% % (c) The University of Glasgow 2006-2008 % (c) The GRASP/AQUA Project, Glasgow University, 1993-1998 % \begin{code} module MkIface ( mkUsedNames, mkDependencies, mkIface, -- Build a ModIface from a ModGuts, -- including computing version information mkIfaceTc, writeIfaceFile, -- Write the interface file checkOldIface, -- See if recompilation is required, by -- comparing version information tyThingToIfaceDecl -- Converting things to their Iface equivalents ) where \end{code} ----------------------------------------------- Recompilation checking ----------------------------------------------- A complete description of how recompilation checking works can be found in the wiki commentary: http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/RecompilationAvoidance Please read the above page for a top-down description of how this all works. Notes below cover specific issues related to the implementation. Basic idea: * In the mi_usages information in an interface, we record the fingerprint of each free variable of the module * In mkIface, we compute the fingerprint of each exported thing A.f. For each external thing that A.f refers to, we include the fingerprint of the external reference when computing the fingerprint of A.f. So if anything that A.f depends on changes, then A.f's fingerprint will change. * In checkOldIface we compare the mi_usages for the module with the actual fingerprint for all each thing recorded in mi_usages \begin{code} #include "HsVersions.h" import IfaceSyn import LoadIface import Id import IdInfo import Demand import Annotations import CoreSyn import CoreFVs import Class import TyCon import DataCon import Type import Coercion import TcType import InstEnv import FamInstEnv import TcRnMonad import HsSyn import HscTypes import Finder import DynFlags import VarEnv import Var import Name import RdrName import NameEnv import NameSet import Module import BinIface import ErrUtils import Digraph import SrcLoc import Outputable import BasicTypes hiding ( SuccessFlag(..) ) import UniqFM import Unique import Util hiding ( eqListBy ) import FastString import Maybes import ListSetOps import Binary import Fingerprint import Bag import Control.Monad import Data.List import Data.Map (Map) import qualified Data.Map as Map import Data.IORef import System.FilePath \end{code} %************************************************************************ %* * \subsection{Completing an interface} %* * %************************************************************************ \begin{code} mkIface :: HscEnv -> Maybe Fingerprint -- The old fingerprint, if we have it -> ModDetails -- The trimmed, tidied interface -> ModGuts -- Usages, deprecations, etc -> IO (Messages, Maybe (ModIface, -- The new one Bool)) -- True <=> there was an old Iface, and the -- new one is identical, so no need -- to write it mkIface hsc_env maybe_old_fingerprint mod_details ModGuts{ mg_module = this_mod, mg_boot = is_boot, mg_used_names = used_names, mg_deps = deps, mg_dir_imps = dir_imp_mods, mg_rdr_env = rdr_env, mg_fix_env = fix_env, mg_warns = warns, mg_hpc_info = hpc_info } = mkIface_ hsc_env maybe_old_fingerprint this_mod is_boot used_names deps rdr_env fix_env warns hpc_info dir_imp_mods mod_details -- | make an interface from the results of typechecking only. Useful -- for non-optimising compilation, or where we aren't generating any -- object code at all ('HscNothing'). mkIfaceTc :: HscEnv -> Maybe Fingerprint -- The old fingerprint, if we have it -> ModDetails -- gotten from mkBootModDetails, probably -> TcGblEnv -- Usages, deprecations, etc -> IO (Messages, Maybe (ModIface, Bool)) mkIfaceTc hsc_env maybe_old_fingerprint mod_details tc_result@TcGblEnv{ tcg_mod = this_mod, tcg_src = hsc_src, tcg_imports = imports, tcg_rdr_env = rdr_env, tcg_fix_env = fix_env, tcg_warns = warns, tcg_hpc = other_hpc_info } = do let used_names = mkUsedNames tc_result deps <- mkDependencies tc_result let hpc_info = emptyHpcInfo other_hpc_info mkIface_ hsc_env maybe_old_fingerprint this_mod (isHsBoot hsc_src) used_names deps rdr_env fix_env warns hpc_info (imp_mods imports) mod_details mkUsedNames :: TcGblEnv -> NameSet mkUsedNames TcGblEnv{ tcg_dus = dus } = allUses dus mkDependencies :: TcGblEnv -> IO Dependencies mkDependencies TcGblEnv{ tcg_mod = mod, tcg_imports = imports, tcg_th_used = th_var } = do th_used <- readIORef th_var -- Whether TH is used let dep_mods = eltsUFM (delFromUFM (imp_dep_mods imports) (moduleName mod)) -- M.hi-boot can be in the imp_dep_mods, but we must remove -- it before recording the modules on which this one depends! -- (We want to retain M.hi-boot in imp_dep_mods so that -- loadHiBootInterface can see if M's direct imports depend -- on M.hi-boot, and hence that we should do the hi-boot consistency -- check.) pkgs | th_used = insertList thPackageId (imp_dep_pkgs imports) | otherwise = imp_dep_pkgs imports return Deps { dep_mods = sortBy (stableModuleNameCmp `on` fst) dep_mods, dep_pkgs = sortBy stablePackageIdCmp pkgs, dep_orphs = sortBy stableModuleCmp (imp_orphs imports), dep_finsts = sortBy stableModuleCmp (imp_finsts imports) } -- sort to get into canonical order -- NB. remember to use lexicographic ordering mkIface_ :: HscEnv -> Maybe Fingerprint -> Module -> IsBootInterface -> NameSet -> Dependencies -> GlobalRdrEnv -> NameEnv FixItem -> Warnings -> HpcInfo -> ImportedMods -> ModDetails -> IO (Messages, Maybe (ModIface, Bool)) mkIface_ hsc_env maybe_old_fingerprint this_mod is_boot used_names deps rdr_env fix_env src_warns hpc_info dir_imp_mods ModDetails{ md_insts = insts, md_fam_insts = fam_insts, md_rules = rules, md_anns = anns, md_vect_info = vect_info, md_types = type_env, md_exports = exports } -- NB: notice that mkIface does not look at the bindings -- only at the TypeEnv. The previous Tidy phase has -- put exactly the info into the TypeEnv that we want -- to expose in the interface = do { usages <- mkUsageInfo hsc_env this_mod dir_imp_mods used_names ; let { entities = typeEnvElts type_env ; decls = [ tyThingToIfaceDecl entity | entity <- entities, let name = getName entity, not (isImplicitTyThing entity), -- No implicit Ids and class tycons in the interface file not (isWiredInName name), -- Nor wired-in things; the compiler knows about them anyhow nameIsLocalOrFrom this_mod name ] -- Sigh: see Note [Root-main Id] in TcRnDriver ; fixities = [(occ,fix) | FixItem occ fix <- nameEnvElts fix_env] ; warns = src_warns ; iface_rules = map (coreRuleToIfaceRule this_mod) rules ; iface_insts = map instanceToIfaceInst insts ; iface_fam_insts = map famInstToIfaceFamInst fam_insts ; iface_vect_info = flattenVectInfo vect_info ; intermediate_iface = ModIface { mi_module = this_mod, mi_boot = is_boot, mi_deps = deps, mi_usages = usages, mi_exports = mkIfaceExports exports, -- Sort these lexicographically, so