyRecStmt' placeHolderType emptyRecStmtId = emptyRecStmt' placeHolderTypeTc mkRecStmt stmts = emptyRecStmt { recS_stmts = stmts } ------------------------------- --- A useful function for building @OpApps@. The operator is always a -- variable, and we don't know the fixity yet. mkHsOpApp :: LHsExpr id -> id -> LHsExpr id -> HsExpr id mkHsOpApp e1 op e2 = OpApp e1 (noLoc (HsVar op)) (error "mkOpApp:fixity") e2 mkHsSplice :: LHsExpr RdrName -> HsSplice RdrName mkHsSplice e = HsSplice unqualSplice e mkHsSpliceE :: LHsExpr RdrName -> HsExpr RdrName mkHsSpliceE e = HsSpliceE False (mkHsSplice e) mkHsSpliceTE :: LHsExpr RdrName -> HsExpr RdrName mkHsSpliceTE e = HsSpliceE True (mkHsSplice e) mkHsSpliceTy :: LHsExpr RdrName -> HsType RdrName mkHsSpliceTy e = HsSpliceTy (mkHsSplice e) placeHolderKind unqualSplice :: RdrName unqualSplice = mkRdrUnqual (mkVarOccFS (fsLit "splice")) -- A name (uniquified later) to -- identify the splice mkHsQuasiQuote :: RdrName -> SrcSpan -> FastString -> HsQuasiQuote RdrName mkHsQuasiQuote quoter span quote = HsQuasiQuote quoter span quote unqualQuasiQuote :: RdrName unqualQuasiQuote = mkRdrUnqual (mkVarOccFS (fsLit "quasiquote")) -- A name (uniquified later) to -- identify the quasi-quote mkHsString :: String -> HsLit mkHsString s = HsString (mkFastString s) ------------- userHsTyVarBndrs :: SrcSpan -> [name] -> [Located (HsTyVarBndr name)] -- Caller sets location userHsTyVarBndrs loc bndrs = [ L loc (UserTyVar v) | v <- bndrs ] \end{code} %************************************************************************ %* * Constructing syntax with no location info %* * %************************************************************************ \begin{code} nlHsVar :: id -> LHsExpr id nlHsVar n = noLoc (HsVar n) nlHsLit :: HsLit -> LHsExpr id nlHsLit n = noLoc (HsLit n) nlVarPat :: id -> LPat id nlVarPat n = noLoc (VarPat n) nlLitPat :: HsLit -> LPat id nlLitPat l = noLoc (LitPat l) nlHsApp :: LHsExpr id -> LHsExpr id -> LHsExpr id nlHsApp f x = noLoc (HsApp f x) nlHsIntLit :: Integer -> LHsExpr id nlHsIntLit n = noLoc (HsLit (HsInt n)) nlHsApps :: id -> [LHsExpr id] -> LHsExpr id nlHsApps f xs = foldl nlHsApp (nlHsVar f) xs nlHsVarApps :: id -> [id] -> LHsExpr id nlHsVarApps f xs = noLoc (foldl mk (HsVar f) (map HsVar xs)) where mk f a = HsApp (noLoc f) (noLoc a) nlConVarPat :: RdrName -> [RdrName] -> LPat RdrName nlConVarPat con vars = nlConPat con (map nlVarPat vars) nlInfixConPat :: id -> LPat id -> LPat id -> LPat id nlInfixConPat con l r = noLoc (ConPatIn (noLoc con) (InfixCon l r)) nlConPat :: RdrName -> [LPat RdrName] -> LPat RdrName nlConPat con pats = noLoc (ConPatIn (noLoc con) (PrefixCon pats)) nlConPatName :: Name -> [LPat Name] -> LPat Name nlConPatName con pats = noLoc (ConPatIn (noLoc con) (PrefixCon pats)) nlNullaryConPat :: id -> LPat id nlNullaryConPat con = noLoc (ConPatIn (noLoc con) (PrefixCon [])) nlWildConPat :: DataCon -> LPat RdrName nlWildConPat con = noLoc (ConPatIn (noLoc (getRdrName con)) (PrefixCon (nOfThem (dataConSourceArity con) nlWildPat))) nlWildPat :: LPat RdrName nlWildPat = noLoc (WildPat placeHolderType ) -- Pre-typechecking nlWildPatName :: LPat Name nlWildPatName = noLoc (WildPat placeHolderType ) -- Pre-typechecking nlWildPatId :: LPat Id nlWildPatId = noLoc (WildPat placeHolderTypeTc ) -- Post-typechecking nlHsDo :: HsStmtContext Name -> [LStmt RdrName (LHsExpr RdrName)] -> LHsExpr RdrName nlHsDo ctxt stmts = noLoc (mkHsDo ctxt stmts) nlHsOpApp :: LHsExpr id -> id -> LHsExpr id -> LHsExpr id nlHsOpApp e1 op e2 = noLoc (mkHsOpApp e1 op e2) nlHsLam :: LMatch RdrName (LHsExpr RdrName) -> LHsExpr RdrName nlHsPar :: LHsExpr id -> LHsExpr id nlHsIf :: LHsExpr id -> LHsExpr id -> LHsExpr id -> LHsExpr id nlHsCase :: LHsExpr RdrName -> [LMatch RdrName (LHsExpr RdrName)] -> LHsExpr RdrName nlList :: [LHsExpr RdrName] -> LHsExpr RdrName nlHsLam match = noLoc (HsLam (mkMatchGroup Generated [match])) nlHsPar e = noLoc (HsPar e) nlHsIf cond true false = noLoc (mkHsIf cond true false) nlHsCase expr matches = noLoc (HsCase expr (mkMatchGroup Generated matches)) nlList exprs = noLoc (ExplicitList placeHolderType Nothing exprs) nlHsAppTy :: LHsType name -> LHsType name -> LHsType name nlHsTyVar :: name -> LHsType name nlHsFunTy :: LHsType name -> LHsType name -> LHsType name nlHsAppTy f t = noLoc (HsAppTy f t) nlHsTyVar x = noLoc (HsTyVar x) nlHsFunTy a b = noLoc (HsFunTy a b) nlHsTyConApp :: name -> [LHsType name] -> LHsType name nlHsTyConApp tycon tys = foldl nlHsAppTy (nlHsTyVar tycon) tys \end{code} Tuples. All these functions are *pre-typechecker* because they lack types on the tuple. \begin{code} mkLHsTupleExpr :: [LHsExpr a] -> LHsExpr a -- Makes a pre-typechecker boxed tuple, deals with 1 case mkLHsTupleExpr [e] = e mkLHsTupleExpr es = noLoc $ ExplicitTuple (map Present es) Boxed mkLHsVarTuple :: [a] -> LHsExpr a mkLHsVarTuple ids = mkLHsTupleExpr (map nlHsVar ids) nlTuplePat :: [LPat id] -> Boxity -> LPat id nlTuplePat pats box = noLoc (TuplePat pats box []) missingTupArg :: HsTupArg RdrName missingTupArg = Missing placeHolderType \end{code} %************************************************************************ %* * Converting a Type to an HsType RdrName %* * %************************************************************************ This is needed to implement GeneralizedNewtypeDeriving. \begin{code} toHsType :: Type -> LHsType RdrName toHsType ty | [] <- tvs_only , [] <- theta = to_hs_type tau | otherwise = noLoc $ mkExplicitHsForAllTy (map mk_hs_tvb tvs_only) (noLoc $ map toHsType theta) (to_hs_type tau) where (tvs, theta, tau) = tcSplitSigmaTy ty tvs_only = filter isTypeVar tvs to_hs_type (TyVarTy tv) = nlHsTyVar (getRdrName tv) to_hs_type (AppTy t1 t2) = nlHsAppTy (toHsType t1) (toHsType t2) to_hs_type (TyConApp tc args) = nlHsTyConApp (getRdrName tc) (map toHsType args') where args' = filterOut isKind args -- Source-language types have _implicit_ kind arguments, -- so we must remove them here (Trac #8563) to_hs_type (FunTy arg res) = ASSERT( not (isConstraintKind (typeKind arg)) ) nlHsFunTy (toHsType arg) (toHsType res) to_hs_type t@(ForAllTy {}) = pprPanic "toHsType" (ppr t) to_hs_type (LitTy (NumTyLit n)) = noLoc $ HsTyLit (HsNumTy n) to_hs_type (LitTy (StrTyLit s)) = noLoc $ HsTyLit (HsStrTy s) mk_hs_tvb tv = noLoc $ KindedTyVar (getRdrName tv) (toHsKind (tyVarKind tv)) toHsKind :: Kind -> LHsKind RdrName toHsKind = toHsType \end{code} \begin{code} --------- HsWrappers: type args, dict args, casts --------- mkLHsWrap :: HsWrapper -> LHsExpr id -> LHsExpr id mkLHsWrap co_fn (L loc e) = L loc (mkHsWrap co_fn e) mkHsWrap :: HsWrapper -> HsExpr id -> HsExpr id mkHsWrap co_fn e | isIdHsWrapper co_fn = e | otherwise = HsWrap co_fn e mkHsWrapCo :: TcCoercion -> HsExpr id -> HsExpr id mkHsWrapCo co e = mkHsWrap (coToHsWrapper co) e mkLHsWrapCo :: TcCoercion -> LHsExpr id -> LHsExpr id mkLHsWrapCo co (L loc e) = L loc (mkHsWrapCo co e) mkHsCmdCast :: TcCoercion -> HsCmd id -> HsCmd id mkHsCmdCast co cmd | isTcReflCo co = cmd | otherwise = HsCmdCast co cmd coToHsWrapper :: TcCoercion -> HsWrapper coToHsWrapper co | isTcReflCo co = idHsWrapper | otherwise = mkWpCast (mkTcSubCo co) mkHsWrapPat :: HsWrapper -> Pat id -> Type -> Pat id mkHsWrapPat co_fn p ty | isIdHsWrapper co_fn = p | otherwise = CoPat co_fn p ty mkHsWrapPatCo :: TcCoercion -> Pat id -> Type -> Pat id mkHsWrapPatCo co pat ty | isTcReflCo co = pat | otherwise = CoPat (mkWpCast co) pat ty mkHsDictLet :: TcEvBinds -> LHsExpr Id -> LHsExpr Id mkHsDictLet ev_binds expr = mkLHsWrap (mkWpLet ev_binds) expr \end{code} l %************************************************************************ %* * Bindings; with a location at the top %* * %************************************************************************ \begin{code} mkFunBind :: Located RdrName -> [LMatch RdrName (LHsExpr RdrName)] -> HsBind RdrName -- Not infix, with place holders for coercion and free vars mkFunBind fn ms = FunBind { fun_id = fn, fun_infix = False , fun_matches = mkMatchGroup Generated ms , fun_co_fn = idHsWrapper , bind_fvs = placeHolderNames , fun_tick = Nothing } mkTopFunBind :: Origin -> Located Name -> [LMatch Name (LHsExpr Name)] -> HsBind Name -- In Name-land, with empty bind_fvs mkTopFunBind origin fn ms = FunBind { fun_id = fn, fun_infix = False , fun_matches = mkMatchGroupName origin ms , fun_co_fn = idHsWrapper , bind_fvs = emptyNameSet -- NB: closed -- binding , fun_tick = Nothing } mkHsVarBind :: SrcSpan -> RdrName -> LHsExpr RdrName -> LHsBind RdrName mkHsVarBind loc var rhs = mk_easy_FunBind loc var [] rhs mkVarBind :: id -> LHsExpr id -> LHsBind id mkVarBind var rhs = L (getLoc rhs) $ VarBind { var_id = var, var_rhs = rhs, var_inline = False } mkPatSynBind :: Located RdrName -> HsPatSynDetails (Located RdrName) -> LPat RdrName -> HsPatSynDir RdrName -> HsBind RdrName mkPatSynBind name details lpat dir = PatSynBind psb where psb = PSB{ psb_id = name , psb_args = details , psb_def = lpat , psb_dir = dir , psb_fvs = placeHolderNames } ------------ mk_easy_FunBind :: SrcSpan -> RdrName -> [LPat RdrName] -> LHsExpr RdrName -> LHsBind RdrName mk_easy_FunBind loc fun pats expr = L loc $ mkFunBind (L loc fun) [mkMatch pats expr emptyLocalBinds] ------------ mkMatch :: [LPat id] -> LHsExpr id -> HsLocalBinds id -> LMatch id (LHsExpr id) mkMatch pats expr binds = noLoc (Match (map paren pats) Nothing (GRHSs (unguardedRHS expr) binds)) where paren lp@(L l p) | hsPatNeedsParens p = L l (ParPat lp) | otherwise = lp \end{code} %************************************************************************ %* * Collecting binders %* * %************************************************************************ Get all the binders in some HsBindGroups, IN THE