% % (c) The University of Glasgow 2006-2008 % (c) The GRASP/AQUA Project, Glasgow University, 1993-1998 % \begin{code} -- | Module for constructing @ModIface@ values (interface files), -- writing them to disk and comparing two versions to see if -- recompilation is required. module MkIface ( mkUsedNames, mkDependencies, mkIface, -- Build a ModIface from a ModGuts, -- including computing version information mkIfaceTc, writeIfaceFile, -- Write the interface file checkOldIface, -- See if recompilation is required, by -- comparing version information RecompileRequired(..), recompileRequired, tyThingToIfaceDecl -- Converting things to their Iface equivalents ) where \end{code} ----------------------------------------------- Recompilation checking ----------------------------------------------- A complete description of how recompilation checking works can be found in the wiki commentary: http://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/RecompilationAvoidance Please read the above page for a top-down description of how this all works. Notes below cover specific issues related to the implementation. Basic idea: * In the mi_usages information in an interface, we record the fingerprint of each free variable of the module * In mkIface, we compute the fingerprint of each exported thing A.f. For each external thing that A.f refers to, we include the fingerprint of the external reference when computing the fingerprint of A.f. So if anything that A.f depends on changes, then A.f's fingerprint will change. Also record any dependent files added with * addDependentFile * #include * -optP-include * In checkOldIface we compare the mi_usages for the module with the actual fingerprint for all each thing recorded in mi_usages \begin{code} #include "HsVersions.h" import IfaceSyn import LoadIface import FlagChecker import Id import IdInfo import Demand import Coercion( tidyCo ) import Annotations import CoreSyn import CoreFVs import Class import Kind import TyCon import CoAxiom import ConLike import DataCon import PatSyn import Type import TcType import InstEnv import FamInstEnv import TcRnMonad import HsSyn import HscTypes import Finder import DynFlags import VarEnv import VarSet import Var import Name import Avail import RdrName import NameEnv import NameSet import Module import BinIface import ErrUtils import Digraph import SrcLoc import Outputable import BasicTypes hiding ( SuccessFlag(..) ) import UniqFM import Unique import Util hiding ( eqListBy ) import FastString import Maybes import ListSetOps import Binary import Fingerprint import Bag import Exception import Control.Monad import Data.Function import Data.List import Data.Map (Map) import qualified Data.Map as Map import Data.Ord import Data.IORef import System.Directory import System.FilePath \end{code} %************************************************************************ %* * \subsection{Completing an interface} %* * %************************************************************************ \begin{code} mkIface :: HscEnv -> Maybe Fingerprint -- The old fingerprint, if we have it -> ModDetails -- The trimmed, tidied interface -> ModGuts -- Usages, deprecations, etc -> IO (Messages, Maybe (ModIface, -- The new one Bool)) -- True <=> there was an old Iface, and the -- new one is identical, so no need -- to write it mkIface hsc_env maybe_old_fingerprint mod_details ModGuts{ mg_module = this_mod, mg_boot = is_boot, mg_used_names = used_names, mg_used_th = used_th, mg_deps = deps, mg_dir_imps = dir_imp_mods, mg_rdr_env = rdr_env, mg_fix_env = fix_env, mg_warns = warns, mg_hpc_info = hpc_info, mg_safe_haskell = safe_mode, mg_trust_pkg = self_trust, mg_dependent_files = dependent_files } = mkIface_ hsc_env maybe_old_fingerprint this_mod is_boot used_names used_th deps rdr_env fix_env warns hpc_info dir_imp_mods self_trust dependent_files safe_mode mod_details -- | make an interface from the results of typechecking only. Useful -- for non-optimising compilation, or where we aren't generating any -- object code at all ('HscNothing'). mkIfaceTc :: HscEnv -> Maybe Fingerprint -- The old fingerprint, if we have it -> SafeHaskellMode -- The safe haskell mode -> ModDetails -- gotten from mkBootModDetails, probably -> TcGblEnv -- Usages, deprecations, etc -> IO (Messages, Maybe (ModIface, Bool)) mkIfaceTc hsc_env maybe_old_fingerprint safe_mode mod_details tc_result@TcGblEnv{ tcg_mod = this_mod, tcg_src = hsc_src, tcg_imports = imports, tcg_rdr_env = rdr_env, tcg_fix_env = fix_env, tcg_warns = warns, tcg_hpc = other_hpc_info, tcg_th_splice_used = tc_splice_used, tcg_dependent_files = dependent_files } = do let used_names = mkUsedNames tc_result deps <- mkDependencies tc_result let hpc_info = emptyHpcInfo other_hpc_info used_th <- readIORef tc_splice_used dep_files <- (readIORef dependent_files) mkIface_ hsc_env maybe_old_fingerprint this_mod (isHsBoot hsc_src) used_names used_th deps rdr_env fix_env warns hpc_info (imp_mods imports) (imp_trust_own_pkg imports) dep_files safe_mode mod_details mkUsedNames :: TcGblEnv -> NameSet mkUsedNames TcGblEnv{ tcg_dus = dus } = allUses dus -- | Extract information from the rename and typecheck phases to produce -- a dependencies information for the module being compiled. mkDependencies :: TcGblEnv -> IO Dependencies mkDependencies TcGblEnv{ tcg_mod = mod, tcg_imports = imports, tcg_th_used = th_var } = do -- Template Haskell used? th_used <- readIORef th_var let dep_mods = eltsUFM (delFromUFM (imp_dep_mods imports) (moduleName mod)) -- M.hi-boot can be in the imp_dep_mods, but we must remove -- it before recording the modules on which this one depends! -- (We want to retain M.hi-boot in imp_dep_mods so that -- loadHiBootInterface can see if M's direct imports depend -- on M.hi-boot, and hence that we should do the hi-boot consistency -- check.) pkgs | th_used = insertList thPackageId (imp_dep_pkgs imports) | otherwise = imp_dep_pkgs imports -- Set the packages required to be Safe according to Safe Haskell. -- See Note [RnNames . Tracking Trust Transitively] sorted_pkgs = sortBy stablePackageIdCmp pkgs trust_pkgs = imp_trust_pkgs imports dep_pkgs' = map (\x -> (x, x `elem` trust_pkgs)) sorted_pkgs return Deps { dep_mods = sortBy (stableModuleNameCmp `on` fst) dep_mods, dep_pkgs = dep_pkgs', dep_orphs = sortBy stableModuleCmp (imp_orphs imports), dep_finsts = sortBy stableModuleCmp (imp_finsts imports) } -- sort to get into canonical order -- NB. remember to use lexicographic ordering mkIface_ :: HscEnv -> Maybe Fingerprint -> Module -> IsBootInterface -> NameSet -> Bool -> Dependencies -> GlobalRdrEnv -> NameEnv FixItem -> Warnings -> HpcInfo -> ImportedMods -> Bool -> [FilePath] -> SafeHaskellMode -> ModDetails -> IO (Messages, Maybe (ModIface, Bool)) mkIface_ hsc_env maybe_old_fingerprint this_mod is_boot used_names used_th deps rdr_env fix_env src_warns hpc_info dir_imp_mods pkg_trust_req dependent_files safe_mode ModDetails{ md_insts = insts, md_fam_insts = fam_insts, md_rules = rules, md_anns = anns, md_vect_info = vect_info, md_types = type_env, md_exports = exports } -- NB: notice that mkIface does not look at the bindings -- only at the TypeEnv. The previous Tidy phase has -- put exactly the info into the TypeEnv that we want -- to expose in the interface = do usages <- mkUsageInfo hsc_env this_mod dir_imp_mods used_names dependent_files let entities = typeEnvElts type_env decls = [ tyThingToIfaceDecl entity | entity <- entities, let name = getName entity, not (isImplicitTyThing entity), -- No implicit Ids and class tycons in the interface file not (isWiredInName name), -- Nor wired-in things; the compiler knows about them anyhow nameIsLocalOrFrom this_mod name ] -- Sigh: see Note [Root-main Id] in TcRnDriver fixities = [(occ,fix) | FixItem occ fix <- nameEnvElts fix_env] warns = src_warns iface_rules = map (coreRuleToIfaceRule this_mod) rules iface_insts = map instanceToIfaceInst insts iface_fam_insts = map famInstToIfaceFamInst fam_insts iface_vect_info = flattenVectInfo vect_info trust_info = setSafeMode safe_mode annotations = map mkIfaceAnnotation anns intermediate_iface = ModIface { mi_module = this_mod, mi_boot = is_boot, mi_deps = deps, mi_usages = usages, mi_exports = mkIfaceExports exports, -- Sort these lexicographically, so that -- the result is stable across compilations mi_insts = sortBy cmp_inst