% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % Type checking of type signatures in interface files \begin{code} module TcIface ( tcImportDecl, checkWiredInTyCon, tcHiBootIface, typecheckIface, tcIfaceDecl, tcIfaceInst, tcIfaceFamInst, tcIfaceRules, tcIfaceGlobal, tcExtCoreBindings ) where #include "HsVersions.h" import IfaceSyn import LoadIface import IfaceEnv import BuildTyCl import TcRnMonad import Type import TypeRep import HscTypes import InstEnv import FamInstEnv import CoreSyn import CoreUtils import CoreUnfold import CoreLint import WorkWrap import Id import MkId import IdInfo import Class import TyCon import DataCon import TysWiredIn import Var ( TyVar ) import qualified Var import Name import NameEnv import OccName import Module import UniqFM import UniqSupply import Outputable import ErrUtils import Maybes import SrcLoc import Util import DynFlags import Breakpoints import Control.Monad import Data.List import Data.Maybe \end{code} This module takes IfaceDecl -> TyThing IfaceType -> Type etc An IfaceDecl is populated with RdrNames, and these are not renamed to Names before typechecking, because there should be no scope errors etc. -- For (b) consider: f = $(...h....) -- where h is imported, and calls f via an hi-boot file. -- This is bad! But it is not seen as a staging error, because h -- is indeed imported. We don't want the type-checker to black-hole -- when simplifying and compiling the splice! -- -- Simple solution: discard any unfolding that mentions a variable -- bound in this module (and hence not yet processed). -- The discarding happens when forkM finds a type error. %************************************************************************ %* * %* tcImportDecl is the key function for "faulting in" * %* imported things %* * %************************************************************************ The main idea is this. We are chugging along type-checking source code, and find a reference to GHC.Base.map. We call tcLookupGlobal, which doesn't find it in the EPS type envt. So it 1 loads GHC.Base.hi 2 gets the decl for GHC.Base.map 3 typechecks it via tcIfaceDecl 4 and adds it to the type env in the EPS Note that DURING STEP 4, we may find that map's type mentions a type constructor that also Notice that for imported things we read the current version from the EPS mutable variable. This is important in situations like ...$(e1)...$(e2)... where the code that e1 expands to might import some defns that also turn out to be needed by the code that e2 expands to. \begin{code} tcImportDecl :: Name -> TcM TyThing -- Entry point for *source-code* uses of importDecl tcImportDecl name | Just thing <- wiredInNameTyThing_maybe name = do { initIfaceTcRn (loadWiredInHomeIface name) ; return thing } | otherwise = do { traceIf (text "tcImportDecl" <+> ppr name) ; mb_thing <- initIfaceTcRn (importDecl name) ; case mb_thing of Succeeded thing -> return thing Failed err -> failWithTc err } checkWiredInTyCon :: TyCon -> TcM () -- Ensure that the home module of the TyCon (and hence its instances) -- are loaded. It might not be a wired-in tycon (see the calls in TcUnify), -- in which case this is a no-op. checkWiredInTyCon tc | not (isWiredInName tc_name) = return () | otherwise = do { mod <- getModule ; unless (mod == nameModule tc_name) (initIfaceTcRn (loadWiredInHomeIface tc_name)) -- Don't look for (non-existent) Float.hi when -- compiling Float.lhs, which mentions Float of course -- A bit yukky to call initIfaceTcRn here } where tc_name = tyConName tc importDecl :: Name -> IfM lcl (MaybeErr Message TyThing) -- Get the TyThing for this Name from an interface file -- It's not a wired-in