that -- the result is stable across compilations mi_insts = sortLe le_inst iface_insts, mi_fam_insts= sortLe le_fam_inst iface_fam_insts, mi_rules = sortLe le_rule iface_rules, mi_vect_info = iface_vect_info, mi_fixities = fixities, mi_warns = warns, mi_anns = mkIfaceAnnotations anns, mi_globals = Just rdr_env, -- Left out deliberately: filled in by addVersionInfo mi_iface_hash = fingerprint0, mi_mod_hash = fingerprint0, mi_exp_hash = fingerprint0, mi_orphan_hash = fingerprint0, mi_orphan = False, -- Always set by addVersionInfo, but -- it's a strict field, so we can't omit it. mi_finsts = False, -- Ditto mi_decls = deliberatelyOmitted "decls", mi_hash_fn = deliberatelyOmitted "hash_fn", mi_hpc = isHpcUsed hpc_info, -- And build the cached values mi_warn_fn = mkIfaceWarnCache warns, mi_fix_fn = mkIfaceFixCache fixities } } ; (new_iface, no_change_at_all) <- {-# SCC "versioninfo" #-} addFingerprints hsc_env maybe_old_fingerprint intermediate_iface decls -- Warn about orphans ; let warn_orphs = dopt Opt_WarnOrphans dflags warn_auto_orphs = dopt Opt_WarnAutoOrphans dflags orph_warnings --- Laziness means no work done unless -fwarn-orphans | warn_orphs || warn_auto_orphs = rule_warns `unionBags` inst_warns | otherwise = emptyBag errs_and_warns = (orph_warnings, emptyBag) unqual = mkPrintUnqualified dflags rdr_env inst_warns = listToBag [ instOrphWarn unqual d | (d,i) <- insts `zip` iface_insts , isNothing (ifInstOrph i) ] rule_warns = listToBag [ ruleOrphWarn unqual this_mod r | r <- iface_rules , isNothing (ifRuleOrph r) , if ifRuleAuto r then warn_auto_orphs else warn_orphs ] ; if errorsFound dflags errs_and_warns then return ( errs_and_warns, Nothing ) else do { -- XXX ; when (dopt Opt_D_dump_hi_diffs dflags) (printDump pp_diffs) -- Debug printing ; dumpIfSet_dyn dflags Opt_D_dump_hi "FINAL INTERFACE" (pprModIface new_iface) -- bug #1617: on reload we weren't updating the PrintUnqualified -- correctly. This stems from the fact that the interface had -- not changed, so addVersionInfo returns the old ModIface -- with the old GlobalRdrEnv (mi_globals). ; let final_iface = new_iface{ mi_globals = Just rdr_env } ; return (errs_and_warns, Just (final_iface, no_change_at_all)) }} where r1 `le_rule` r2 = ifRuleName r1 <= ifRuleName r2 i1 `le_inst` i2 = ifDFun i1 `le_occ` ifDFun i2 i1 `le_fam_inst` i2 = ifFamInstTcName i1 `le_occ` ifFamInstTcName i2 le_occ :: Name -> Name -> Bool -- Compare lexicographically by OccName, *not* by unique, because -- the latter is not stable across compilations le_occ n1 n2 = nameOccName n1 <= nameOccName n2 dflags = hsc_dflags hsc_env deliberatelyOmitted :: String -> a deliberatelyOmitted x = panic ("Deliberately omitted: " ++ x) ifFamInstTcName = ifaceTyConName . ifFamInstTyCon flattenVectInfo (VectInfo { vectInfoVar = vVar , vectInfoTyCon = vTyCon }) = IfaceVectInfo { ifaceVectInfoVar = [ Var.varName v | (v, _) <- varEnvElts vVar], ifaceVectInfoTyCon = [ tyConName t | (t, t_v) <- nameEnvElts vTyCon , t /= t_v], ifaceVectInfoTyConReuse = [ tyConName t | (t, t_v) <- nameEnvElts vTyCon , t == t_v] } ----------------------------- writeIfaceFile :: DynFlags -> ModLocation -> ModIface -> IO () writeIfaceFile dflags location new_iface = do createDirectoryHierarchy (takeDirectory hi_file_path) writeBinIface dflags hi_file_path new_iface where hi_file_path = ml_hi_file location -- ----------------------------------------------------------------------------- -- Look up parents and versions of Names -- This is like a global version of the mi_hash_fn field in each ModIface. -- Given a Name, it finds the ModIface, and then uses mi_hash_fn to get -- the parent and version info. mkHashFun :: HscEnv -- needed to look up versions -> ExternalPackageState -- ditto -> (Name -> Fingerprint) mkHashFun hsc_env eps = \name -> let mod = ASSERT2( isExternalName name, ppr name ) nameModule name occ = nameOccName name iface = lookupIfaceByModule (hsc_dflags hsc_env) hpt pit mod `orElse` pprPanic "lookupVers2" (ppr mod <+> ppr occ) in snd (mi_hash_fn iface occ `orElse` pprPanic "lookupVers1" (ppr mod <+> ppr occ)) where hpt = hsc_HPT hsc_env pit = eps_PIT eps -- --------------------------------------------------------------------------- -- Compute fingerprints for the interface addFingerprints :: HscEnv -> Maybe Fingerprint -- the old fingerprint, if any -> ModIface -- The new interface (lacking decls) -> [IfaceDecl] -- The new decls -> IO (ModIface, -- Updated interface Bool) -- True <=> no changes at all; -- no need to write Iface addFingerprints hsc_env mb_old_fingerprint iface0 new_decls = do eps <- hscEPS hsc_env let -- The ABI of a declaration represents everything that is made -- visible about the declaration that a client can depend on. -- see IfaceDeclABI below. declABI :: IfaceDecl -> IfaceDeclABI declABI decl = (this_mod, decl, extras) where extras = declExtras fix_fn non_orph_rules non_orph_insts decl edges :: [(IfaceDeclABI, Unique, [Unique])] edges = [ (abi, getUnique (ifName decl), out) | decl <- new_decls , let abi = declABI decl , let out = localOccs $ freeNamesDeclABI abi ] name_module n = ASSERT2( isExternalName n, ppr n ) nameModule n localOccs = map (getUnique . getParent . getOccName) . filter ((== this_mod) . name_module) . nameSetToList where getParent occ = lookupOccEnv parent_map occ `orElse` occ -- maps OccNames to their parents in the current module. -- e.g. a reference to a constructor must be turned into a reference -- to the TyCon for the purposes of calculating dependencies. parent_map :: OccEnv OccName parent_map = foldr extend emptyOccEnv new_decls where extend d env = extendOccEnvList env [ (b,n) | b <- ifaceDeclSubBndrs d ] where n = ifName d -- strongly-connected groups of declarations, in dependency order groups = stronglyConnCompFromEdgedVertices edges global_hash_fn = mkHashFun hsc_env eps -- how to output Names when generating the data to fingerprint. -- Here we want to output the fingerprint for each top-level -- Name, whether it comes from the current module or another -- module. In this way, the fingerprint for a declaration will -- change if the fingerprint for anything it refers to (transitively) -- changes. mk_put_name :: (OccEnv (OccName,Fingerprint)) -> BinHandle -> Name -> IO () mk_put_name local_env bh name | isWiredInName name = putNameLiterally bh name -- wired-in names don't have fingerprints | otherwise = ASSERT2( isExternalName name, ppr name ) let hash | nameModule name /= this_mod = global_hash_fn name | otherwise = snd (lookupOccEnv local_env (getOccName name) `orElse` pprPanic "urk! lookup local fingerprint" (ppr name)) -- (undefined,fingerprint0)) -- This panic indicates that we got the dependency -- analysis wrong, because we needed a fingerprint for -- an entity that wasn't in the environment. To debug -- it, turn the panic into a trace, uncomment