iface_insts, mi_fam_insts = sortBy cmp_fam_inst iface_fam_insts, mi_rules = sortBy cmp_rule iface_rules, mi_vect_info = iface_vect_info, mi_fixities = fixities, mi_warns = warns, mi_anns = annotations, mi_globals = maybeGlobalRdrEnv rdr_env, -- Left out deliberately: filled in by addFingerprints mi_iface_hash = fingerprint0, mi_mod_hash = fingerprint0, mi_flag_hash = fingerprint0, mi_exp_hash = fingerprint0, mi_used_th = used_th, mi_orphan_hash = fingerprint0, mi_orphan = False, -- Always set by addFingerprints, but -- it's a strict field, so we can't omit it. mi_finsts = False, -- Ditto mi_decls = deliberatelyOmitted "decls", mi_hash_fn = deliberatelyOmitted "hash_fn", mi_hpc = isHpcUsed hpc_info, mi_trust = trust_info, mi_trust_pkg = pkg_trust_req, -- And build the cached values mi_warn_fn = mkIfaceWarnCache warns, mi_fix_fn = mkIfaceFixCache fixities } (new_iface, no_change_at_all) <- {-# SCC "versioninfo" #-} addFingerprints hsc_env maybe_old_fingerprint intermediate_iface decls -- Warn about orphans let warn_orphs = wopt Opt_WarnOrphans dflags warn_auto_orphs = wopt Opt_WarnAutoOrphans dflags orph_warnings --- Laziness means no work done unless -fwarn-orphans | warn_orphs || warn_auto_orphs = rule_warns `unionBags` inst_warns | otherwise = emptyBag errs_and_warns = (orph_warnings, emptyBag) unqual = mkPrintUnqualified dflags rdr_env inst_warns = listToBag [ instOrphWarn dflags unqual d | (d,i) <- insts `zip` iface_insts , isNothing (ifInstOrph i) ] rule_warns = listToBag [ ruleOrphWarn dflags unqual this_mod r | r <- iface_rules , isNothing (ifRuleOrph r) , if ifRuleAuto r then warn_auto_orphs else warn_orphs ] if errorsFound dflags errs_and_warns then return ( errs_and_warns, Nothing ) else do -- Debug printing dumpIfSet_dyn dflags Opt_D_dump_hi "FINAL INTERFACE" (pprModIface new_iface) -- bug #1617: on reload we weren't updating the PrintUnqualified -- correctly. This stems from the fact that the interface had -- not changed, so addFingerprints returns the old ModIface -- with the old GlobalRdrEnv (mi_globals). let final_iface = new_iface{ mi_globals = maybeGlobalRdrEnv rdr_env } return (errs_and_warns, Just (final_iface, no_change_at_all)) where cmp_rule = comparing ifRuleName -- Compare these lexicographically by OccName, *not* by unique, -- because the latter is not stable across compilations: cmp_inst = comparing (nameOccName . ifDFun) cmp_fam_inst = comparing (nameOccName . ifFamInstTcName) dflags = hsc_dflags hsc_env -- We only fill in mi_globals if the module was compiled to byte -- code. Otherwise, the compiler may not have retained all the -- top-level bindings and they won't be in the TypeEnv (see -- Desugar.addExportFlagsAndRules). The mi_globals field is used -- by GHCi to decide whether the module has its full top-level -- scope available. (#5534) maybeGlobalRdrEnv :: GlobalRdrEnv -> Maybe GlobalRdrEnv maybeGlobalRdrEnv rdr_env | targetRetainsAllBindings (hscTarget dflags) = Just rdr_env | otherwise = Nothing deliberatelyOmitted :: String -> a deliberatelyOmitted x = panic ("Deliberately omitted: " ++ x) ifFamInstTcName = ifFamInstFam flattenVectInfo (VectInfo { vectInfoVar = vVar , vectInfoTyCon = vTyCon , vectInfoParallelVars = vParallelVars , vectInfoParallelTyCons = vParallelTyCons }) = IfaceVectInfo { ifaceVectInfoVar = [Var.varName v | (v, _ ) <- varEnvElts vVar] , ifaceVectInfoTyCon = [tyConName t | (t, t_v) <- nameEnvElts vTyCon, t /= t_v] , ifaceVectInfoTyConReuse = [tyConName t | (t, t_v) <- nameEnvElts vTyCon, t == t_v] , ifaceVectInfoParallelVars = [Var.varName v | v <- varSetElems vParallelVars] , ifaceVectInfoParallelTyCons = nameSetToList vParallelTyCons } ----------------------------- writeIfaceFile :: DynFlags -> FilePath -> ModIface -> IO () writeIfaceFile dflags hi_file_path new_iface = do createDirectoryIfMissing True (takeDirectory hi_file_path) writeBinIface dflags hi_file_path new_iface -- ----------------------------------------------------------------------------- -- Look up parents and versions of Names -- This is like a global version of the mi_hash_fn field in each ModIface. -- Given a Name, it finds the ModIface, and then uses mi_hash_fn to get -- the parent and version info. mkHashFun :: HscEnv -- needed to look up versions -> ExternalPackageState -- ditto -> (Name -> Fingerprint) mkHashFun hsc_env eps = \name -> let mod = ASSERT2( isExternalName name, ppr name ) nameModule name occ = nameOccName name iface = lookupIfaceByModule (hsc_dflags hsc_env) hpt pit mod `orElse` pprPanic "lookupVers2" (ppr mod <+> ppr occ) in snd (mi_hash_fn iface occ `orElse` pprPanic "lookupVers1" (ppr mod <+> ppr occ)) where hpt = hsc_HPT hsc_env pit = eps_PIT eps -- --------------------------------------------------------------------------- -- Compute fingerprints for the interface addFingerprints :: HscEnv -> Maybe Fingerprint -- the old fingerprint, if any -> ModIface -- The new interface (lacking decls) -> [IfaceDecl] -- The new decls -> IO (ModIface, -- Updated interface Bool) -- True <=> no changes at all; -- no need to write Iface addFingerprints hsc_env mb_old_fingerprint iface0 new_decls = do eps <- hscEPS hsc_env let -- The ABI of a declaration represents everything that is made -- visible about the declaration that a client can depend on. -- see IfaceDeclABI below. declABI :: IfaceDecl -> IfaceDeclABI declABI decl = (this_mod, decl, extras) where extras = declExtras fix_fn ann_fn non_orph_rules non_orph_insts non_orph_fis decl edges :: [(IfaceDeclABI, Unique, [Unique])] edges = [ (abi, getUnique (ifName decl), out) | decl <- new_decls , let abi = declABI decl , let out = localOccs $ freeNamesDeclABI abi ] name_module n = ASSERT2( isExternalName n, ppr n ) nameModule n localOccs = map (getUnique . getParent . getOccName) . filter ((== this_mod) . name_module) . nameSetToList where getParent occ = lookupOccEnv parent_map occ `orElse` occ -- maps OccNames to their parents in the current module. -- e.g. a reference to a constructor must be turned into a reference -- to the TyCon for the purposes of calculating dependencies. parent_map :: OccEnv OccName parent_map = foldr extend emptyOccEnv new_decls where extend d env = extendOccEnvList env [ (b,n) | b <- ifaceDeclImplicitBndrs d ] where n = ifName d -- strongly-connected groups of declarations, in dependency order groups = stronglyConnCompFromEdgedVertices edges global_hash_fn = mkHashFun hsc_env eps -- how to output Names when generating the data to fingerprint. -- Here we want to output the fingerprint for each top-level -- Name, whether it comes from the current module or another -- module. In this way, the fingerprint for a declaration will -- change if the fingerprint for anything it refers to (transitively) -- changes. mk_put_name :: (OccEnv (OccName,Fingerprint)) -> BinHandle -> Name -> IO () mk_put_name local_env bh name | isWiredInName name = putNameLiterally bh name -- wired-in names don't have fingerprints | otherwise = ASSERT2( isExternalName name, ppr name ) let hash | nameModule name /= this_mod = global_hash_fn name | otherwise = snd (lookupOccEnv local_env (getOccName name) `orElse` pprPanic "urk! lookup local fingerprint" (ppr name)) -- (undefined,fingerprint0)) -- This panic indicates that we got the dependency -- analysis wrong, because we needed a fingerprint for -- an entity that wasn't in the environment. To debug -- it, turn the panic into a trace, uncomment the -- pprTraces below, run the compile again, and inspect -- the output and the generated .hi file with -- --show-iface. in put_ bh hash -- take a strongly-connected group of declarations and compute -- its fingerprint. fingerprint_group :: (OccEnv (OccName,Fingerprint), [(Fingerprint,IfaceDecl)]) -> SCC IfaceDeclABI -> IO (OccEnv (OccName,Fingerprint), [(Fingerprint,IfaceDecl)]) fingerprint_group (local_env, decls_w_hashes) (AcyclicSCC abi) = do let hash_fn = mk_put_name local_env decl = abiDecl abi -- pprTrace "fingerprinting" (ppr (ifName decl) ) $ do hash <- computeFingerprint hash_fn abi env' <- extend_hash_env local_env (hash,decl) return (env', (hash,decl) : decls_w_hashes) fingerprint_group (local_env, decls_w_hashes) (CyclicSCC abis) = do let decls = map abiDecl abis local_env1 <- foldM extend_hash_env local_env (zip (repeat fingerprint0) decls) let hash_fn = mk_put_name local_env1 -- pprTrace "fingerprinting" (ppr (map ifName decls) ) $ do let stable_abis = sortBy cmp_abiNames abis -- put the cycle in a canonical order hash <- computeFingerprint hash_fn stable_abis let pairs = zip (repeat hash) decls local_env2 <- foldM extend_hash_env local_env pairs return (local_env2, pairs ++ decls_w_hashes) -- we have fingerprinted the whole declaration, but we now need -- to assign fingerprints to all the OccNames that it binds, to -- use when referencing those OccNames in later declarations. -- extend_hash_env :: OccEnv (OccName,Fingerprint) -> (Fingerprint,IfaceDecl) -> IO (OccEnv (OccName,Fingerprint)) extend_hash_env env0 (hash,d) = do return (foldr (\(b,fp) env -> extendOccEnv env b (b,fp)) env0 (ifaceDeclFingerprints hash d)) -- (local_env, decls_w_hashes) <- foldM fingerprint_group (emptyOccEnv, []) groups -- when calculating fingerprints, we always need to use canonical -- ordering for lists of things. In particular, the mi_deps has various -- lists of modules and suchlike, so put these all in canonical order: let sorted_deps = sortDependencies (mi_deps iface0) -- the export hash of a module depends on the orphan hashes of the -- orphan modules below us in the dependency tree. This is the way -- that changes in orphans get propagated all the way up the -- dependency tree. We only care about orphan modules in the current -- package, because changes to orphans outside this package will be -- tracked by the usage on the ABI hash of package modules that we import. let orph_mods = filter ((== this_pkg) . modulePackageId) $ dep_orphs sorted_deps dep_orphan_hashes <- getOrphanHashes hsc_env orph_mods orphan_hash <- computeFingerprint (mk_put_name local_env) (map ifDFun orph_insts, orph_rules, orph_fis) -- the export list hash doesn't depend on the fingerprints of -- the Names it mentions, only the Names themselves, hence putNameLiterally. export_hash <- computeFingerprint putNameLiterally (mi_exports iface0, orphan_hash, dep_orphan_hashes, dep_pkgs (mi_deps iface0), -- dep_pkgs: see "Package Version Changes" on -- wiki/Commentary/Compiler/RecompilationAvoidance mi_trust iface0) -- Make sure change of Safe Haskell mode causes recomp. -- put the declarations in a canonical order, sorted by OccName let sorted_decls = Map.elems $ Map.fromList $ [(ifName d, e) | e@(_, d) <- decls_w_hashes] -- the flag hash depends on: -- - (some of) dflags -- it returns two hashes, one that shouldn't change -- the abi hash and one that should flag_hash <- fingerprintDynFlags dflags this_mod putNameLiterally -- the ABI hash depends on: -- - decls -- - export list -- - orphans -- - deprecations -- - vect info -- - flag abi hash mod_hash <- computeFingerprint putNameLiterally (map fst sorted_decls, export_hash, -- includes orphan_hash mi_warns iface0, mi_vect_info iface0) -- The interface hash depends on: -- - the ABI hash, plus -- - the module level annotations, -- - usages -- - deps (home and external packages, dependent files) -- - hpc iface_hash <- computeFingerprint putNameLiterally (mod_hash, ann_fn (mkVarOcc "module"), -- See mkIfaceAnnCache mi_usages iface0, sorted_deps, mi_hpc iface0) let no_change_at_all = Just iface_hash == mb_old_fingerprint final_iface = iface0 { mi_mod_hash = mod_hash, mi_iface_hash = iface_hash, mi_exp_hash = export_hash, mi_orphan_hash = orphan_hash, mi_flag_hash = flag_hash, mi_orphan = not ( null orph_rules && null orph_insts && null orph_fis && isNoIfaceVectInfo (mi_vect_info iface0)), mi_finsts = not . null $ mi_fam_insts iface0, mi_decls = sorted_decls, mi_hash_fn = lookupOccEnv local_env } -- return (final_iface, no_change_at_all) where this_mod = mi_module iface0 dflags = hsc_dflags hsc_env this_pkg = thisPackage dflags (non_orph_insts, orph_insts) = mkOrphMap ifInstOrph (mi_insts iface0) (non_orph_rules, orph_rules) = mkOrphMap ifRuleOrph (mi_rules iface0) (non_orph_fis, orph_fis) = mkOrphMap ifFamInstOrph (mi_fam_insts iface0) fix_fn = mi_fix_fn iface0 ann_fn = mkIfaceAnnCache (mi_anns iface0) getOrphanHashes :: HscEnv -> [Module] -> IO [Fingerprint] getOrphanHashes hsc_env mods = do eps <- hscEPS hsc_env let hpt = hsc_HPT hsc_env pit = eps_PIT eps dflags = hsc_dflags hsc_env get_orph_hash mod = case lookupIfaceByModule dflags hpt pit mod of Nothing -> pprPanic "moduleOrphanHash" (ppr mod) Just iface -> mi_orphan_hash iface -- return (map get_orph_hash mods) sortDependencies :: Dependencies -> Dependencies sortDependencies d = Deps { dep_mods = sortBy (compare `on` (moduleNameFS.fst)) (dep_mods d), dep_pkgs = sortBy (stablePackageIdCmp `on` fst) (dep_pkgs d), dep_orphs = sortBy stableModuleCmp (dep_orphs d), dep_finsts = sortBy stableModuleCmp (dep_finsts d) } \end{code} \begin{code} -- | Creates cached lookup for the 'mi_anns' field of ModIface -- Hackily, we use "module" as the OccName for any module-level annotations mkIfaceAnnCache :: [IfaceAnnotation] -> OccName -> [AnnPayload] mkIfaceAnnCache anns = \n -> lookupOccEnv env n `orElse` [] where pair (IfaceAnnotation target value) = (case target of NamedTarget occn -> occn ModuleTarget _ -> mkVarOcc "module" , [value]) -- flipping (++), so the first argument is always short env = mkOccEnv_C (flip (++)) (map pair anns) \end{code} %************************************************************************ %* * The ABI of an IfaceDecl %* * %************************************************************************ Note [The ABI of an IfaceDecl] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The ABI of a declaration consists of: (a) the full name of the identifier (inc. module and package, because these are used to construct the symbol name by which the identifier is known externally). (b) the declaration itself, as exposed to clients. That is, the definition of an Id is included in the fingerprint only if it is made available as an unfolding in the interface. (c) the fixity of the identifier (d) for Ids: rules (e) for classes: instances, fixity & rules for methods (f) for datatypes: instances, fixity & rules for constrs Items (c)-(f) are not stored in the IfaceDecl, but instead appear elsewhere in the interface file. But they are *fingerprinted* with the declaration itself. This is done by grouping (c)-(f) in IfaceDeclExtras, and fingerprinting that as part of the declaration. \begin{code} type IfaceDeclABI = (Module, IfaceDecl, IfaceDeclExtras) data IfaceDeclExtras = IfaceIdExtras IfaceIdExtras | IfaceDataExtras Fixity -- Fixity of the tycon itself [IfaceInstABI] -- Local class and family instances of this tycon -- See Note [Orphans] in IfaceSyn [AnnPayload] -- Annotations of the type itself [IfaceIdExtras] -- For each constructor: fixity, RULES and annotations | IfaceClassExtras Fixity -- Fixity of the class itself [IfaceInstABI] -- Local instances of this class *or* -- of its associated data types -- See Note [Orphans] in IfaceSyn [AnnPayload] -- Annotations of the type itself [IfaceIdExtras] -- For each class method: fixity, RULES and annotations | IfaceSynExtras Fixity [IfaceInstABI] [AnnPayload] | IfaceOtherDeclExtras data IfaceIdExtras = IdExtras Fixity -- Fixity of the Id [IfaceRule] -- Rules for the Id [AnnPayload] -- Annotations for the Id -- When hashing a class or family instance, we hash only the -- DFunId or CoAxiom, because that depends on all the -- information about the instance. -- type IfaceInstABI = IfExtName -- Name of DFunId or CoAxiom that is evidence for the instance abiDecl :: IfaceDeclABI -> IfaceDecl abiDecl (_, decl, _) = decl cmp_abiNames :: IfaceDeclABI -> IfaceDeclABI -> Ordering cmp_abiNames abi1 abi2 = ifName (abiDecl abi1) `compare` ifName (abiDecl abi2) freeNamesDeclABI :: IfaceDeclABI -> NameSet freeNamesDeclABI (_mod, decl, extras) = freeNamesIfDecl decl `unionNameSets` freeNamesDeclExtras extras freeNamesDeclExtras :: IfaceDeclExtras -> NameSet freeNamesDeclExtras (IfaceIdExtras id_extras) = freeNamesIdExtras id_extras freeNamesDeclExtras (IfaceDataExtras _ insts _ subs) = unionManyNameSets (mkNameSet insts : map freeNamesIdExtras subs) freeNamesDeclExtras (IfaceClassExtras _ insts _ subs) = unionManyNameSets (mkNameSet insts : map freeNamesIdExtras subs) freeNamesDeclExtras (IfaceSynExtras _ insts _) = mkNameSet insts freeNamesDeclExtras IfaceOtherDeclExtras = emptyNameSet freeNamesIdExtras :: IfaceIdExtras -> NameSet freeNamesIdExtras (IdExtras _ rules _) = unionManyNameSets (map freeNamesIfRule rules) instance