ORDER OF APPEARANCE. eg. ... where (x, y) = ... f i j = ... [a, b] = ... it should return [x, y, f, a, b] (remember, order important). Note [Collect binders only after renaming] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ These functions should only be used on HsSyn *after* the renamer, to return a [Name] or [Id]. Before renaming the record punning and wild-card mechanism makes it hard to know what is bound. So these functions should not be applied to (HsSyn RdrName) \begin{code} ----------------- Bindings -------------------------- collectLocalBinders :: HsLocalBindsLR idL idR -> [idL] collectLocalBinders (HsValBinds val_binds) = collectHsValBinders val_binds collectLocalBinders (HsIPBinds _) = [] collectLocalBinders EmptyLocalBinds = [] collectHsValBinders :: HsValBindsLR idL idR -> [idL] collectHsValBinders (ValBindsIn binds _) = collectHsBindsBinders binds collectHsValBinders (ValBindsOut binds _) = foldr collect_one [] binds where collect_one (_,binds) acc = collect_binds binds acc collectHsBindBinders :: HsBindLR idL idR -> [idL] collectHsBindBinders b = collect_bind b [] collect_bind :: HsBindLR idL idR -> [idL] -> [idL] collect_bind (PatBind { pat_lhs = p }) acc = collect_lpat p acc collect_bind (FunBind { fun_id = L _ f }) acc = f : acc collect_bind (VarBind { var_id = f }) acc = f : acc collect_bind (AbsBinds { abs_exports = dbinds, abs_binds = _binds }) acc = map abe_poly dbinds ++ acc -- ++ foldr collect_bind acc binds -- I don't think we want the binders from the nested binds -- The only time we collect binders from a typechecked -- binding (hence see AbsBinds) is in zonking in TcHsSyn collect_bind (PatSynBind (PSB { psb_id = L _ ps })) acc = ps : acc collectHsBindsBinders :: LHsBindsLR idL idR -> [idL] collectHsBindsBinders binds = collect_binds binds [] collectHsBindListBinders :: [LHsBindLR idL idR] -> [idL] collectHsBindListBinders = foldr (collect_bind . unLoc) [] collect_binds :: LHsBindsLR idL idR -> [idL] -> [idL] collect_binds binds acc = foldrBag (collect_bind . unLoc) acc binds collectMethodBinders :: LHsBindsLR RdrName idR -> [Located RdrName] -- Used exclusively for the bindings of an instance decl which are all FunBinds collectMethodBinders binds = foldrBag (get . unLoc) [] binds where get (FunBind { fun_id = f }) fs = f : fs get _ fs = fs -- Someone else complains about non-FunBinds ----------------- Statements -------------------------- collectLStmtsBinders :: [LStmtLR idL idR body] -> [idL] collectLStmtsBinders = concatMap collectLStmtBinders collectStmtsBinders :: [StmtLR idL idR body] -> [idL] collectStmtsBinders = concatMap collectStmtBinders collectLStmtBinders :: LStmtLR idL idR body -> [idL] collectLStmtBinders = collectStmtBinders . unLoc collectStmtBinders :: StmtLR idL idR body -> [idL] -- Id Binders for a Stmt... [but what about pattern-sig type vars]? collectStmtBinders (BindStmt pat _ _ _) = collectPatBinders pat collectStmtBinders (LetStmt binds) = collectLocalBinders binds collectStmtBinders (BodyStmt {}) = [] collectStmtBinders (LastStmt {}) = [] collectStmtBinders (ParStmt xs _ _) = collectLStmtsBinders $ [s | ParStmtBlock ss _ _ <- xs, s <- ss] collectStmtBinders (TransStmt { trS_stmts = stmts }) = collectLStmtsBinders stmts