the -- pprTraces below, run the compile again, and inspect -- the output and the generated .hi file with -- --show-iface. in put_ bh hash -- take a strongly-connected group of declarations and compute -- its fingerprint. fingerprint_group :: (OccEnv (OccName,Fingerprint), [(Fingerprint,IfaceDecl)]) -> SCC IfaceDeclABI -> IO (OccEnv (OccName,Fingerprint), [(Fingerprint,IfaceDecl)]) fingerprint_group (local_env, decls_w_hashes) (AcyclicSCC abi) = do let hash_fn = mk_put_name local_env decl = abiDecl abi -- pprTrace "fingerprinting" (ppr (ifName decl) ) $ do hash <- computeFingerprint dflags hash_fn abi return (extend_hash_env (hash,decl) local_env, (hash,decl) : decls_w_hashes) fingerprint_group (local_env, decls_w_hashes) (CyclicSCC abis) = do let decls = map abiDecl abis local_env' = foldr extend_hash_env local_env (zip (repeat fingerprint0) decls) hash_fn = mk_put_name local_env' -- pprTrace "fingerprinting" (ppr (map ifName decls) ) $ do let stable_abis = sortBy cmp_abiNames abis -- put the cycle in a canonical order hash <- computeFingerprint dflags hash_fn stable_abis let pairs = zip (repeat hash) decls return (foldr extend_hash_env local_env pairs, pairs ++ decls_w_hashes) extend_hash_env :: (Fingerprint,IfaceDecl) -> OccEnv (OccName,Fingerprint) -> OccEnv (OccName,Fingerprint) extend_hash_env (hash,d) env0 = foldr add_imp env1 (ifaceDeclSubBndrs d) where decl_name = ifName d item = (decl_name, hash) env1 = extendOccEnv env0 decl_name item add_imp bndr env = extendOccEnv env bndr item -- (local_env, decls_w_hashes) <- foldM fingerprint_group (emptyOccEnv, []) groups -- when calculating fingerprints, we always need to use canonical -- ordering for lists of things. In particular, the mi_deps has various -- lists of modules and suchlike, so put these all in canonical order: let sorted_deps = sortDependencies (mi_deps iface0) -- the export hash of a module depends on the orphan hashes of the -- orphan modules below us in the dependency tree. This is the way -- that changes in orphans get propagated all the way up the -- dependency tree. We only care about orphan modules in the current -- package, because changes to orphans outside this package will be -- tracked by the usage on the ABI hash of package modules that we import. let orph_mods = filter ((== this_pkg) . modulePackageId) $ dep_orphs sorted_deps dep_orphan_hashes <- getOrphanHashes hsc_env orph_mods orphan_hash <- computeFingerprint dflags (mk_put_name local_env) (map ifDFun orph_insts, orph_rules, fam_insts) -- the export list hash doesn't depend on the fingerprints of -- the Names it mentions, only the Names themselves, hence putNameLiterally. export_hash <- computeFingerprint dflags putNameLiterally (mi_exports iface0, orphan_hash, dep_orphan_hashes, dep_pkgs (mi_deps iface0)) -- dep_pkgs: see "Package Version Changes" on -- wiki/Commentary/Compiler/RecompilationAvoidance -- put the declarations in a canonical order, sorted by OccName let sorted_decls = Map.elems $ Map.fromList $ [(ifName d, e) | e@(_, d) <- decls_w_hashes] -- the ABI hash depends on: -- - decls -- - export list -- - orphans -- - deprecations -- - XXX vect info? mod_hash <- computeFingerprint dflags putNameLiterally (map fst sorted_decls, export_hash, orphan_hash, mi_warns iface0) -- The interface hash depends on: -- - the ABI hash, plus -- - usages -- - deps -- - hpc iface_hash <- computeFingerprint dflags putNameLiterally (mod_hash, mi_usages iface0, sorted_deps, mi_hpc iface0) let no_change_at_all = Just iface_hash == mb_old_fingerprint final_iface = iface0 { mi_mod_hash = mod_hash, mi_iface_hash = iface_hash, mi_exp_hash = export_hash, mi_orphan_hash = orphan_hash, mi_orphan = not (null orph_rules && null orph_insts), mi_finsts = not . null $ mi_fam_insts iface0, mi_decls = sorted_decls, mi_hash_fn = lookupOccEnv local_env } -- return (final_iface, no_change_at_all) where this_mod = mi_module iface0 dflags = hsc_dflags hsc_env this_pkg = thisPackage dflags (non_orph_insts, orph_insts) = mkOrphMap ifInstOrph (mi_insts iface0) (non_orph_rules, orph_rules) = mkOrphMap ifRuleOrph (mi_rules iface0) -- ToDo: shouldn't we be splitting fam_insts into orphans and -- non-orphans? fam_insts = mi_fam_insts iface0 fix_fn = mi_fix_fn iface0 getOrphanHashes :: HscEnv -> [Module] -> IO [Fingerprint] getOrphanHashes hsc_env mods = do eps <- hscEPS hsc_env let hpt = hsc_HPT hsc_env pit = eps_PIT eps dflags = hsc_dflags hsc_env get_orph_hash mod = case lookupIfaceByModule dflags hpt pit mod of Nothing -> pprPanic "moduleOrphanHash" (ppr mod) Just iface -> mi_orphan_hash iface -- return (map get_orph_hash mods) sortDependencies :: Dependencies -> Dependencies sortDependencies d = Deps { dep_mods = sortBy (compare `on` (moduleNameFS.fst)) (dep_mods d), dep_pkgs = sortBy (compare `on` packageIdFS) (dep_pkgs d), dep_orphs = sortBy stableModuleCmp (dep_orphs d), dep_finsts = sortBy stableModuleCmp (dep_finsts d) } \end{code} %************************************************************************ %* * The ABI of an IfaceDecl %* * %************************************************************************ Note [The ABI of an IfaceDecl] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The ABI of a declaration consists of: (a) the full name of the identifier (inc. module and package, because these are used to construct the symbol name by which the identifier is known externally). (b) the declaration itself, as exposed to clients. That is, the definition of an Id is included in the fingerprint only if it is made available as as unfolding in the interface. (c) the fixity of the identifier (d) for Ids: rules (e) for classes: instances, fixity & rules for methods (f) for datatypes: instances, fixity & rules for constrs Items (c)-(f) are not stored in the IfaceDecl, but instead appear elsewhere in the interface file. But they are *fingerprinted* with the declaration itself. This is done by grouping (c)-(f) in IfaceDeclExtras, and fingerprinting that as part of the declaration. \begin{code} type IfaceDeclABI = (Module, IfaceDecl, IfaceDeclExtras) data IfaceDeclExtras = IfaceIdExtras Fixity [IfaceRule] | IfaceDataExtras Fixity [IfaceInstABI] [(Fixity,[IfaceRule])] | IfaceClassExtras Fixity [IfaceInstABI] [(Fixity,[IfaceRule])] | IfaceSynExtras Fixity | IfaceOtherDeclExtras abiDecl :: IfaceDeclABI -> IfaceDecl abiDecl (_, decl, _) = decl cmp_abiNames :: IfaceDeclABI -> IfaceDeclABI -> Ordering cmp_abiNames abi1 abi2 = ifName (abiDecl abi1) `compare` ifName (abiDecl abi2) freeNamesDeclABI :: IfaceDeclABI -> NameSet freeNamesDeclABI (_mod, decl, extras) = freeNamesIfDecl decl `unionNameSets` freeNamesDeclExtras extras freeNamesDeclExtras :: IfaceDeclExtras -> NameSet freeNamesDeclExtras (IfaceIdExtras _ rules) = unionManyNameSets (map freeNamesIfRule rules) freeNamesDeclExtras (IfaceDataExtras _ insts subs) = unionManyNameSets (mkNameSet insts : map freeNamesSub subs) freeNamesDeclExtras (IfaceClassExtras _ insts subs) = unionManyNameSets (mkNameSet insts : map freeNamesSub subs) freeNamesDeclExtras (IfaceSynExtras _) = emptyNameSet freeNamesDeclExtras IfaceOtherDeclExtras = emptyNameSet freeNamesSub :: (Fixity,[IfaceRule]) -> NameSet freeNamesSub (_,rules) = unionManyNameSets (map freeNamesIfRule rules) instance Outputable IfaceDeclExtras where ppr IfaceOtherDeclExtras = empty ppr (IfaceIdExtras fix rules) = ppr_id_extras fix rules ppr (IfaceSynExtras fix) = ppr fix ppr (IfaceDataExtras fix insts stuff) = vcat [ppr fix, ppr_insts insts, ppr_id_extras_s stuff] ppr (IfaceClassExtras fix insts stuff) = vcat [ppr fix, ppr_insts insts, ppr_id_extras_s stuff] ppr_insts :: [IfaceInstABI] -> SDoc ppr_insts _ = ptext (sLit "") ppr_id_extras_s :: [(Fixity, [IfaceRule])] -> SDoc ppr_id_extras_s stuff = vcat [ppr_id_extras f r | (f,r)<- stuff] ppr_id_extras :: Fixity -> [IfaceRule] -> SDoc ppr_id_extras fix rules = ppr fix $$ vcat (map ppr rules) -- This instance is used only to compute fingerprints instance Binary IfaceDeclExtras where get _bh = panic "no get for IfaceDeclExtras" put_ bh (IfaceIdExtras fix rules) = do putByte bh 1; put_ bh fix; put_ bh rules put_ bh (IfaceDataExtras fix insts cons) = do putByte bh 2; put_ bh fix; put_ bh insts; put_ bh cons put_ bh (IfaceClassExtras fix insts methods) = do putByte bh 3; put_ bh fix; put_ bh insts; put_ bh methods put_ bh (IfaceSynExtras fix) = do putByte bh 4; put_ bh fix put_ bh IfaceOtherDeclExtras = do putByte bh 5 declExtras :: (OccName -> Fixity) -> OccEnv [IfaceRule] -> OccEnv [IfaceInst] -> IfaceDecl -> IfaceDeclExtras declExtras fix_fn rule_env inst_env decl = case decl of IfaceId{} -> IfaceIdExtras (fix_fn n) (lookupOccEnvL rule_env n) IfaceData{ifCons=cons} -> IfaceDataExtras (fix_fn n) (map ifDFun $ lookupOccEnvL inst_env n) (map (id_extras . ifConOcc) (visibleIfConDecls cons)) IfaceClass{ifSigs=sigs} -> IfaceClassExtras (fix_fn n) (map ifDFun $ lookupOccEnvL inst_env n) [id_extras op | IfaceClassOp op _ _ <- sigs] IfaceSyn{} -> IfaceSynExtras (fix_fn n) _other -> IfaceOtherDeclExtras where n = ifName decl id_extras occ = (fix_fn occ, lookupOccEnvL rule_env occ) -- -- When hashing an instance, we hash only the DFunId, because that -- depends on all the information about the instance. -- type IfaceInstABI = IfExtName lookupOccEnvL :: OccEnv [v] -> OccName -> [v] lookupOccEnvL env k = lookupOccEnv env k `orElse` [] -- used when we want to fingerprint a structure without depending on the -- fingerprints of external Names that it refers to. putNameLiterally :: BinHandle -> Name -> IO () putNameLiterally bh name = ASSERT( isExternalName name ) do { put_ bh $! nameModule name ; put_ bh $! nameOccName name } computeFingerprint :: Binary a => DynFlags -> (BinHandle -> Name -> IO ()) -> a -> IO Fingerprint computeFingerprint _dflags put_name a = do bh <- openBinMem (3*1024) -- just less than a block ud <- newWriteState put_name putFS bh <- return $ setUserData bh ud put_ bh a fingerprintBinMem bh {- -- for testing: use the md5sum command to generate fingerprints and -- compare the results against our built-in version. fp' <- oldMD5 dflags bh if fp /= fp' then pprPanic "computeFingerprint" (ppr fp <+> ppr fp') else return fp oldMD5 dflags bh = do tmp <- newTempName dflags "bin" writeBinMem bh tmp tmp2 <- newTempName dflags "md5" let cmd = "md5sum " ++ tmp ++ " >" ++ tmp2 r <- system cmd case r of ExitFailure _ -> ghcError (PhaseFailed cmd r) ExitSuccess -> do hash_str <- readFile tmp2 return $! readHexFingerprint hash_str -} instOrphWarn :: PrintUnqualified -> Instance -> WarnMsg instOrphWarn unqual inst = mkWarnMsg (getSrcSpan inst) unqual $ hang (ptext (sLit "Warning: orphan instance:")) 2 (pprInstanceHdr inst) ruleOrphWarn :: PrintUnqualified -> Module -> IfaceRule -> WarnMsg ruleOrphWarn unqual mod rule = mkWarnMsg silly_loc unqual $ ptext (sLit "Orphan rule:") <+> ppr rule where silly_loc = srcLocSpan (mkSrcLoc (moduleNameFS (moduleName mod)) 1 1) -- We don't have a decent SrcSpan for a Rule, not even the CoreRule -- Could readily be fixed by adding a SrcSpan to CoreRule, if we wanted to ---------------------- -- mkOrphMap partitions instance decls or rules into -- (a) an OccEnv for ones that are not orphans, -- mapping the local OccName to a list of its decls -- (b) a list of orphan decls mkOrphMap :: (decl -> Maybe OccName) -- (Just occ) for a non-orphan decl, keyed by occ -- Nothing for an orphan decl -> [decl] -- Sorted into canonical order -> (OccEnv [decl], -- Non-orphan decls associated with their key; -- each sublist in canonical order [decl]) -- Orphan decls; in canonical order mkOrphMap get_key decls = foldl go (emptyOccEnv, []) decls where go (non_orphs, orphs) d | Just occ <- get_key d = (extendOccEnv_Acc (:) singleton non_orphs occ d, orphs) | otherwise = (non_orphs, d:orphs) \end{code} %************************************************************************ %* * Keeping track of what we've slurped, and fingerprints %* * %************************************************************************ \begin{code} mkUsageInfo :: HscEnv -> Module -> ImportedMods -> NameSet -> IO [Usage] mkUsageInfo hsc_env this_mod dir_imp_mods used_names = do { eps <- hscEPS hsc_env ; let usages = mk_usage_info (eps_PIT eps) hsc_env this_mod dir_imp_mods used_names ; usages `seqList` return usages } -- seq the list of Usages returned: occasionally these -- don't get evaluated for a while and we can end up hanging on to -- the entire collection of Ifaces. mk_usage_info :: PackageIfaceTable -> HscEnv -> Module -> ImportedMods -> NameSet -> [Usage] mk_usage_info pit hsc_env this_mod direct_imports used_names = mapCatMaybes mkUsage usage_mods where hpt = hsc_HPT hsc_env dflags = hsc_dflags hsc_env this_pkg = thisPackage dflags used_mods = moduleEnvKeys ent_map dir_imp_mods = (moduleEnvKeys direct_imports) all_mods = used_mods ++ filter (`notElem` used_mods) dir_imp_mods usage_mods = sortBy stableModuleCmp all_mods -- canonical order is imported, to avoid interface-file -- wobblage. -- ent_map groups together all the things imported and used -- from a particular module ent_map :: ModuleEnv [OccName] ent_map = foldNameSet add_mv emptyModuleEnv used_names where add_mv name mv_map | isWiredInName name = mv_map -- ignore wired-in names | otherwise = case nameModule_maybe name of Nothing -> pprPanic "mkUsageInfo: internal name?" (ppr name) Just mod -> -- This lambda function is really just a -- specialised (++); originally came about to -- avoid quadratic behaviour (trac #2680) extendModuleEnvWith (\_ xs -> occ:xs) mv_map mod [occ] where occ = nameOccName name -- We want to create a Usage for a home module if -- a) we used something from it; has something in