thing -- the caller caught that importDecl name = ASSERT( not (isWiredInName name) ) do { traceIf nd_doc -- Load the interface, which should populate the PTE ; mb_iface <- loadInterface nd_doc (nameModule name) ImportBySystem ; case mb_iface of { Failed err_msg -> return (Failed err_msg) ; Succeeded iface -> do -- Now look it up again; this time we should find it { eps <- getEps ; case lookupTypeEnv (eps_PTE eps) name of Just thing -> return (Succeeded thing) Nothing -> return (Failed not_found_msg) }}} where nd_doc = ptext SLIT("Need decl for") <+> ppr name not_found_msg = hang (ptext SLIT("Can't find interface-file declaration for") <+> pprNameSpace (occNameSpace (nameOccName name)) <+> ppr name) 2 (vcat [ptext SLIT("Probable cause: bug in .hi-boot file, or inconsistent .hi file"), ptext SLIT("Use -ddump-if-trace to get an idea of which file caused the error")]) \end{code} %************************************************************************ %* * Type-checking a complete interface %* * %************************************************************************ Suppose we discover we don't need to recompile. Then we must type check the old interface file. This is a bit different to the incremental type checking we do as we suck in interface files. Instead we do things similarly as when we are typechecking source decls: we bring into scope the type envt for the interface all at once, using a knot. Remember, the decls aren't necessarily in dependency order -- and even if they were, the type decls might be mutually recursive. \begin{code} typecheckIface :: ModIface -- Get the decls from here -> TcRnIf gbl lcl ModDetails typecheckIface iface = initIfaceTc iface $ \ tc_env_var -> do -- The tc_env_var is freshly allocated, private to -- type-checking this particular interface { -- Get the right set of decls and rules. If we are compiling without -O -- we discard pragmas before typechecking, so that we don't "see" -- information that we shouldn't. From a versioning point of view -- It's not actually *wrong* to do so, but in fact GHCi is unable -- to handle unboxed tuples, so it must not see unfoldings. ignore_prags <- doptM Opt_IgnoreInterfacePragmas -- Typecheck the decls. This is done lazily, so that the knot-tying -- within this single module work out right. In the If monad there is -- no global envt for the current interface; instead, the knot is tied -- through the if_rec_types field of IfGblEnv ; names_w_things <- loadDecls ignore_prags (mi_decls iface) ; let type_env = mkNameEnv names_w_things ; writeMutVar tc_env_var type_env -- Now do those rules and instances ; insts <- mapM tcIfaceInst (mi_insts iface) ; fam_insts <- mapM tcIfaceFamInst (mi_fam_insts iface) ; rules <- tcIfaceRules ignore_prags (mi_rules iface) -- Exports ; exports <- ifaceExportNames (mi_exports iface) -- Finished ; traceIf (vcat [text "Finished typechecking interface for" <+> ppr (mi_module iface), text "Type envt:" <+> ppr type_env]) ; return $ ModDetails { md_types = type_env , md_insts = insts , md_fam_insts = fam_insts , md_rules = rules , md_exports = exports , md_dbg_sites = noDbgSites } } \end{code} %************************************************************************ %* * Type and class declarations %* * %************************************************************************ \begin{code} tcHiBootIface :: HscSource -> Module -> TcRn ModDetails -- Load the hi-boot iface for the module being compiled, -- if it indeed exists in the transitive closure of imports -- Return the ModDetails, empty if no hi-boot iface tcHiBootIface hsc_src mod | isHsBoot hsc_src -- Already compiling a hs-boot file = return