Outputable IfaceDeclExtras where ppr IfaceOtherDeclExtras = empty ppr (IfaceIdExtras extras) = ppr_id_extras extras ppr (IfaceSynExtras fix finsts anns) = vcat [ppr fix, ppr finsts, ppr anns] ppr (IfaceDataExtras fix insts anns stuff) = vcat [ppr fix, ppr_insts insts, ppr anns, ppr_id_extras_s stuff] ppr (IfaceClassExtras fix insts anns stuff) = vcat [ppr fix, ppr_insts insts, ppr anns, ppr_id_extras_s stuff] ppr_insts :: [IfaceInstABI] -> SDoc ppr_insts _ = ptext (sLit "") ppr_id_extras_s :: [IfaceIdExtras] -> SDoc ppr_id_extras_s stuff = vcat (map ppr_id_extras stuff) ppr_id_extras :: IfaceIdExtras -> SDoc ppr_id_extras (IdExtras fix rules anns) = ppr fix $$ vcat (map ppr rules) $$ vcat (map ppr anns) -- This instance is used only to compute fingerprints instance Binary IfaceDeclExtras where get _bh = panic "no get for IfaceDeclExtras" put_ bh (IfaceIdExtras extras) = do putByte bh 1; put_ bh extras put_ bh (IfaceDataExtras fix insts anns cons) = do putByte bh 2; put_ bh fix; put_ bh insts; put_ bh anns; put_ bh cons put_ bh (IfaceClassExtras fix insts anns methods) = do putByte bh 3; put_ bh fix; put_ bh insts; put_ bh anns; put_ bh methods put_ bh (IfaceSynExtras fix finsts anns) = do putByte bh 4; put_ bh fix; put_ bh finsts; put_ bh anns put_ bh IfaceOtherDeclExtras = putByte bh 5 instance Binary IfaceIdExtras where get _bh = panic "no get for IfaceIdExtras" put_ bh (IdExtras fix rules anns)= do { put_ bh fix; put_ bh rules; put_ bh anns } declExtras :: (OccName -> Fixity) -> (OccName -> [AnnPayload]) -> OccEnv [IfaceRule] -> OccEnv [IfaceClsInst] -> OccEnv [IfaceFamInst] -> IfaceDecl -> IfaceDeclExtras declExtras fix_fn ann_fn rule_env inst_env fi_env decl = case decl of IfaceId{} -> IfaceIdExtras (id_extras n) IfaceData{ifCons=cons} -> IfaceDataExtras (fix_fn n) (map ifFamInstAxiom (lookupOccEnvL fi_env n) ++ map ifDFun (lookupOccEnvL inst_env n)) (ann_fn n) (map (id_extras . ifConOcc) (visibleIfConDecls cons)) IfaceClass{ifSigs=sigs, ifATs=ats} -> IfaceClassExtras (fix_fn n) (map ifDFun $ (concatMap at_extras ats) ++ lookupOccEnvL inst_env n) -- Include instances of the associated types -- as well as instances of the class (Trac #5147) (ann_fn n) [id_extras op | IfaceClassOp op _ _ <- sigs] IfaceSyn{} -> IfaceSynExtras (fix_fn n) (map ifFamInstAxiom (lookupOccEnvL fi_env n)) (ann_fn n) _other -> IfaceOtherDeclExtras where n = ifName decl id_extras occ = IdExtras (fix_fn occ) (lookupOccEnvL rule_env occ) (ann_fn occ) at_extras (IfaceAT decl _) = lookupOccEnvL inst_env (ifName decl) lookupOccEnvL :: OccEnv [v] -> OccName -> [v] lookupOccEnvL env k = lookupOccEnv env k `orElse` [] -- used when we want to fingerprint a structure without depending on the -- fingerprints of external Names that it refers to. putNameLiterally :: BinHandle -> Name -> IO () putNameLiterally bh name = ASSERT( isExternalName name ) do put_ bh $! nameModule name put_ bh $! nameOccName name {- -- for testing: use the md5sum command to generate fingerprints and -- compare the results against our built-in version. fp' <- oldMD5 dflags bh if fp /= fp' then pprPanic "computeFingerprint" (ppr fp <+> ppr fp') else return fp oldMD5 dflags bh = do tmp <- newTempName dflags "bin" writeBinMem bh tmp tmp2 <- newTempName dflags "md5" let cmd = "md5sum " ++ tmp ++ " >" ++ tmp2 r <- system cmd case r of ExitFailure _ -> throwGhcExceptionIO (PhaseFailed cmd r) ExitSuccess -> do hash_str <- readFile tmp2 return $! readHexFingerprint hash_str -} instOrphWarn :: DynFlags -> PrintUnqualified -> ClsInst -> WarnMsg instOrphWarn dflags unqual inst = mkWarnMsg dflags (getSrcSpan inst) unqual $ hang (ptext (sLit "Orphan instance:")) 2 (pprInstanceHdr inst) ruleOrphWarn :: DynFlags -> PrintUnqualified -> Module -> IfaceRule -> WarnMsg ruleOrphWarn dflags unqual mod rule = mkWarnMsg dflags silly_loc unqual $ ptext (sLit "Orphan rule:") <+> ppr rule where silly_loc = srcLocSpan (mkSrcLoc (moduleNameFS (moduleName mod)) 1 1) -- We don't have a decent SrcSpan for a Rule, not even the CoreRule -- Could readily be fixed by adding a SrcSpan to CoreRule, if we wanted to ---------------------- -- mkOrphMap partitions instance decls or rules into -- (a) an OccEnv for ones that are not orphans, -- mapping the local OccName to a list of its decls -- (b) a list of orphan decls mkOrphMap :: (decl -> Maybe OccName) -- (Just occ) for a non-orphan decl, keyed by occ -- Nothing for an orphan decl -> [decl] -- Sorted into canonical order -> (OccEnv [decl], -- Non-orphan decls associated with their key; -- each sublist in canonical order [decl]) -- Orphan decls; in canonical order mkOrphMap get_key decls = foldl go (emptyOccEnv, []) decls where go (non_orphs, orphs) d | Just occ <- get_key d = (extendOccEnv_Acc (:) singleton non_orphs occ d, orphs) | otherwise = (non_orphs, d:orphs) \end{code} %************************************************************************ %* * Keeping track of what we've slurped, and fingerprints %* * %************************************************************************ \begin{code} mkUsageInfo :: HscEnv -> Module -> ImportedMods -> NameSet -> [FilePath] -> IO [Usage] mkUsageInfo hsc_env this_mod dir_imp_mods used_names dependent_files = do eps <- hscEPS hsc_env hashes <- mapM getFileHash dependent_files let mod_usages = mk_mod_usage_info (eps_PIT eps) hsc_env this_mod dir_imp_mods used_names let usages = mod_usages ++ [ UsageFile { usg_file_path = f , usg_file_hash = hash } | (f, hash) <- zip dependent_files hashes ] usages `seqList` return usages -- seq the list of Usages returned: occasionally these -- don't get evaluated for a while and we can end up hanging on to -- the entire collection of Ifaces. mk_mod_usage_info :: PackageIfaceTable -> HscEnv -> Module -> ImportedMods -> NameSet -> [Usage] mk_mod_usage_info pit hsc_env this_mod direct_imports used_names = mapCatMaybes mkUsage usage_mods where hpt = hsc_HPT hsc_env dflags = hsc_dflags hsc_env this_pkg = thisPackage dflags used_mods = moduleEnvKeys ent_map dir_imp_mods = moduleEnvKeys direct_imports all_mods = used_mods ++ filter (`notElem` used_mods) dir_imp_mods usage_mods = sortBy stableModuleCmp all_mods -- canonical order is imported, to avoid interface-file -- wobblage. -- ent_map groups together all the things imported and used -- from a particular module ent_map :: ModuleEnv [OccName] ent_map = foldNameSet add_mv emptyModuleEnv used_names where add_mv name mv_map | isWiredInName name = mv_map -- ignore wired-in names | otherwise = case nameModule_maybe name of Nothing -> ASSERT2( isSystemName name, ppr name ) mv_map -- See Note [Internal used_names] Just mod -> -- This lambda function is really just a -- specialised (++); originally came about to -- avoid quadratic behaviour (trac #2680) extendModuleEnvWith (\_ xs -> occ:xs) mv_map mod [occ] where occ = nameOccName name -- We want to create a Usage for a home module if -- a) we used something from it; has something in used_names -- b) we imported it, even if we used nothing from it -- (need to recompile if its export list changes: export_fprint) mkUsage :: Module -> Maybe Usage mkUsage mod | isNothing maybe_iface -- We can't depend on it if we didn't -- load its interface. || mod == this_mod -- We don't care about usages of -- things in *this* module = Nothing | modulePackageId mod /= this_pkg = Just UsagePackageModule{ usg_mod = mod, usg_mod_hash = mod_hash, usg_safe = imp_safe } -- for package modules, we record the module hash only | (null used_occs && isNothing export_hash && not is_direct_import && not finsts_mod) = Nothing -- Record no usage info -- for directly-imported modules, we always want to record a usage -- on the orphan hash. This is what triggers a recompilation if -- an orphan is added or removed somewhere below us in the future. | otherwise = Just UsageHomeModule { usg_mod_name = moduleName mod, usg_mod_hash = mod_hash, usg_exports = export_hash, usg_entities = Map.toList ent_hashs, usg_safe = imp_safe } where maybe_iface = lookupIfaceByModule dflags hpt pit mod -- In one-shot mode, the interfaces for home-package -- modules accumulate in the PIT not HPT. Sigh. Just iface = maybe_iface finsts_mod = mi_finsts iface hash_env = mi_hash_fn iface mod_hash = mi_mod_hash iface export_hash | depend_on_exports = Just (mi_exp_hash iface) | otherwise = Nothing (is_direct_import, imp_safe) = case