used_names -- b) we imported it, even if we used nothing from it -- (need to recompile if its export list changes: export_fprint) mkUsage :: Module -> Maybe Usage mkUsage mod | isNothing maybe_iface -- We can't depend on it if we didn't -- load its interface. || mod == this_mod -- We don't care about usages of -- things in *this* module = Nothing | modulePackageId mod /= this_pkg = Just UsagePackageModule{ usg_mod = mod, usg_mod_hash = mod_hash } -- for package modules, we record the module hash only | (null used_occs && isNothing export_hash && not is_direct_import && not finsts_mod) = Nothing -- Record no usage info -- for directly-imported modules, we always want to record a usage -- on the orphan hash. This is what triggers a recompilation if -- an orphan is added or removed somewhere below us in the future. | otherwise = Just UsageHomeModule { usg_mod_name = moduleName mod, usg_mod_hash = mod_hash, usg_exports = export_hash, usg_entities = Map.toList ent_hashs } where maybe_iface = lookupIfaceByModule dflags hpt pit mod -- In one-shot mode, the interfaces for home-package -- modules accumulate in the PIT not HPT. Sigh. is_direct_import = mod `elemModuleEnv` direct_imports Just iface = maybe_iface finsts_mod = mi_finsts iface hash_env = mi_hash_fn iface mod_hash = mi_mod_hash iface export_hash | depend_on_exports mod = Just (mi_exp_hash iface) | otherwise = Nothing used_occs = lookupModuleEnv ent_map mod `orElse` [] -- Making a Map here ensures that (a) we remove duplicates -- when we have usages on several subordinates of a single parent, -- and (b) that the usages emerge in a canonical order, which -- is why we use Map rather than OccEnv: Map works -- using Ord on the OccNames, which is a lexicographic ordering. ent_hashs :: Map OccName Fingerprint ent_hashs = Map.fromList (map lookup_occ used_occs) lookup_occ occ = case hash_env occ of Nothing -> pprPanic "mkUsage" (ppr mod <+> ppr occ <+> ppr used_names) Just r -> r depend_on_exports mod = case lookupModuleEnv direct_imports mod of Just _ -> True -- Even if we used 'import M ()', we have to register a -- usage on the export list because we are sensitive to -- changes in orphan instances/rules. Nothing -> False -- In GHC 6.8.x the above line read "True", and in -- fact it recorded a dependency on *all* the -- modules underneath in the dependency tree. This -- happens to make orphans work right, but is too -- expensive: it'll read too many interface files. -- The 'isNothing maybe_iface' check above saved us -- from generating many of these usages (at least in -- one-shot mode), but that's even more bogus! \end{code} \begin{code} mkIfaceAnnotations :: [Annotation] -> [IfaceAnnotation] mkIfaceAnnotations = map mkIfaceAnnotation mkIfaceAnnotation :: Annotation -> IfaceAnnotation mkIfaceAnnotation (Annotation { ann_target = target, ann_value = serialized }) = IfaceAnnotation { ifAnnotatedTarget = fmap nameOccName target, ifAnnotatedValue = serialized } \end{code} \begin{code} mkIfaceExports :: [AvailInfo] -> [(Module, [GenAvailInfo OccName])] -- Group by module and sort by occurrence mkIfaceExports exports = [ (mod, Map.elems avails) | (mod, avails) <- sortBy (stableModuleCmp `on` fst) (moduleEnvToList groupFM) -- NB. the Map.toList is in a random order, -- because Ord Module is not a predictable -- ordering. Hence we perform a final sort -- using the stable Module ordering. ] where -- Group by the module where the exported entities are defined -- (which may not be the same for all Names in an Avail) -- Deliberately use Map rather than UniqFM so we -- get a canonical ordering groupFM :: ModuleEnv (Map FastString (GenAvailInfo OccName)) groupFM = foldl add emptyModuleEnv exports add_one :: ModuleEnv (Map FastString (GenAvailInfo OccName)) -> Module -> GenAvailInfo OccName -> ModuleEnv (Map FastString (GenAvailInfo OccName)) add_one env mod avail -- XXX Is there a need to flip Map.union here? = extendModuleEnvWith (flip Map.union) env mod (Map.singleton (occNameFS (availName avail)) avail) -- NB: we should not get T(X) and T(Y) in the export list -- else the Map.union will simply discard one! They -- should have been combined by now. add env (Avail n) = ASSERT( isExternalName n ) add_one env (nameModule n) (Avail (nameOccName n)) add env (AvailTC tc ns) = ASSERT( all isExternalName ns ) foldl add_for_mod env mods where tc_occ = nameOccName tc mods = nub (map nameModule ns) -- Usually just one, but see Note [Original module] add_for_mod env mod = add_one env mod (AvailTC tc_occ (sort names_from_mod)) -- NB. sort the children, we need a canonical order where names_from_mod = [nameOccName n | n <- ns, nameModule n == mod] \end{code} Note [Orignal module] ~~~~~~~~~~~~~~~~~~~~~ Consider this: module X where { data family T } module Y( T(..) ) where { import X; data instance T Int = MkT Int } The exported Avail from Y will look like X.T{X.T, Y.MkT} That is, in Y, - only MkT is brought into scope by the data instance; - but the parent (used for grouping and naming in T(..) exports) is X.T - and in this case we export X.T too In the result of MkIfaceExports, the names are grouped by defining module, so we may need to split up a single Avail into multiple ones. %************************************************************************ %* * Load the old interface file for this module (unless we have it aleady), and check whether it is up to date %* * %************************************************************************ \begin{code} checkOldIface :: HscEnv -> ModSummary -> Bool -- Source unchanged -> Maybe ModIface -- Old interface from compilation manager, if any -> IO (RecompileRequired, Maybe ModIface) checkOldIface hsc_env mod_summary source_unchanged maybe_iface = do { showPass (hsc_dflags hsc_env) ("Checking old interface for " ++ showSDoc (ppr (ms_mod mod_summary))) ; ; initIfaceCheck hsc_env $ check_old_iface hsc_env mod_summary source_unchanged maybe_iface } check_old_iface :: HscEnv -> ModSummary -> Bool -> Maybe ModIface -> IfG (Bool, Maybe ModIface) check_old_iface hsc_env mod_summary source_unchanged maybe_iface = do -- CHECK WHETHER THE SOURCE HAS CHANGED { when (not source_unchanged) (traceHiDiffs (nest 4 (text "Source file changed or recompilation check turned off"))) -- If the source has changed and we're in interactive mode, avoid reading -- an interface; just return the one we might have been supplied with. ; let dflags = hsc_dflags hsc_env ; if not (isObjectTarget (hscTarget dflags)) && not source_unchanged then return (outOfDate, maybe_iface) else case maybe_iface of { Just old_iface -> do -- Use the one we already have { traceIf (text "We already have the old interface for" <+> ppr (ms_mod mod_summary)) ; recomp <- checkVersions hsc_env source_unchanged mod_summary old_iface ; return (recomp, Just old_iface) } ; Nothing -> do -- Try and