emptyModDetails | otherwise = do { traceIf (text "loadHiBootInterface" <+> ppr mod) ; mode <- getGhcMode ; if not (isOneShot mode) -- In --make and interactive mode, if this module has an hs-boot file -- we'll have compiled it already, and it'll be in the HPT -- -- We check wheher the interface is a *boot* interface. -- It can happen (when using GHC from Visual Studio) that we -- compile a module in TypecheckOnly mode, with a stable, -- fully-populated HPT. In that case the boot interface isn't there -- (it's been replaced by the mother module) so we can't check it. -- And that's fine, because if M's ModInfo is in the HPT, then -- it's been compiled once, and we don't need to check the boot iface then do { hpt <- getHpt ; case lookupUFM hpt (moduleName mod) of Just info | mi_boot (hm_iface info) -> return (hm_details info) other -> return emptyModDetails } else do -- OK, so we're in one-shot mode. -- In that case, we're read all the direct imports by now, -- so eps_is_boot will record if any of our imports mention us by -- way of hi-boot file { eps <- getEps ; case lookupUFM (eps_is_boot eps) (moduleName mod) of { Nothing -> return emptyModDetails ; -- The typical case Just (_, False) -> failWithTc moduleLoop ; -- Someone below us imported us! -- This is a loop with no hi-boot in the way Just (_mod, True) -> -- There's a hi-boot interface below us do { read_result <- findAndReadIface need mod True -- Hi-boot file ; case read_result of Failed err -> failWithTc (elaborate err) Succeeded (iface, _path) -> typecheckIface iface }}}} where need = ptext SLIT("Need the hi-boot interface for") <+> ppr mod <+> ptext SLIT("to compare against the Real Thing") moduleLoop = ptext SLIT("Circular imports: module") <+> quotes (ppr mod) <+> ptext SLIT("depends on itself") elaborate err = hang (ptext SLIT("Could not find hi-boot interface for") <+> quotes (ppr mod) <> colon) 4 err \end{code} %************************************************************************ %* * Type and class declarations %* * %************************************************************************ When typechecking a data type decl, we *lazily* (via forkM) typecheck the constructor argument types. This is in the hope that we may never poke on those argument types, and hence may never need to load the interface files for types mentioned in the arg types. E.g. data Foo.S = MkS Baz.T Mabye we can get away without even loading the interface for Baz! This is not just a performance thing. Suppose we have data Foo.S = MkS Baz.T data Baz.T = MkT Foo.S (in different interface files, of course). Now, first we load and typecheck Foo.S, and add it to the type envt. If we do explore MkS's argument, we'll load and typecheck Baz.T. If we explore MkT's argument we'll find Foo.S already in the envt. If we typechecked constructor args eagerly, when loading Foo.S we'd try to typecheck the type Baz.T. So we'd fault in Baz.T... and then need Foo.S... which isn't done yet. All very cunning. However, there is a rather subtle gotcha which bit me when developing this stuff. When we typecheck the decl for S, we extend the type envt with S, MkS, and all its implicit Ids. Suppose (a bug, but it happened) that the list of implicit Ids depended in turn on the constructor arg types. Then the following sequence of events takes place: * we build a thunk for the constructor arg tys * we build a thunk for the extended type environment (depends on ) * we write the extended type envt into the global EPS mutvar Now we look something up in the type envt * that pulls on * which reads the global type envt out of the global EPS mutvar * but that depends in turn on It's