lookupModuleEnv direct_imports mod of Just ((_,_,_,safe):_xs) -> (True, safe) Just _ -> pprPanic "mkUsage: empty direct import" empty Nothing -> (False, safeImplicitImpsReq dflags) -- Nothing case is for implicit imports like 'System.IO' when 'putStrLn' -- is used in the source code. We require them to be safe in Safe Haskell used_occs = lookupModuleEnv ent_map mod `orElse` [] -- Making a Map here ensures that (a) we remove duplicates -- when we have usages on several subordinates of a single parent, -- and (b) that the usages emerge in a canonical order, which -- is why we use Map rather than OccEnv: Map works -- using Ord on the OccNames, which is a lexicographic ordering. ent_hashs :: Map OccName Fingerprint ent_hashs = Map.fromList (map lookup_occ used_occs) lookup_occ occ = case hash_env occ of Nothing -> pprPanic "mkUsage" (ppr mod <+> ppr occ <+> ppr used_names) Just r -> r depend_on_exports = is_direct_import {- True Even if we used 'import M ()', we have to register a usage on the export list because we are sensitive to changes in orphan instances/rules. False In GHC 6.8.x we always returned true, and in fact it recorded a dependency on *all* the modules underneath in the dependency tree. This happens to make orphans work right, but is too expensive: it'll read too many interface files. The 'isNothing maybe_iface' check above saved us from generating many of these usages (at least in one-shot mode), but that's even more bogus! -} \end{code} \begin{code} mkIfaceAnnotation :: Annotation -> IfaceAnnotation mkIfaceAnnotation (Annotation { ann_target = target, ann_value = payload }) = IfaceAnnotation { ifAnnotatedTarget = fmap nameOccName target, ifAnnotatedValue = payload } \end{code} \begin{code} mkIfaceExports :: [AvailInfo] -> [IfaceExport] -- Sort to make canonical mkIfaceExports exports = sortBy stableAvailCmp (map sort_subs exports) where sort_subs :: AvailInfo -> AvailInfo sort_subs (Avail n) = Avail n sort_subs (AvailTC n []) = AvailTC n [] sort_subs (AvailTC n (m:ms)) | n==m = AvailTC n (m:sortBy stableNameCmp ms) | otherwise = AvailTC n (sortBy stableNameCmp (m:ms)) -- Maintain the AvailTC Invariant \end{code} Note [Orignal module] ~~~~~~~~~~~~~~~~~~~~~ Consider this: module X where { data family T } module Y( T(..) ) where { import X; data instance T Int = MkT Int } The exported Avail from Y will look like X.T{X.T, Y.MkT} That is, in Y, - only MkT is brought into scope by the data instance; - but the parent (used for grouping and naming in T(..) exports) is X.T - and in this case we export X.T too In the result of MkIfaceExports, the names are grouped by defining module, so we may need to split up a single Avail into multiple ones. Note [Internal used_names] ~~~~~~~~~~~~~~~~~~~~~~~~~~ Most of the used_names are External Names, but we can have Internal Names too: see Note [Binders in Template Haskell] in Convert, and Trac #5362 for an example. Such Names are always - Such Names are always for locally-defined things, for which we don't gather usage info, so we can just ignore them in ent_map - They are always System Names, hence the assert, just as a double check. %************************************************************************ %* * Load the old interface file for this module (unless we have it already), and check whether it is up to date %* * %************************************************************************ \begin{code} data RecompileRequired = UpToDate -- ^ everything is up to date, recompilation is not required | MustCompile -- ^ The .hs file has been touched, or the .o/.hi file does not exist | RecompBecause String -- ^ The .o/.hi files are up to date, but something else has changed -- to force recompilation; the String says what (one-line summary) deriving Eq recompileRequired :: RecompileRequired -> Bool recompileRequired UpToDate = False recompileRequired _ = True -- | Top level function to check if the version of an old interface file -- is equivalent to the current source file the user asked us to compile. -- If the same, we can avoid recompilation. We return a tuple where the -- first element is a bool saying if we should recompile the object file -- and the second is maybe the interface file, where Nothng means to -- rebuild the interface file not use the exisitng one. checkOldIface :: HscEnv -> ModSummary -> SourceModified -> Maybe ModIface -- Old interface from compilation manager, if any -> IO (RecompileRequired, Maybe ModIface) checkOldIface hsc_env mod_summary source_modified maybe_iface = do let dflags = hsc_dflags hsc_env showPass dflags $ "Checking old interface for " ++ (showPpr dflags $ ms_mod mod_summary) initIfaceCheck hsc_env $ check_old_iface hsc_env mod_summary source_modified maybe_iface check_old_iface :: HscEnv -> ModSummary -> SourceModified -> Maybe ModIface -> IfG (RecompileRequired, Maybe ModIface) check_old_iface hsc_env mod_summary src_modified maybe_iface = let dflags = hsc_dflags hsc_env getIface = case maybe_iface of Just _ -> do traceIf (text "We already have the old interface for" <+> ppr (ms_mod mod_summary)) return maybe_iface Nothing -> loadIface loadIface = do let iface_path = msHiFilePath mod_summary read_result <- readIface (ms_mod mod_summary) iface_path case read_result of Failed err -> do traceIf (text "FYI: cannot read old interface file:" $$ nest 4 err) return Nothing Succeeded iface -> do traceIf (text "Read the interface file" <+> text iface_path) return $ Just iface src_changed | gopt Opt_ForceRecomp (hsc_dflags hsc_env) = True | SourceModified <- src_modified = True | otherwise = False in do when src_changed $ traceHiDiffs (nest 4 $ text "Source file changed or recompilation check turned off") case src_changed of -- If the source has changed and we're in interactive mode, -- avoid reading an interface; just return the one we might -- have been supplied with. True | not (isObjectTarget $ hscTarget dflags) -> return (MustCompile, maybe_iface) -- Try and read the old interface for the current module -- from the .hi file left from the last time we compiled it True -> do maybe_iface' <- getIface return (MustCompile, maybe_iface') False -> do maybe_iface' <- getIface case maybe_iface' of -- We can't retrieve the iface Nothing -> return (MustCompile, Nothing) -- We have got the old iface; check its versions -- even in the SourceUnmodifiedAndStable case we -- should check versions because some packages -- might have changed or gone away. Just iface -> checkVersions hsc_env mod_summary iface -- | Check if a module is still the same 'version'. -- -- This function is called in the recompilation checker after we have -- determined that the module M being checked hasn't had any changes -- to its source file since we last compiled M. So at this point in general -- two things may have changed that mean we should recompile M: -- * The interface export by a dependency of M has changed. -- * The compiler flags specified this time for M have changed -- in a manner that is significant for recompilaiton. -- We return not just if we should recompile the object file but also -- if we should rebuild the interface file. checkVersions :: HscEnv -> ModSummary -> ModIface -- Old interface -> IfG (RecompileRequired, Maybe ModIface) checkVersions hsc_env mod_summary iface = do { traceHiDiffs (text "Considering whether compilation is required for" <+> ppr (mi_module iface) <> colon) ; recomp <- checkFlagHash hsc_env iface ; if recompileRequired recomp then return (recomp, Nothing) else do { ; recomp <- checkDependencies hsc_env mod_summary iface ; if recompileRequired recomp then return (recomp, Just iface) else do { -- Source code unchanged and no errors yet... carry on -- -- First put the dependent-module info, read from the old -- interface, into the envt, so that when we look for -- interfaces we look for the right one (.hi or .hi-boot) -- -- It's just temporary because either the usage check will succeed -- (in which case we are done with this module) or it'll fail (in which -- case we'll compile the module from scratch anyhow). -- -- We do this regardless of compilation mode, although in --make mode -- all the dependent modules should be in the HPT already, so it's -- quite redundant ; updateEps_ $ \eps -> eps { eps_is_boot = mod_deps } ; recomp <- checkList [checkModUsage this_pkg u | u <- mi_usages iface] ; return (recomp, Just