read the old interface for the current module -- from the .hi file left from the last time we compiled it { let iface_path = msHiFilePath mod_summary ; read_result <- readIface (ms_mod mod_summary) iface_path False ; case read_result of { Failed err -> do -- Old interface file not found, or garbled; give up { traceIf (text "FYI: cannot read old interface file:" $$ nest 4 err) ; return (outOfDate, Nothing) } ; Succeeded iface -> do -- We have got the old iface; check its versions { traceIf (text "Read the interface file" <+> text iface_path) ; recomp <- checkVersions hsc_env source_unchanged mod_summary iface ; return (recomp, Just iface) }}}}} \end{code} @recompileRequired@ is called from the HscMain. It checks whether a recompilation is required. It needs access to the persistent state, finder, etc, because it may have to load lots of interface files to check their versions. \begin{code} type RecompileRequired = Bool upToDate, outOfDate :: Bool upToDate = False -- Recompile not required outOfDate = True -- Recompile required checkVersions :: HscEnv -> Bool -- True <=> source unchanged -> ModSummary -> ModIface -- Old interface -> IfG RecompileRequired checkVersions hsc_env source_unchanged mod_summary iface | not source_unchanged = return outOfDate | otherwise = do { traceHiDiffs (text "Considering whether compilation is required for" <+> ppr (mi_module iface) <> colon) ; recomp <- checkDependencies hsc_env mod_summary iface ; if recomp then return outOfDate else do { -- Source code unchanged and no errors yet... carry on -- -- First put the dependent-module info, read from the old -- interface, into the envt, so that when we look for -- interfaces we look for the right one (.hi or .hi-boot) -- -- It's just temporary because either the usage check will succeed -- (in which case we are done with this module) or it'll fail (in which -- case we'll compile the module from scratch anyhow). -- -- We do this regardless of compilation mode, although in --make mode -- all the dependent modules should be in the HPT already, so it's -- quite redundant updateEps_ $ \eps -> eps { eps_is_boot = mod_deps } ; let this_pkg = thisPackage (hsc_dflags hsc_env) ; checkList [checkModUsage this_pkg u | u <- mi_usages iface] }} where -- This is a bit of a hack really mod_deps :: ModuleNameEnv (ModuleName, IsBootInterface) mod_deps = mkModDeps (dep_mods (mi_deps iface)) -- If the direct imports of this module are resolved to targets that -- are not among the dependencies of the previous interface file, -- then we definitely need to recompile. This catches cases like -- - an exposed package has been upgraded -- - we are compiling with different package flags -- - a home module that was shadowing a package module has been removed -- - a new home module has been added that shadows a package module -- See bug #1372. -- -- Returns True if recompilation is required. checkDependencies :: HscEnv -> ModSummary -> ModIface -> IfG RecompileRequired checkDependencies hsc_env summary iface = orM (map dep_missing (ms_imps summary ++ ms_srcimps summary)) where prev_dep_mods = dep_mods (mi_deps iface) prev_dep_pkgs = dep_pkgs (mi_deps iface) this_pkg = thisPackage (hsc_dflags hsc_env) orM = foldr f (return False) where f m rest = do b <- m; if b then return True else rest dep_missing (L _ (ImportDecl (L _ mod) pkg _ _ _ _)) = do find_res <- liftIO $ findImportedModule hsc_env mod pkg case find_res of Found _ mod | pkg == this_pkg -> if moduleName mod `notElem` map fst prev_dep_mods then do traceHiDiffs $ text "imported module " <> quotes (ppr mod) <> text " not among previous dependencies" return outOfDate else return upToDate | otherwise -> if pkg `notElem` prev_dep_pkgs then do traceHiDiffs $ text "imported module " <> quotes (ppr mod) <> text " is from package " <> quotes (ppr pkg) <> text ", which is not among previous dependencies" return outOfDate else return upToDate where pkg = modulePackageId mod _otherwise -> return outOfDate needInterface :: Module -> (ModIface -> IfG RecompileRequired) -> IfG RecompileRequired needInterface mod continue = do -- Load the imported interface if possible let doc_str = sep [ptext (sLit "need version info for"), ppr mod] traceHiDiffs (text "Checking usages for module" <+> ppr mod) mb_iface <- loadInterface doc_str mod ImportBySystem -- Load the interface, but don't complain on failure; -- Instead, get an Either back which we can test case mb_iface of Failed _ -> (out_of_date (sep [ptext (sLit "Couldn't load interface for module"), ppr mod])) -- Couldn't find or parse a module mentioned in the -- old interface file. Don't complain: it might -- just be that the current module doesn't need that -- import and it's been deleted Succeeded iface -> continue iface checkModUsage :: PackageId ->Usage -> IfG RecompileRequired -- Given the usage information extracted from the old -- M.hi file for the module being compiled, figure out -- whether M needs to be recompiled. checkModUsage _this_pkg UsagePackageModule{ usg_mod = mod, usg_mod_hash = old_mod_hash } = needInterface mod $ \iface -> do checkModuleFingerprint old_mod_hash (mi_mod_hash iface) -- We only track the ABI hash of package modules, rather than -- individual entity usages, so if the ABI hash changes we must -- recompile. This is safe but may entail more recompilation when -- a dependent package has changed. checkModUsage this_pkg UsageHomeModule{ usg_mod_name = mod_name, usg_mod_hash = old_mod_hash, usg_exports = maybe_old_export_hash, usg_entities = old_decl_hash } = do let mod = mkModule this_pkg mod_name needInterface mod $ \iface -> do let new_mod_hash = mi_mod_hash iface new_decl_hash = mi_hash_fn iface new_export_hash = mi_exp_hash iface -- CHECK MODULE recompile <- checkModuleFingerprint old_mod_hash new_mod_hash if not recompile then return upToDate else do -- CHECK EXPORT LIST checkMaybeHash maybe_old_export_hash new_export_hash (ptext (sLit " Export list changed")) $ do -- CHECK ITEMS ONE BY ONE recompile <- checkList [ checkEntityUsage new_decl_hash u | u <- old_decl_hash] if recompile then return outOfDate -- This one failed, so just bail out now else up_to_date (ptext (sLit " Great! The bits I use are up to date")) ------------------------ checkModuleFingerprint :: Fingerprint -> Fingerprint -> IfG Bool checkModuleFingerprint old_mod_hash new_mod_hash | new_mod_hash == old_mod_hash = up_to_date (ptext (sLit "Module fingerprint unchanged")) | otherwise = out_of_date_hash (ptext (sLit " Module fingerprint has changed")) old_mod_hash new_mod_hash ------------------------ checkMaybeHash :: Maybe Fingerprint -> Fingerprint -> SDoc -> IfG RecompileRequired -> IfG RecompileRequired checkMaybeHash maybe_old_hash new_hash doc continue | Just hash <- maybe_old_hash, hash /= new_hash = out_of_date_hash doc hash new_hash | otherwise = continue ------------------------ checkEntityUsage :: (OccName -> Maybe (OccName, Fingerprint)) -> (OccName, Fingerprint) -> IfG Bool checkEntityUsage new_hash (name,old_hash) = case new_hash name of Nothing -> -- We used it before, but it ain't there now out_of_date (sep [ptext (sLit "No longer exported:"), ppr name]) Just (_, new_hash) -- It's there, but is it up to date? | new_hash == old_hash -> do traceHiDiffs (text " Up to date" <+> ppr name <+> parens (ppr new_hash)) return upToDate | otherwise -> out_of_date_hash (ptext (sLit " Out of date:") <+> ppr name) old_hash new_hash up_to_date, out_of_date :: SDoc -> IfG Bool up_to_date msg = traceHiDiffs msg >> return upToDate out_of_date msg = traceHiDiffs msg >> return outOfDate out_of_date_hash :: SDoc -> Fingerprint -> Fingerprint -> IfG Bool out_of_date_hash msg old_hash new_hash = out_of_date (hsep [msg, ppr old_hash, ptext (sLit "->"), ppr new_hash]) ---------------------- checkList :: [IfG RecompileRequired] -> IfG RecompileRequired -- This helper is used in two places checkList [] = return upToDate checkList (check:checks) = do recompile <- check if recompile then return outOfDate else checkList checks \end{code} %************************************************************************ %* * Converting things to their Iface equivalents %* * %************************************************************************ \begin{code} tyThingToIfaceDecl :: TyThing -> IfaceDecl -- Assumption: the thing is already tidied, so that locally-bound names -- (lambdas, for-alls) already have non-clashing OccNames -- Reason: Iface stuff uses OccNames, and the conversion here does -- not do tidying on the way tyThingToIfaceDecl (AnId id) = IfaceId { ifName = getOccName id, ifType = toIfaceType (idType id), ifIdDetails = toIfaceIdDetails (idDetails id), ifIdInfo = toIfaceIdInfo (idInfo id) } tyThingToIfaceDecl (AClass clas) = IfaceClass { ifCtxt = toIfaceContext sc_theta, ifName = getOccName clas, ifTyVars = toIfaceTvBndrs clas_tyvars, ifFDs = map toIfaceFD clas_fds, ifATs = map (tyThingToIfaceDecl . ATyCon) clas_ats, ifSigs = map toIfaceClassOp op_stuff, ifRec = boolToRecFlag (isRecursiveTyCon tycon) } where (clas_tyvars, clas_fds, sc_theta, _, clas_ats, op_stuff) = classExtraBigSig clas tycon = classTyCon clas toIfaceClassOp (sel_id, def_meth) = ASSERT(sel_tyvars == clas_tyvars) IfaceClassOp (getOccName sel_id) (toDmSpec def_meth) (toIfaceType op_ty) where -- Be careful when splitting the type, because of things -- like class Foo a where -- op :: (?x :: String) => a -> a -- and class Baz a where -- op :: (Ord a) => a -> a (sel_tyvars, rho_ty) = splitForAllTys (idType sel_id) op_ty = funResultTy rho_ty toDmSpec NoDefMeth = NoDM toDmSpec GenDefMeth = GenericDM toDmSpec (DefMeth _) = VanillaDM toIfaceFD (tvs1, tvs2) = (map getFS tvs1, map getFS tvs2) tyThingToIfaceDecl (ATyCon tycon) | isSynTyCon tycon = IfaceSyn { ifName = getOccName tycon, ifTyVars = toIfaceTvBndrs tyvars, ifSynRhs = syn_rhs, ifSynKind = syn_ki, ifFamInst = famInstToIface (tyConFamInst_maybe tycon) } | isAlgTyCon tycon = IfaceData { ifName = getOccName tycon, ifTyVars = toIfaceTvBndrs tyvars, ifCtxt = toIfaceContext (tyConStupidTheta tycon), ifCons = ifaceConDecls (algTyConRhs tycon), ifRec = boolToRecFlag (isRecursiveTyCon tycon), ifGadtSyntax = isGadtSyntaxTyCon tycon, ifGeneric = tyConHasGenerics tycon, ifFamInst = famInstToIface (tyConFamInst_maybe tycon)} | isForeignTyCon tycon = IfaceForeign { ifName = getOccName tycon, ifExtName = tyConExtName tycon } | otherwise = pprPanic "toIfaceDecl" (ppr tycon) where tyvars = tyConTyVars tycon (syn_rhs, syn_ki) = case synTyConRhs tycon of SynFamilyTyCon -> (Nothing, toIfaceType (synTyConResKind tycon)) SynonymTyCon ty -> (Just (toIfaceType ty), toIfaceType (typeKind ty)) ifaceConDecls (NewTyCon { data_con = con }) = IfNewTyCon (ifaceConDecl con) ifaceConDecls (DataTyCon { data_cons = cons }) = IfDataTyCon (map ifaceConDecl cons) ifaceConDecls DataFamilyTyCon {} = IfOpenDataTyCon ifaceConDecls AbstractTyCon = IfAbstractTyCon -- The last case happens when a TyCon has been trimmed during tidying -- Furthermore, tyThingToIfaceDecl is also used -- in TcRnDriver for GHCi, when browsing a module, in which case the -- AbstractTyCon case is perfectly sensible. ifaceConDecl data_con = IfCon { ifConOcc = getOccName (dataConName data_con), ifConInfix = dataConIsInfix data_con, ifConWrapper = isJust (dataConWrapId_maybe data_con), ifConUnivTvs = toIfaceTvBndrs (dataConUnivTyVars data_con), ifConExTvs = toIfaceTvBndrs (dataConExTyVars data_con), ifConEqSpec = to_eq_spec (dataConEqSpec data_con), ifConCtxt = toIfaceContext (dataConEqTheta data_con ++ dataConDictTheta data_con), ifConArgTys = map toIfaceType (dataConOrigArgTys data_con), ifConFields = map getOccName (dataConFieldLabels data_con), ifConStricts = dataConStrictMarks data_con } to_eq_spec spec = [(getOccName tv, toIfaceType ty) | (tv,ty) <- spec] famInstToIface Nothing = Nothing famInstToIface (Just (famTyCon, instTys)) = Just (toIfaceTyCon famTyCon, map toIfaceType instTys) tyThingToIfaceDecl (ADataCon dc) = pprPanic "toIfaceDecl" (ppr dc) -- Should be trimmed out earlier getFS :: NamedThing a => a -> FastString getFS x = occNameFS (getOccName x) -------------------------- instanceToIfaceInst :: Instance -> IfaceInst instanceToIfaceInst (Instance { is_dfun = dfun_id, is_flag = oflag, is_cls = cls_name, is_tcs = mb_tcs }) = ASSERT( cls_name == className cls ) IfaceInst { ifDFun = dfun_name, ifOFlag = oflag, ifInstCls = cls_name, ifInstTys = map do_rough mb_tcs, ifInstOrph = orph } where do_rough Nothing = Nothing do_rough (Just n) = Just (toIfaceTyCon_name n) dfun_name = idName dfun_id mod = ASSERT( isExternalName dfun_name ) nameModule dfun_name is_local name = nameIsLocalOrFrom mod name -- Compute orphanhood. See Note [Orphans] in IfaceSyn (_, cls, tys) = tcSplitDFunTy (idType dfun_id) -- Slightly awkward: we need the Class to get the fundeps (tvs, fds) = classTvsFds cls arg_names = [filterNameSet is_local (tyClsNamesOfType ty) | ty <- tys] orph | is_local cls_name = Just (nameOccName cls_name) | all isJust mb_ns = ASSERT( not (null mb_ns) ) head mb_ns | otherwise = Nothing mb_ns :: [Maybe OccName] -- One for each fundep; a locally-defined name -- that is not in the "determined" arguments mb_ns | null fds = [choose_one arg_names] | otherwise = map do_one fds do_one (_ltvs, rtvs) = choose_one [ns | (tv,ns) <- tvs `zip` arg_names , not (tv `elem` rtvs)] choose_one :: [NameSet] -> Maybe OccName choose_one nss = case nameSetToList (unionManyNameSets nss) of [] -> Nothing (n : _) -> Just (nameOccName n) -------------------------- famInstToIfaceFamInst :: FamInst -> IfaceFamInst famInstToIfaceFamInst (FamInst { fi_tycon = tycon, fi_fam = fam, fi_tcs = mb_tcs }) = IfaceFamInst { ifFamInstTyCon = toIfaceTyCon tycon , ifFamInstFam = fam , ifFamInstTys = map do_rough mb_tcs } where do_rough Nothing = Nothing do_rough (Just n) = Just (toIfaceTyCon_name n) -------------------------- toIfaceLetBndr :: Id -> IfaceLetBndr toIfaceLetBndr id = IfLetBndr (occNameFS (getOccName id)) (toIfaceType (idType id)) (toIfaceIdInfo (idInfo id)) -- Put into the interface file any IdInfo that CoreTidy.tidyLetBndr -- has left on the Id. See Note [IdInfo on nested let-bindings] in IfaceSyn -------------------------- toIfaceIdDetails :: IdDetails -> IfaceIdDetails toIfaceIdDetails VanillaId = IfVanillaId toIfaceIdDetails (DFunId {}) = IfDFunId toIfaceIdDetails (RecSelId { sel_naughty = n , sel_tycon = tc }) = IfRecSelId (toIfaceTyCon tc) n toIfaceIdDetails other = pprTrace "toIfaceIdDetails" (ppr other) IfVanillaId -- Unexpected toIfaceIdInfo :: IdInfo -> IfaceIdInfo toIfaceIdInfo id_info = case catMaybes [arity_hsinfo, caf_hsinfo, strict_hsinfo, inline_hsinfo, unfold_hsinfo] of [] -> NoInfo infos -> HasInfo infos -- NB: strictness must appear in the list before unfolding -- See TcIface.tcUnfolding where ------------ Arity -------------- arity_info = arityInfo id_info arity_hsinfo | arity_info == 0 = Nothing | otherwise = Just (HsArity arity_info) ------------ Caf Info -------------- caf_info = cafInfo id_info caf_hsinfo = case caf_info of NoCafRefs -> Just HsNoCafRefs _other -> Nothing ------------ Strictness -------------- -- No point in explicitly exporting TopSig strict_hsinfo = case strictnessInfo id_info of Just sig | not (isTopSig sig) -> Just (HsStrictness sig) _other -> Nothing ------------ Unfolding -------------- unfold_hsinfo = toIfUnfolding loop_breaker (unfoldingInfo id_info) loop_breaker = isNonRuleLoopBreaker (occInfo id_info) ------------ Inline prag -------------- inline_prag = inlinePragInfo id_info inline_hsinfo | isDefaultInlinePragma inline_prag = Nothing | otherwise = Just (HsInline inline_prag) -------------------------- toIfUnfolding :: Bool -> Unfolding -> Maybe IfaceInfoItem toIfUnfolding lb (CoreUnfolding { uf_tmpl = rhs, uf_arity = arity , uf_src = src, uf_guidance = guidance }) = Just $ HsUnfold lb $ case src of InlineStable -> case guidance of UnfWhen unsat_ok boring_ok -> IfInlineRule arity unsat_ok boring_ok if_rhs _other -> IfCoreUnfold True if_rhs InlineWrapper w | isExternalName n -> IfExtWrapper arity n | otherwise -> IfLclWrapper arity (getFS n) where n = idName w InlineCompulsory -> IfCompulsory if_rhs InlineRhs -> IfCoreUnfold False if_rhs -- Yes, even if guidance is UnfNever, expose the unfolding -- If we didn't want to expose the unfolding, TidyPgm would -- have stuck in NoUnfolding. For supercompilation we want -- to see that unfolding! where if_rhs = toIfaceExpr rhs toIfUnfolding lb (DFunUnfolding _ar _con ops) = Just (HsUnfold lb (IfDFunUnfold (map toIfaceExpr ops))) -- No need to serialise the data constructor; -- we can recover it from the type of the dfun toIfUnfolding _ _ = Nothing -------------------------- coreRuleToIfaceRule :: Module -> CoreRule -> IfaceRule coreRuleToIfaceRule _ (BuiltinRule { ru_fn = fn}) = pprTrace "toHsRule: builtin" (ppr fn) $ bogusIfaceRule fn coreRuleToIfaceRule mod (Rule { ru_name = name, ru_fn = fn, ru_act = act, ru_bndrs = bndrs, ru_args = args, ru_rhs = rhs, ru_auto = auto }) = IfaceRule { ifRuleName = name, ifActivation = act, ifRuleBndrs = map toIfaceBndr bndrs, ifRuleHead = fn, ifRuleArgs = map do_arg args, ifRuleRhs = toIfaceExpr rhs, ifRuleAuto = auto, ifRuleOrph = orph } where -- For type args we must remove synonyms from the outermost -- level. Reason: so that when we read it back in we'll -- construct the same ru_rough field as we have right now; -- see tcIfaceRule do_arg (Type ty) = IfaceType (toIfaceType (deNoteType ty)) do_arg arg = toIfaceExpr arg -- Compute orphanhood. See Note [Orphans] in IfaceSyn -- A rule is an orphan only if none of the variables -- mentioned on its left-hand side are locally defined lhs_names = fn : nameSetToList (exprsFreeNames args) -- No need to delete bndrs, because -- exprsFreeNames finds only External names orph = case filter (nameIsLocalOrFrom mod) lhs_names of (n : _) -> Just (nameOccName n) [] -> Nothing bogusIfaceRule :: Name -> IfaceRule bogusIfaceRule id_name = IfaceRule { ifRuleName = fsLit "bogus", ifActivation = NeverActive, ifRuleBndrs = [], ifRuleHead = id_name, ifRuleArgs = [], ifRuleRhs = IfaceExt id_name, ifRuleOrph = Nothing, ifRuleAuto = True } --------------------- toIfaceExpr :: CoreExpr -> IfaceExpr toIfaceExpr (Var v) = toIfaceVar v toIfaceExpr (Lit l) = IfaceLit l toIfaceExpr (Type ty) = IfaceType (toIfaceType ty) toIfaceExpr (Lam x b) = IfaceLam (toIfaceBndr x) (toIfaceExpr b) toIfaceExpr (App f a) = toIfaceApp f [a] toIfaceExpr (Case s x ty as) = IfaceCase (toIfaceExpr s) (getFS x) (toIfaceType ty) (map toIfaceAlt as) toIfaceExpr (Let b e) = IfaceLet (toIfaceBind b) (toIfaceExpr e) toIfaceExpr (Cast e co) = IfaceCast (toIfaceExpr e) (toIfaceType co) toIfaceExpr (Note n e) = IfaceNote (toIfaceNote n) (toIfaceExpr e) --------------------- toIfaceNote :: Note -> IfaceNote toIfaceNote (SCC cc) = IfaceSCC cc toIfaceNote (CoreNote s) = IfaceCoreNote s --------------------- toIfaceBind :: Bind Id -> IfaceBinding toIfaceBind (NonRec b r) = IfaceNonRec (toIfaceLetBndr b) (toIfaceExpr r) toIfaceBind (Rec prs) = IfaceRec [(toIfaceLetBndr b, toIfaceExpr r) | (b,r) <- prs] --------------------- toIfaceAlt :: (AltCon, [Var], CoreExpr) -> (IfaceConAlt, [FastString], IfaceExpr) toIfaceAlt (c,bs,r) = (toIfaceCon c, map getFS bs, toIfaceExpr r) --------------------- toIfaceCon :: AltCon -> IfaceConAlt toIfaceCon (DataAlt dc) | isTupleTyCon tc = IfaceTupleAlt (tupleTyConBoxity tc) | otherwise = IfaceDataAlt (getName dc) where tc = dataConTyCon dc toIfaceCon (LitAlt l) = IfaceLitAlt l toIfaceCon DEFAULT = IfaceDefault --------------------- toIfaceApp :: Expr CoreBndr -> [Arg CoreBndr] -> IfaceExpr toIfaceApp (App f a) as = toIfaceApp f (a:as) toIfaceApp (Var v) as = case isDataConWorkId_maybe v of -- We convert the *worker* for tuples into IfaceTuples Just dc | isTupleTyCon tc && saturated -> IfaceTuple (tupleTyConBoxity tc) tup_args where val_args = dropWhile isTypeArg as saturated = val_args `lengthIs` idArity v tup_args = map toIfaceExpr val_args tc = dataConTyCon dc _ -> mkIfaceApps (toIfaceVar v) as toIfaceApp e as = mkIfaceApps (toIfaceExpr e) as mkIfaceApps :: IfaceExpr -> [CoreExpr] -> IfaceExpr mkIfaceApps f as = foldl (\f a -> IfaceApp f (toIfaceExpr a)) f as --------------------- toIfaceVar :: Id -> IfaceExpr toIfaceVar v | Just fcall <- isFCallId_maybe v = IfaceFCall fcall (toIfaceType (idType v)) -- Foreign calls have special syntax | isExternalName name = IfaceExt name | Just (TickBox m ix) <- isTickBoxOp_maybe v = IfaceTick m ix | otherwise = IfaceLcl (getFS name) where name = idName v \end{code}