subtle, because, it'd work fine if we typechecked the constructor args eagerly -- they don't need the extended type envt. They just get the extended type envt by accident, because they look at it later. What this means is that the implicitTyThings MUST NOT DEPEND on any of the forkM stuff. \begin{code} tcIfaceDecl :: Bool -- True <=> discard IdInfo on IfaceId bindings -> IfaceDecl -> IfL TyThing tcIfaceDecl ignore_prags (IfaceId {ifName = occ_name, ifType = iface_type, ifIdInfo = info}) = do { name <- lookupIfaceTop occ_name ; ty <- tcIfaceType iface_type ; info <- tcIdInfo ignore_prags name ty info ; return (AnId (mkVanillaGlobal name ty info)) } tcIfaceDecl ignore_prags (IfaceData {ifName = occ_name, ifTyVars = tv_bndrs, ifCtxt = ctxt, ifGadtSyntax = gadt_syn, ifCons = rdr_cons, ifRec = is_rec, ifGeneric = want_generic, ifFamInst = mb_family }) = do { tc_name <- lookupIfaceTop occ_name ; bindIfaceTyVars tv_bndrs $ \ tyvars -> do { tycon <- fixM ( \ tycon -> do { stupid_theta <- tcIfaceCtxt ctxt ; famInst <- case mb_family of Nothing -> return Nothing Just (fam, tys) -> do { famTyCon <- tcIfaceTyCon fam ; insttys <- mapM tcIfaceType tys ; return $ Just (famTyCon, insttys) } ; cons <- tcIfaceDataCons tc_name tycon tyvars rdr_cons ; buildAlgTyCon tc_name tyvars stupid_theta cons is_rec want_generic gadt_syn famInst }) ; traceIf (text "tcIfaceDecl4" <+> ppr tycon) ; return (ATyCon tycon) }} tcIfaceDecl ignore_prags (IfaceSyn {ifName = occ_name, ifTyVars = tv_bndrs, ifOpenSyn = isOpen, ifSynRhs = rdr_rhs_ty}) = bindIfaceTyVars tv_bndrs $ \ tyvars -> do { tc_name <- lookupIfaceTop occ_name ; rhs_tyki <- tcIfaceType rdr_rhs_ty ; let rhs = if isOpen then OpenSynTyCon rhs_tyki Nothing else SynonymTyCon rhs_tyki ; return (ATyCon (buildSynTyCon tc_name tyvars rhs)) } tcIfaceDecl ignore_prags (IfaceClass {ifCtxt = rdr_ctxt, ifName = occ_name, ifTyVars = tv_bndrs, ifFDs = rdr_fds, ifATs = rdr_ats, ifSigs = rdr_sigs, ifRec = tc_isrec }) -- ToDo: in hs-boot files we should really treat abstract classes specially, -- as we do abstract tycons = bindIfaceTyVars tv_bndrs $ \ tyvars -> do { cls_name <- lookupIfaceTop occ_name ; ctxt <- tcIfaceCtxt rdr_ctxt ; sigs <- mappM tc_sig rdr_sigs ; fds <- mappM tc_fd rdr_fds ; ats' <- mappM (tcIfaceDecl ignore_prags) rdr_ats ; let ats = zipWith setTyThingPoss ats' (map ifTyVars rdr_ats) ; cls <- buildClass cls_name tyvars ctxt fds ats sigs tc_isrec ; return (AClass cls) } where tc_sig (IfaceClassOp occ dm rdr_ty) = do { op_name <- lookupIfaceTop occ ; op_ty <- forkM (mk_doc op_name rdr_ty) (tcIfaceType rdr_ty) -- Must be done lazily for just the same reason as the -- type of a data con; to avoid sucking in types that -- it mentions unless it's necessray to do so ; return (op_name, dm, op_ty) } mk_doc op_name op_ty = ptext SLIT("Class op") <+> sep [ppr op_name, ppr op_ty] tc_fd (tvs1, tvs2) = do { tvs1' <- mappM tcIfaceTyVar tvs1 ; tvs2' <- mappM tcIfaceTyVar tvs2 ; return (tvs1', tvs2') } -- For each AT argument compute the position of the corresponding class -- parameter in the class head. This will later serve as a permutation -- vector when checking the validity of instance declarations. setTyThingPoss (ATyCon tycon) atTyVars = let classTyVars = map fst tv_bndrs poss = catMaybes . map ((`elemIndex` classTyVars) . fst) $ atTyVars -- There will be no Nothing, as we already passed renaming in ATyCon (setTyConArgPoss tycon poss) setTyThingPoss _ _ = panic "TcIface.setTyThingPoss" tcIfaceDecl ignore_prags (IfaceForeign {ifName = rdr_name, ifExtName = ext_name}) = do { name <- lookupIfaceTop rdr_name ; return (ATyCon (mkForeignTyCon name ext_name liftedTypeKind 