iface) }}} where this_pkg = thisPackage (hsc_dflags hsc_env) -- This is a bit of a hack really mod_deps :: ModuleNameEnv (ModuleName, IsBootInterface) mod_deps = mkModDeps (dep_mods (mi_deps iface)) -- | Check the flags haven't changed checkFlagHash :: HscEnv -> ModIface -> IfG RecompileRequired checkFlagHash hsc_env iface = do let old_hash = mi_flag_hash iface new_hash <- liftIO $ fingerprintDynFlags (hsc_dflags hsc_env) (mi_module iface) putNameLiterally case old_hash == new_hash of True -> up_to_date (ptext $ sLit "Module flags unchanged") False -> out_of_date_hash "flags changed" (ptext $ sLit " Module flags have changed") old_hash new_hash -- If the direct imports of this module are resolved to targets that -- are not among the dependencies of the previous interface file, -- then we definitely need to recompile. This catches cases like -- - an exposed package has been upgraded -- - we are compiling with different package flags -- - a home module that was shadowing a package module has been removed -- - a new home module has been added that shadows a package module -- See bug #1372. -- -- Returns True if recompilation is required. checkDependencies :: HscEnv -> ModSummary -> ModIface -> IfG RecompileRequired checkDependencies hsc_env summary iface = checkList (map dep_missing (ms_imps summary ++ ms_srcimps summary)) where prev_dep_mods = dep_mods (mi_deps iface) prev_dep_pkgs = dep_pkgs (mi_deps iface) this_pkg = thisPackage (hsc_dflags hsc_env) dep_missing (L _ (ImportDecl { ideclName = L _ mod, ideclPkgQual = pkg })) = do find_res <- liftIO $ findImportedModule hsc_env mod pkg let reason = moduleNameString mod ++ " changed" case find_res of Found _ mod | pkg == this_pkg -> if moduleName mod `notElem` map fst prev_dep_mods then do traceHiDiffs $ text "imported module " <> quotes (ppr mod) <> text " not among previous dependencies" return (RecompBecause reason) else return UpToDate | otherwise -> if pkg `notElem` (map fst prev_dep_pkgs) then do traceHiDiffs $ text "imported module " <> quotes (ppr mod) <> text " is from package " <> quotes (ppr pkg) <> text ", which is not among previous dependencies" return (RecompBecause reason) else return UpToDate where pkg = modulePackageId mod _otherwise -> return (RecompBecause reason) needInterface :: Module -> (ModIface -> IfG RecompileRequired) -> IfG RecompileRequired needInterface mod continue = do -- Load the imported interface if possible let doc_str = sep [ptext (sLit "need version info for"), ppr mod] traceHiDiffs (text "Checking usages for module" <+> ppr mod) mb_iface <- loadInterface doc_str mod ImportBySystem -- Load the interface, but don't complain on failure; -- Instead, get an Either back which we can test case mb_iface of Failed _ -> do traceHiDiffs (sep [ptext (sLit "Couldn't load interface for module"), ppr mod]) return MustCompile -- Couldn't find or parse a module mentioned in the -- old interface file. Don't complain: it might -- just be that the current module doesn't need that -- import and it's been deleted Succeeded iface -> continue iface -- | Given the usage information extracted from the old -- M.hi file for the module being compiled, figure out -- whether M needs to be recompiled. checkModUsage :: PackageId -> Usage -> IfG RecompileRequired checkModUsage _this_pkg UsagePackageModule{ usg_mod = mod, usg_mod_hash = old_mod_hash } = needInterface mod $ \iface -> do let reason = moduleNameString (moduleName mod) ++ " changed" checkModuleFingerprint reason old_mod_hash (mi_mod_hash iface) -- We only track the ABI hash of package modules, rather than -- individual entity usages, so if the ABI hash changes we must -- recompile. This is safe but may entail more recompilation when -- a dependent package has changed. checkModUsage this_pkg UsageHomeModule{ usg_mod_name = mod_name, usg_mod_hash = old_mod_hash, usg_exports = maybe_old_export_hash, usg_entities = old_decl_hash } = do let mod = mkModule this_pkg mod_name needInterface mod $ \iface -> do let new_mod_hash = mi_mod_hash iface new_decl_hash = mi_hash_fn iface new_export_hash = mi_exp_hash iface reason = moduleNameString mod_name ++ " changed" -- CHECK MODULE recompile <- checkModuleFingerprint reason old_mod_hash new_mod_hash if not (recompileRequired recompile) then return UpToDate else do -- CHECK EXPORT LIST checkMaybeHash reason maybe_old_export_hash new_export_hash (ptext (sLit " Export list changed")) $ do -- CHECK ITEMS ONE BY ONE recompile <- checkList [ checkEntityUsage reason new_decl_hash u | u <- old_decl_hash] if recompileRequired recompile then return recompile -- This one failed, so just bail out now else up_to_date (ptext (sLit " Great! The bits I use are up to date")) checkModUsage _this_pkg UsageFile{ usg_file_path = file, usg_file_hash = old_hash } = liftIO $ handleIO handle $ do new_hash <- getFileHash file if (old_hash /= new_hash) then return recomp else return UpToDate where recomp = RecompBecause (file ++ " changed") handle = #ifdef DEBUG \e -> pprTrace "UsageFile" (text (show e)) $ return recomp #else \_ -> return recomp -- if we can't find the file, just recompile, don't fail #endif ------------------------ checkModuleFingerprint :: String -> Fingerprint -> Fingerprint -> IfG RecompileRequired checkModuleFingerprint reason old_mod_hash new_mod_hash | new_mod_hash == old_mod_hash = up_to_date (ptext (sLit "Module fingerprint unchanged")) | otherwise = out_of_date_hash reason (ptext (sLit " Module fingerprint has changed")) old_mod_hash new_mod_hash ------------------------ checkMaybeHash :: String -> Maybe Fingerprint -> Fingerprint -> SDoc -> IfG RecompileRequired -> IfG RecompileRequired checkMaybeHash reason maybe_old_hash new_hash doc continue | Just hash <- maybe_old_hash, hash /= new_hash = out_of_date_hash reason doc hash new_hash | otherwise = continue ------------------------ checkEntityUsage :: String -> (OccName -> Maybe (OccName, Fingerprint)) -> (OccName, Fingerprint) -> IfG RecompileRequired checkEntityUsage reason new_hash (name,old_hash) = case new_hash name of Nothing -> -- We used it before, but it ain't there now out_of_date reason (sep [ptext (sLit "No longer exported:"), ppr name]) Just (_, new_hash) -- It's there, but is it up to date? | new_hash == old_hash -> do traceHiDiffs (text " Up to date" <+> ppr name <+> parens (ppr new_hash)) return UpToDate | otherwise -> out_of_date_hash reason (ptext (sLit " Out of date:") <+> ppr name) old_hash new_hash up_to_date :: SDoc -> IfG RecompileRequired up_to_date msg = traceHiDiffs msg >> return UpToDate out_of_date :: String -> SDoc -> IfG RecompileRequired out_of_date reason msg = traceHiDiffs msg >> return (RecompBecause reason) out_of_date_hash :: String -> SDoc -> Fingerprint -> Fingerprint -> IfG RecompileRequired out_of_date_hash reason msg old_hash new_hash = out_of_date reason (hsep [msg, ppr old_hash, ptext (sLit "->"), ppr new_hash]) ---------------------- checkList :: [IfG RecompileRequired] -> IfG RecompileRequired -- This helper is used in two places checkList [] = return UpToDate checkList (check:checks) = do recompile <- check if recompileRequired recompile then return recompile else checkList checks \end{code} %************************************************************************ %* * Converting things to their Iface equivalents %* * %************************************************************************ \begin{code} tyThingToIfaceDecl :: TyThing -> IfaceDecl tyThingToIfaceDecl (AnId id) = idToIfaceDecl id tyThingToIfaceDecl (ATyCon tycon) = tyConToIfaceDecl emptyTidyEnv tycon tyThingToIfaceDecl (ACoAxiom ax) = coAxiomToIfaceDecl ax tyThingToIfaceDecl (AConLike cl) = case cl of RealDataCon dc -> pprPanic "toIfaceDecl" (ppr dc) -- Should be trimmed out earlier PatSynCon ps -> patSynToIfaceDecl ps -------------------------- idToIfaceDecl :: Id -> IfaceDecl -- The Id is already tidied, so that locally-bound names -- (lambdas, for-alls) already have non-clashing OccNames -- We can't tidy it here, locally, because it may have -- free variables in its type or IdInfo idToIfaceDecl id = IfaceId { ifName = getOccName id, ifType = toIfaceType (idType id), ifIdDetails = toIfaceIdDetails (idDetails id), ifIdInfo = toIfaceIdInfo (idInfo id) } -------------------------- patSynToIfaceDecl :: PatSyn -> IfaceDecl patSynToIfaceDecl ps = IfacePatSyn { ifName = getOccName . getName $ ps , ifPatHasWrapper = isJust $ patSynWrapper ps , ifPatIsInfix = patSynIsInfix ps , ifPatUnivTvs = toIfaceTvBndrs univ_tvs' , ifPatExTvs = toIfaceTvBndrs ex_tvs' , ifPatProvCtxt = tidyToIfaceContext env2 prov_theta , ifPatReqCtxt = tidyToIfaceContext env2 req_theta , ifPatArgs = map toIfaceArg args , ifPatTy = tidyToIfaceType env2 rhs_ty } where toIfaceArg var = (occNameFS (getOccName var), tidyToIfaceType env2 (varType var)) (univ_tvs, ex_tvs, (prov_theta, req_theta)) = patSynSig ps args = patSynArgs ps rhs_ty = patSynType ps (env1, univ_tvs') = tidyTyVarBndrs emptyTidyEnv univ_tvs (env2, ex_tvs') = tidyTyVarBndrs env1 ex_tvs -------------------------- coAxiomToIfaceDecl :: CoAxiom br -> IfaceDecl -- We *do* tidy Axioms, because they are not (and cannot -- conveniently be) built in tidy form coAxiomToIfaceDecl ax@(CoAxiom { co_ax_tc = tycon, co_ax_branches = branches , co_ax_role = role }) = IfaceAxiom { ifName = name , ifTyCon = toIfaceTyCon tycon , ifRole = role , ifAxBranches = brListMap (coAxBranchToIfaceBranch emptyTidyEnv (brListMap coAxBranchLHS branches)) branches } where name = getOccName ax -- 2nd parameter is the list of branch LHSs, for conversion from incompatible branches -- to incompatible indices -- See [Storing compatibility] in CoAxiom coAxBranchToIfaceBranch :: TidyEnv -> [[Type]] -> CoAxBranch -> IfaceAxBranch coAxBranchToIfaceBranch env0 lhs_s branch@(CoAxBranch { cab_incomps = incomps }) = (coAxBranchToIfaceBranch' env0 branch) { ifaxbIncomps = iface_incomps } where iface_incomps = map (expectJust "iface_incomps" . (flip findIndex lhs_s . eqTypes) . coAxBranchLHS) incomps -- use this one for standalone branches without incompatibles coAxBranchToIfaceBranch' :: TidyEnv -> CoAxBranch -> IfaceAxBranch coAxBranchToIfaceBranch' env0 (CoAxBranch { cab_tvs = tvs, cab_lhs = lhs , cab_roles = roles, cab_rhs = rhs }) = IfaceAxBranch { ifaxbTyVars = toIfaceTvBndrs tv_bndrs , ifaxbLHS = map (tidyToIfaceType env1) lhs , ifaxbRoles = roles , ifaxbRHS = tidyToIfaceType env1 rhs , ifaxbIncomps = [] } where (env1, tv_bndrs) = tidyTyClTyVarBndrs env0 tvs -- Don't re-bind in-scope tyvars -- See Note [CoAxBranch type variables] in CoAxiom ----------------- tyConToIfaceDecl :: TidyEnv -> TyCon -> IfaceDecl -- We *do* tidy TyCons, because they are not (and cannot -- conveniently be) built in tidy form tyConToIfaceDecl env tycon | Just clas <- tyConClass_maybe tycon = classToIfaceDecl env clas | Just syn_rhs <- synTyConRhs_maybe tycon = IfaceSyn { ifName = getOccName tycon, ifTyVars = toIfaceTvBndrs tyvars, ifRoles = tyConRoles tycon, ifSynRhs = to_ifsyn_rhs syn_rhs, ifSynKind = tidyToIfaceType env1 (synTyConResKind tycon) } | isAlgTyCon tycon = IfaceData { ifName = getOccName tycon, ifCType = tyConCType tycon, ifTyVars = toIfaceTvBndrs tyvars, ifRoles = tyConRoles tycon, ifCtxt = tidyToIfaceContext env1 (tyConStupidTheta tycon), ifCons = ifaceConDecls (algTyConRhs tycon), ifRec = boolToRecFlag (isRecursiveTyCon tycon), ifGadtSyntax = isGadtSyntaxTyCon tycon, ifPromotable = isJust (promotableTyCon_maybe tycon), ifAxiom = fmap coAxiomName (tyConFamilyCoercion_maybe tycon) } | isForeignTyCon tycon = IfaceForeign { ifName = getOccName tycon, ifExtName = tyConExtName tycon } | otherwise = pprPanic "toIfaceDecl" (ppr tycon) where (env1, tyvars) = tidyTyClTyVarBndrs env (tyConTyVars tycon) to_ifsyn_rhs OpenSynFamilyTyCon = IfaceOpenSynFamilyTyCon to_ifsyn_rhs (ClosedSynFamilyTyCon ax) = IfaceClosedSynFamilyTyCon (coAxiomName ax) to_ifsyn_rhs AbstractClosedSynFamilyTyCon = IfaceAbstractClosedSynFamilyTyCon to_ifsyn_rhs (SynonymTyCon ty) = IfaceSynonymTyCon (tidyToIfaceType env1 ty) to_ifsyn_rhs (BuiltInSynFamTyCon {}) = pprPanic "toIfaceDecl: BuiltInFamTyCon" (ppr tycon) ifaceConDecls (NewTyCon { data_con = con }) = IfNewTyCon (ifaceConDecl con) ifaceConDecls (DataTyCon { data_cons = cons }) = IfDataTyCon (map ifaceConDecl cons) ifaceConDecls (DataFamilyTyCon {}) = IfDataFamTyCon ifaceConDecls (AbstractTyCon distinct) = IfAbstractTyCon distinct -- The last case happens when a TyCon has been trimmed during tidying -- Furthermore, tyThingToIfaceDecl is also used -- in TcRnDriver for GHCi, when browsing a module, in which case the -- AbstractTyCon case is perfectly sensible. ifaceConDecl data_con = IfCon { ifConOcc = getOccName (dataConName data_con), ifConInfix = dataConIsInfix data_con, ifConWrapper = isJust (dataConWrapId_maybe data_con), ifConUnivTvs = toIfaceTvBndrs univ_tvs', ifConExTvs = toIfaceTvBndrs ex_tvs', ifConEqSpec = to_eq_spec eq_spec, ifConCtxt = tidyToIfaceContext env2 theta, ifConArgTys = map (tidyToIfaceType env2) arg_tys, ifConFields = map getOccName (dataConFieldLabels data_con), ifConStricts = map (toIfaceBang env2) (dataConRepBangs data_con) } where (univ_tvs, ex_tvs, eq_spec, theta, arg_tys, _) = dataConFullSig data_con -- Start with 'emptyTidyEnv' not 'env1', because the type of the -- data constructor is fully standalone (env1, univ_tvs') = tidyTyVarBndrs emptyTidyEnv univ_tvs (env2, ex_tvs') = tidyTyVarBndrs env1 ex_tvs to_eq_spec spec = [ (getOccName (tidyTyVar env2 tv), tidyToIfaceType env2 ty) | (tv,ty) <- spec] toIfaceBang :: TidyEnv -> HsBang -> IfaceBang toIfaceBang _ HsNoBang = IfNoBang toIfaceBang _ (HsUnpack Nothing) = IfUnpack toIfaceBang env (HsUnpack (Just co)) = IfUnpackCo (toIfaceCoercion (tidyCo env co)) toIfaceBang _ HsStrict = IfStrict toIfaceBang _ (HsUserBang {}) = panic "toIfaceBang" classToIfaceDecl :: TidyEnv -> Class -> IfaceDecl classToIfaceDecl env clas = IfaceClass { ifCtxt = tidyToIfaceContext env1 sc_theta, ifName = getOccName (classTyCon clas), ifTyVars = toIfaceTvBndrs clas_tyvars', ifRoles = tyConRoles (classTyCon clas), ifFDs = map toIfaceFD clas_fds, ifATs = map toIfaceAT clas_ats, ifSigs = map toIfaceClassOp op_stuff, ifMinDef = fmap getOccName (classMinimalDef clas), ifRec = boolToRecFlag (isRecursiveTyCon tycon) } where (clas_tyvars, clas_fds, sc_theta, _, clas_ats, op_stuff) = classExtraBigSig clas tycon = classTyCon clas (env1, clas_tyvars') = tidyTyVarBndrs env clas_tyvars toIfaceAT :: ClassATItem -> IfaceAT toIfaceAT (tc, defs) = IfaceAT (tyConToIfaceDecl env1 tc) (map (coAxBranchToIfaceBranch' env1) defs) toIfaceClassOp (sel_id, def_meth) = ASSERT(sel_tyvars == clas_tyvars) IfaceClassOp (getOccName sel_id) (toDmSpec def_meth) (tidyToIfaceType env1 op_ty) where -- Be careful when splitting the type, because of things -- like class Foo a where -- op :: (?x :: String) => a -> a -- and class Baz a where -- op :: (Ord a) => a -> a (sel_tyvars, rho_ty) = splitForAllTys (idType sel_id) op_ty = funResultTy rho_ty toDmSpec NoDefMeth = NoDM toDmSpec (GenDefMeth _) = GenericDM toDmSpec (DefMeth _) = VanillaDM toIfaceFD (tvs1, tvs2) = (map (getFS . tidyTyVar env1) tvs1, map (getFS . tidyTyVar env1) tvs2) -------------------------- tidyToIfaceType :: TidyEnv -> Type -> IfaceType tidyToIfaceType env ty = toIfaceType (tidyType env ty) tidyToIfaceContext :: TidyEnv -> ThetaType -> IfaceContext tidyToIfaceContext env theta = map (tidyToIfaceType env) theta tidyTyClTyVarBndrs :: TidyEnv -> [TyVar] -> (TidyEnv, [TyVar]) tidyTyClTyVarBndrs env tvs = mapAccumL tidyTyClTyVarBndr env tvs tidyTyClTyVarBndr :: TidyEnv -> TyVar -> (TidyEnv, TyVar) -- If the type variable "binder" is in scope, don't re-bind it -- In a class decl, for example, the ATD binders mention -- (amd must mention) the class tyvars tidyTyClTyVarBndr env@(_, subst) tv | Just tv' <- lookupVarEnv subst tv = (env, tv') | otherwise = tidyTyVarBndr env tv tidyTyVar :: TidyEnv -> TyVar -> TyVar tidyTyVar (_, subst) tv = lookupVarEnv subst tv `orElse` tv -- TcType.tidyTyVarOcc messes around with FlatSkols getFS :: NamedThing a => a -> FastString getFS x = occNameFS (getOccName x) -------------------------- instanceToIfaceInst :: ClsInst -> IfaceClsInst instanceToIfaceInst (ClsInst { is_dfun = dfun_id, is_flag = oflag , is_cls_nm = cls_name, is_cls = cls , is_tys = tys, is_tcs = mb_tcs }) = ASSERT( cls_name == className cls ) IfaceClsInst { ifDFun = dfun_name, ifOFlag = oflag, ifInstCls = cls_name, ifInstTys = map do_rough mb_tcs, ifInstOrph = orph } where do_rough Nothing = Nothing do_rough (Just n) = Just (toIfaceTyCon_name n) dfun_name = idName dfun_id mod = ASSERT( isExternalName dfun_name ) nameModule dfun_name is_local name = nameIsLocalOrFrom mod name -- Compute orphanhood. See Note [Orphans] in IfaceSyn (tvs, fds) = classTvsFds cls arg_names = [filterNameSet is_local (orphNamesOfType ty) | ty <- tys] -- See Note [When exactly is an instance decl an orphan?] in IfaceSyn orph | is_local cls_name = Just (nameOccName cls_name) | all isJust mb_ns = ASSERT( not (null mb_ns) ) head mb_ns | otherwise = Nothing mb_ns :: [Maybe OccName] -- One for each fundep; a locally-defined name -- that is not in the "determined" arguments mb_ns | null fds = [choose_one arg_names] | otherwise = map do_one fds do_one (_ltvs, rtvs) = choose_one [ns | (tv,ns) <- tvs `zip` arg_names , not (tv `elem` rtvs)] choose_one :: [NameSet] -> Maybe OccName choose_one nss = case nameSetToList (unionManyNameSets nss) of [] -> Nothing (n : _) -> Just (nameOccName n) -------------------------- famInstToIfaceFamInst :: FamInst -> IfaceFamInst famInstToIfaceFamInst (FamInst { fi_axiom = axiom, fi_fam = fam, fi_tcs = roughs }) = IfaceFamInst { ifFamInstAxiom = coAxiomName axiom , ifFamInstFam = fam , ifFamInstTys = map do_rough roughs , ifFamInstOrph = orph } where do_rough Nothing = Nothing do_rough (Just n) = Just (toIfaceTyCon_name n) fam_decl = tyConName $ coAxiomTyCon axiom mod = ASSERT( isExternalName (coAxiomName axiom) ) nameModule (coAxiomName axiom) is_local name = nameIsLocalOrFrom mod name lhs_names = filterNameSet is_local (orphNamesOfCoCon axiom) orph | is_local fam_decl = Just (nameOccName fam_decl) | not (isEmptyNameSet lhs_names) = Just (nameOccName (head (nameSetToList lhs_names))) | otherwise = Nothing -------------------------- toIfaceLetBndr :: Id -> IfaceLetBndr toIfaceLetBndr id = IfLetBndr (occNameFS (getOccName id)) (toIfaceType (idType id)) (toIfaceIdInfo (idInfo id)) -- Put into the interface file any IdInfo that CoreTidy.tidyLetBndr -- has left on the Id. See Note [IdInfo on nested let-bindings] in IfaceSyn -------------------------- toIfaceIdDetails :: IdDetails -> IfaceIdDetails toIfaceIdDetails VanillaId = IfVanillaId toIfaceIdDetails (DFunId ns _) = IfDFunId ns toIfaceIdDetails (RecSelId { sel_naughty = n , sel_tycon = tc }) = IfRecSelId (toIfaceTyCon tc) n toIfaceIdDetails other = pprTrace "toIfaceIdDetails" (ppr other) IfVanillaId -- Unexpected toIfaceIdInfo :: IdInfo -> IfaceIdInfo toIfaceIdInfo id_info = case catMaybes [arity_hsinfo, caf_hsinfo, strict_hsinfo, inline_hsinfo, unfold_hsinfo] of [] -> NoInfo infos -> HasInfo infos -- NB: strictness and arity must appear in the list before unfolding -- See TcIface.tcUnfolding where ------------ Arity -------------- arity_info = arityInfo id_info arity_hsinfo | arity_info == 0 = Nothing | otherwise = Just (HsArity arity_info) ------------ Caf Info -------------- caf_info = cafInfo id_info caf_hsinfo = case caf_info of NoCafRefs -> Just HsNoCafRefs _other -> Nothing ------------ Strictness -------------- -- No point in explicitly exporting TopSig sig_info = strictnessInfo id_info strict_hsinfo | not (isNopSig sig_info) = Just (HsStrictness sig_info) | otherwise = Nothing ------------ Unfolding -------------- unfold_hsinfo = toIfUnfolding loop_breaker (unfoldingInfo id_info) loop_breaker = isStrongLoopBreaker (occInfo id_info) ------------ Inline prag -------------- inline_prag = inlinePragInfo id_info inline_hsinfo | isDefaultInlinePragma inline_prag = Nothing | otherwise = Just (HsInline inline_prag) -------------------------- toIfUnfolding :: Bool -> Unfolding -> Maybe IfaceInfoItem toIfUnfolding lb (CoreUnfolding { uf_tmpl = rhs, uf_arity = arity , uf_src = src, uf_guidance = guidance }) = Just $ HsUnfold lb $ case src of InlineStable -> case guidance of UnfWhen unsat_ok boring_ok -> IfInlineRule arity unsat_ok boring_ok if_rhs _other -> IfCoreUnfold True if_rhs InlineCompulsory -> IfCompulsory if_rhs InlineRhs -> IfCoreUnfold False if_rhs -- Yes, even if guidance is UnfNever, expose the unfolding -- If we didn't want to expose the unfolding, TidyPgm would -- have stuck in NoUnfolding. For supercompilation we want -- to see that unfolding! where if_rhs = toIfaceExpr rhs toIfUnfolding lb (DFunUnfolding { df_bndrs = bndrs, df_args = args }) = Just (HsUnfold lb (IfDFunUnfold (map toIfaceBndr bndrs) (map toIfaceExpr args))) -- No need to serialise the data constructor; -- we can recover it from the type of the dfun toIfUnfolding _ _ = Nothing -------------------------- coreRuleToIfaceRule :: Module -> CoreRule -> IfaceRule coreRuleToIfaceRule _ (BuiltinRule { ru_fn = fn}) = pprTrace "toHsRule: builtin" (ppr fn) $ bogusIfaceRule fn coreRuleToIfaceRule mod rule@(Rule { ru_name = name, ru_fn = fn, ru_act = act, ru_bndrs = bndrs, ru_args = args, ru_rhs = rhs, ru_auto = auto }) = IfaceRule { ifRuleName = name, ifActivation = act, ifRuleBndrs = map toIfaceBndr bndrs, ifRuleHead = fn, ifRuleArgs = map do_arg args, ifRuleRhs = toIfaceExpr rhs, ifRuleAuto = auto, ifRuleOrph = orph } where -- For type args we must remove synonyms from the outermost -- level. Reason: so that when we read it back in we'll -- construct the same ru_rough field as we have right now; -- see tcIfaceRule do_arg (Type ty) = IfaceType (toIfaceType (deNoteType ty)) do_arg (Coercion co) = IfaceCo (toIfaceCoercion co) do_arg arg = toIfaceExpr arg -- Compute orphanhood. See Note [Orphans] in IfaceSyn -- A rule is an orphan only if none of the variables -- mentioned on its left-hand side are locally defined lhs_names = nameSetToList (ruleLhsOrphNames rule) orph = case filter (nameIsLocalOrFrom mod) lhs_names of (n : _) -> Just (nameOccName n) [] -> Nothing bogusIfaceRule :: Name -> IfaceRule bogusIfaceRule id_name = IfaceRule { ifRuleName = fsLit "bogus", ifActivation = NeverActive, ifRuleBndrs = [], ifRuleHead = id_name, ifRuleArgs = [], ifRuleRhs = IfaceExt id_name, ifRuleOrph = Nothing, ifRuleAuto = True } --------------------- toIfaceExpr :: CoreExpr -> IfaceExpr toIfaceExpr (Var v) = toIfaceVar v toIfaceExpr (Lit l) = IfaceLit l toIfaceExpr (Type ty) = IfaceType (toIfaceType ty) toIfaceExpr (Coercion co) = IfaceCo (toIfaceCoercion co) toIfaceExpr (Lam x b) = IfaceLam (toIfaceBndr x) (toIfaceExpr b) toIfaceExpr (App f a) = toIfaceApp f [a] toIfaceExpr (Case s x ty as) | null as = IfaceECase (toIfaceExpr s) (toIfaceType ty) | otherwise = IfaceCase (toIfaceExpr s) (getFS x) (map toIfaceAlt as) toIfaceExpr (Let b e) = IfaceLet (toIfaceBind b) (toIfaceExpr e) toIfaceExpr (Cast e co) = IfaceCast (toIfaceExpr e) (toIfaceCoercion co) toIfaceExpr (Tick t e) | Just t' <- toIfaceTickish t = IfaceTick t' (toIfaceExpr e) | otherwise = toIfaceExpr e --------------------- toIfaceTickish :: Tickish Id -> Maybe IfaceTickish toIfaceTickish (ProfNote cc tick push) = Just (IfaceSCC cc tick push) toIfaceTickish (HpcTick modl ix) = Just (IfaceHpcTick modl ix) toIfaceTickish (Breakpoint {}) = Nothing -- Ignore breakpoints, since they are relevant only to GHCi, and -- should not be serialised (Trac #8333) --------------------- toIfaceBind :: Bind Id -> IfaceBinding toIfaceBind (NonRec b r) = IfaceNonRec (toIfaceLetBndr b) (toIfaceExpr r) toIfaceBind (Rec prs) = IfaceRec [(toIfaceLetBndr b, toIfaceExpr r) | (b,r) <- prs] --------------------- toIfaceAlt :: (AltCon, [Var], CoreExpr) -> (IfaceConAlt, [FastString], IfaceExpr) toIfaceAlt (c,bs,r) = (toIfaceCon c, map getFS bs, toIfaceExpr r) --------------------- toIfaceCon :: AltCon -> IfaceConAlt toIfaceCon (DataAlt dc) = IfaceDataAlt (getName dc) toIfaceCon (LitAlt l) = IfaceLitAlt l toIfaceCon DEFAULT = IfaceDefault --------------------- toIfaceApp :: Expr CoreBndr -> [Arg CoreBndr] -> IfaceExpr toIfaceApp (App f a) as = toIfaceApp f (a:as) toIfaceApp (Var v) as = case isDataConWorkId_maybe v of -- We convert the *worker* for tuples into IfaceTuples Just dc | isTupleTyCon tc && saturated -> IfaceTuple (tupleTyConSort tc) tup_args where val_args = dropWhile isTypeArg as saturated = val_args `lengthIs` idArity v tup_args = map toIfaceExpr val_args tc = dataConTyCon dc _ -> mkIfaceApps (toIfaceVar v) as toIfaceApp e as = mkIfaceApps (toIfaceExpr e) as mkIfaceApps :: IfaceExpr -> [CoreExpr] -> IfaceExpr mkIfaceApps f as = foldl (\f a -> IfaceApp f (toIfaceExpr a)) f as --------------------- toIfaceVar :: Id -> IfaceExpr toIfaceVar v | Just fcall <- isFCallId_maybe v = IfaceFCall fcall (toIfaceType (idType v)) -- Foreign calls have special syntax | isExternalName name = IfaceExt name | otherwise = IfaceLcl (getFS name) where name = idName v \end{code}