collectStmtBinders (RecStmt { recS_stmts = ss }) = collectLStmtsBinders ss ----------------- Patterns -------------------------- collectPatBinders :: LPat a -> [a] collectPatBinders pat = collect_lpat pat [] collectPatsBinders :: [LPat a] -> [a] collectPatsBinders pats = foldr collect_lpat [] pats ------------- collect_lpat :: LPat name -> [name] -> [name] collect_lpat (L _ pat) bndrs = go pat where go (VarPat var) = var : bndrs go (WildPat _) = bndrs go (LazyPat pat) = collect_lpat pat bndrs go (BangPat pat) = collect_lpat pat bndrs go (AsPat (L _ a) pat) = a : collect_lpat pat bndrs go (ViewPat _ pat _) = collect_lpat pat bndrs go (ParPat pat) = collect_lpat pat bndrs go (ListPat pats _ _) = foldr collect_lpat bndrs pats go (PArrPat pats _) = foldr collect_lpat bndrs pats go (TuplePat pats _ _) = foldr collect_lpat bndrs pats go (ConPatIn _ ps) = foldr collect_lpat bndrs (hsConPatArgs ps) go (ConPatOut {pat_args=ps}) = foldr collect_lpat bndrs (hsConPatArgs ps) -- See Note [Dictionary binders in ConPatOut] go (LitPat _) = bndrs go (NPat _ _ _) = bndrs go (NPlusKPat (L _ n) _ _ _) = n : bndrs go (SigPatIn pat _) = collect_lpat pat bndrs go (SigPatOut pat _) = collect_lpat pat bndrs go (SplicePat _) = bndrs go (QuasiQuotePat _) = bndrs go (CoPat _ pat _) = go pat \end{code} Note [Dictionary binders in ConPatOut] See also same Note in DsArrows ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Do *not* gather (a) dictionary and (b) dictionary bindings as binders of a ConPatOut pattern. For most calls it doesn't matter, because it's pre-typechecker and there are no ConPatOuts. But it does matter more in the desugarer; for example, DsUtils.mkSelectorBinds uses collectPatBinders. In a lazy pattern, for example f ~(C x y) = ..., we want to generate bindings for x,y but not for dictionaries bound by C. (The type checker ensures they would not be used.) Desugaring of arrow case expressions needs these bindings (see DsArrows and arrowcase1), but SPJ (Jan 2007) says it's safer for it to use its own pat-binder-collector: Here's the problem. Consider data T a where C :: Num a => a -> Int -> T a f ~(C (n+1) m) = (n,m) Here, the pattern (C (n+1)) binds a hidden dictionary (d::Num a), and *also* uses that dictionary to match the (n+1) pattern. Yet, the variables bound by the lazy pattern are n,m, *not* the dictionary d. So in mkSelectorBinds in DsUtils, we want just m,n as the variables bound. \begin{code} hsGroupBinders :: HsGroup Name -> [Name] hsGroupBinders (HsGroup { hs_valds = val_decls, hs_tyclds = tycl_decls, hs_instds = inst_decls, hs_fords = foreign_decls }) -- Collect the binders of a Group = collectHsValBinders val_decls ++ hsTyClDeclsBinders tycl_decls inst_decls ++ hsForeignDeclsBinders foreign_decls hsForeignDeclsBinders :: [LForeignDecl Name] -> [Name] hsForeignDeclsBinders foreign_decls = [n | L _ (ForeignImport (L _ n) _ _ _) <- foreign_decls] hsTyClDeclsBinders :: [TyClGroup Name] -> [Located (InstDecl Name)] -> [Name] -- We need to look at instance declarations too, -- because their associated types may bind data constructors hsTyClDeclsBinders tycl_decls inst_decls = map unLoc (concatMap (concatMap hsLTyClDeclBinders . group_tyclds) tycl_decls ++ concatMap (hsInstDeclBinders . unLoc) inst_decls) ------------------- hsLTyClDeclBinders :: Eq name => Located (TyClDecl name) -> [Located name] -- ^ Returns all the /binding/ names of the decl. -- The first one is guaranteed to be the name of the decl. For record fields -- mentioned in multiple constructors, the SrcLoc will be from the first -- occurrence. We use the equality to filter out duplicate field names. -- -- Each returned (Located name) is wrapped in a @SrcSpan@ of the whole -- /declaration/, not just the name itself (which is how it appears in -- the syntax tree). This SrcSpan (for the entire declaration) is used -- as the SrcSpan for the Name that is finally produced, and hence for -- error messages. (See Trac #8607.) hsLTyClDeclBinders (L loc (FamDecl { tcdFam = FamilyDecl { fdLName = L _ name } })) = [L loc name] hsLTyClDeclBinders (L loc (ForeignType { tcdLName = L _ name })) = [L loc name] hsLTyClDeclBinders (L loc (SynDecl { tcdLName = L _ name })) = [L loc name] hsLTyClDeclBinders (L loc (ClassDecl { tcdLName = L _ cls_name , tcdSigs = sigs, tcdATs = ats })) = L loc cls_name : [ L fam_loc fam_name | L fam_loc (FamilyDecl { fdLName = L _ fam_name }) <- ats ] ++ [ L mem_loc mem_name | L mem_loc (TypeSig ns _) <- sigs, L _ mem_name <- ns ] hsLTyClDeclBinders (L loc (DataDecl { tcdLName = L _ name, tcdDataDefn = defn })) = L loc name : hsDataDefnBinders defn ------------------- hsInstDeclBinders :: Eq name => InstDecl name -> [Located name] hsInstDeclBinders (ClsInstD { cid_inst = ClsInstDecl { cid_datafam_insts = dfis } }) = concatMap (hsDataFamInstBinders . unLoc) dfis hsInstDeclBinders (DataFamInstD { dfid_inst = fi }) = hsDataFamInstBinders fi hsInstDeclBinders (TyFamInstD {}) = [] ------------------- -- the SrcLoc returned are for the whole declarations, not just the names hsDataFamInstBinders :: Eq name => DataFamInstDecl name -> [Located name] hsDataFamInstBinders (DataFamInstDecl { dfid_defn = defn }) = hsDataDefnBinders defn -- There can't be repeated symbols because only data instances have binders ------------------- -- the SrcLoc returned are for the whole declarations, not just the names hsDataDefnBinders :: Eq name => HsDataDefn name -> [Located name] hsDataDefnBinders (HsDataDefn { dd_cons = cons }) = hsConDeclsBinders cons -- See Note [Binders in family instances] ------------------- hsConDeclsBinders :: forall name. (Eq name) => [LConDecl name] -> [Located name] -- See hsLTyClDeclBinders for what this does -- The function is boringly complicated because of the records -- And since we only have equality, we have to be a little careful hsConDeclsBinders cons = go id cons where go :: ([Located name] -> [Located name]) -> [LConDecl name] -> [Located name] go _ [] = [] go remSeen (r:rs) = -- don't re-mangle the location of field names, because we don't -- have a record of the full location of the field declaration anyway case r of -- remove only the first occurrence of any seen field in order to -- avoid circumventing detection of duplicate fields (#9156) L loc (ConDecl { con_name = L _ name , con_details = RecCon flds }) -> (L loc name) : r' ++ go remSeen' rs where r' = remSeen (map cd_fld_name flds) remSeen' = foldr (.) remSeen [deleteBy ((==) `on` unLoc) v | v <- r'] L loc (ConDecl { con_name = L _ name }) -> (L loc name) : go remSeen rs \end{code} Note [Binders in family instances] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In a type or data family instance declaration, the type constructor is an *occurrence* not a binding site type instance T Int = Int -> Int -- No binders data instance S Bool = S1 | S2 -- Binders are S1,S2 %************************************************************************ %* * Collecting binders the user did not write %* * %************************************************************************ The job of this family of functions is to run through binding sites and find the set of all Names that were defined "implicitly", without being explicitly written by the user. The main purpose is to find names introduced by record wildcards so that we can avoid warning the user when they don't use those names (#4404) \begin{code} lStmtsImplicits :: [LStmtLR Name idR (Located (body idR))] -> NameSet lStmtsImplicits = hs_lstmts where hs_lstmts :: [LStmtLR Name idR (Located (body idR))] -> NameSet hs_lstmts = foldr (\stmt rest -> unionNameSets (hs_stmt (unLoc stmt)) rest) emptyNameSet hs_stmt (BindStmt pat _ _ _) = lPatImplicits pat hs_stmt (LetStmt binds) = hs_local_binds binds hs_stmt (BodyStmt {}) = emptyNameSet hs_stmt (LastStmt {}) = emptyNameSet hs_stmt (ParStmt xs _ _) = hs_lstmts [s | ParStmtBlock ss _ _ <- xs, s <- ss] hs_stmt (TransStmt { trS_stmts = stmts }) = hs_lstmts stmts hs_stmt (RecStmt { recS_stmts = ss }) = hs_lstmts ss hs_local_binds (HsValBinds val_binds) = hsValBindsImplicits val_binds hs_local_binds (HsIPBinds _) = emptyNameSet hs_local_binds EmptyLocalBinds = emptyNameSet hsValBindsImplicits :: HsValBindsLR Name idR -> NameSet hsValBindsImplicits (ValBindsOut binds _) = foldr (unionNameSets . lhsBindsImplicits . snd) emptyNameSet binds hsValBindsImplicits (ValBindsIn binds _) = lhsBindsImplicits binds lhsBindsImplicits :: LHsBindsLR Name idR -> NameSet lhsBindsImplicits = foldBag unionNameSets (lhs_bind . unLoc) emptyNameSet where lhs_bind (PatBind { pat_lhs = lpat }) = lPatImplicits lpat lhs_bind _ = emptyNameSet lPatImplicits :: LPat Name -> NameSet lPatImplicits = hs_lpat where hs_lpat (L _ pat) = hs_pat pat hs_lpats = foldr (\pat rest -> hs_lpat pat `unionNameSets` rest) emptyNameSet hs_pat (LazyPat pat) = hs_lpat pat hs_pat (BangPat pat) = hs_lpat pat hs_pat (AsPat _ pat) = hs_lpat pat hs_pat (ViewPat _ pat _) = hs_lpat pat hs_pat (ParPat pat) = hs_lpat pat hs_pat (ListPat pats _ _) = hs_lpats pats hs_pat (PArrPat pats _) = hs_lpats pats hs_pat (TuplePat pats _ _) = hs_lpats pats hs_pat (SigPatIn pat _) = hs_lpat pat hs_pat (SigPatOut pat _) = hs_lpat pat hs_pat (CoPat _ pat _) = hs_pat pat hs_pat (ConPatIn _ ps) = details ps hs_pat (ConPatOut {pat_args=ps}) = details ps hs_pat _ = emptyNameSet details (PrefixCon ps) = hs_lpats ps details (RecCon fs) = hs_lpats explicit `unionNameSets` mkNameSet (collectPatsBinders implicit) where (explicit, implicit) = partitionEithers [if pat_explicit then Left pat else Right pat | (i, fld) <- [0..] `zip` rec_flds fs , let pat = hsRecFieldArg fld pat_explicit = maybe True (i<) (rec_dotdot fs)] details (InfixCon p1 p2) = hs_lpat p1 `unionNameSets` hs_lpat p2 \end{code}