0)) } tcIfaceDataCons tycon_name tycon tc_tyvars if_cons = case if_cons of IfAbstractTyCon -> return mkAbstractTyConRhs IfOpenDataTyCon -> return mkOpenDataTyConRhs IfOpenNewTyCon -> return mkOpenNewTyConRhs IfDataTyCon cons -> do { data_cons <- mappM tc_con_decl cons ; return (mkDataTyConRhs data_cons) } IfNewTyCon con -> do { data_con <- tc_con_decl con ; mkNewTyConRhs tycon_name tycon data_con } where tc_con_decl (IfCon { ifConInfix = is_infix, ifConUnivTvs = univ_tvs, ifConExTvs = ex_tvs, ifConOcc = occ, ifConCtxt = ctxt, ifConEqSpec = spec, ifConArgTys = args, ifConFields = field_lbls, ifConStricts = stricts}) = bindIfaceTyVars univ_tvs $ \ univ_tyvars -> do bindIfaceTyVars ex_tvs $ \ ex_tyvars -> do { name <- lookupIfaceTop occ ; eq_spec <- tcIfaceEqSpec spec ; theta <- tcIfaceCtxt ctxt -- Laziness seems not worth the bother here -- At one stage I thought that this context checking *had* -- to be lazy, because of possible mutual recursion between the -- type and the classe: -- E.g. -- class Real a where { toRat :: a -> Ratio Integer } -- data (Real a) => Ratio a = ... -- But now I think that the laziness in checking class ops breaks -- the loop, so no laziness needed -- Read the argument types, but lazily to avoid faulting in -- the component types unless they are really needed ; arg_tys <- forkM (mk_doc name) (mappM tcIfaceType args) ; lbl_names <- mappM lookupIfaceTop field_lbls ; buildDataCon name is_infix {- Not infix -} stricts lbl_names univ_tyvars ex_tyvars eq_spec theta arg_tys tycon } mk_doc con_name = ptext SLIT("Constructor") <+> ppr con_name tcIfaceEqSpec spec = mapM do_item spec where do_item (occ, if_ty) = do { tv <- tcIfaceTyVar (occNameFS occ) ; ty <- tcIfaceType if_ty ; return (tv,ty) } \end{code} %************************************************************************ %* * Instances %* * %************************************************************************ \begin{code} tcIfaceInst :: IfaceInst -> IfL Instance tcIfaceInst (IfaceInst { ifDFun = dfun_occ, ifOFlag = oflag, ifInstCls = cls, ifInstTys = mb_tcs, ifInstOrph = orph }) = do { dfun <- forkM (ptext SLIT("Dict fun") <+> ppr dfun_occ) $ tcIfaceExtId dfun_occ ; let mb_tcs' = map (fmap ifaceTyConName) mb_tcs ; return (mkImportedInstance cls mb_tcs' dfun oflag) } tcIfaceFamInst :: IfaceFamInst -> IfL FamInst tcIfaceFamInst (IfaceFamInst { ifFamInstTyCon = tycon, ifFamInstFam = fam, ifFamInstTys = mb_tcs }) -- = do { tycon' <- forkM (ptext SLIT("Inst tycon") <+> ppr tycon) $ -- ^^^this line doesn't work, but vvv this does => CPP in Haskell = evil! = do { tycon' <- forkM (text ("Inst tycon") <+> ppr tycon) $ tcIfaceTyCon tycon ; let mb_tcs' = map (fmap ifaceTyConName) mb_tcs ; return (mkImportedFamInst fam mb_tcs' tycon') } \end{code} %************************************************************************ %* * Rules %* * %************************************************************************ We move a IfaceRule from eps_rules to eps_rule_base when all its LHS free vars are in the type environment. However, remember that typechecking a Rule may (as a side effect) augment the type envt, and so we may need to iterate the process. \begin{code} tcIfaceRules :: Bool -- True <=> ignore rules -> [IfaceRule] -> IfL [CoreRule] tcIfaceRules ignore_prags if_rules | ignore_prags = return [] | otherwise = mapM tcIfaceRule if_rules tcIfaceRule :: IfaceRule -> IfL CoreRule tcIfaceRule (IfaceRule {ifRuleName = name, ifActivation = act, ifRuleBndrs = bndrs, ifRuleHead = fn, ifRuleArgs = args, ifRuleRhs = rhs, ifRuleOrph = orph }) = do { ~(bndrs', args', rhs') <- -- Typecheck the payload lazily, in the hope it'll never be looked at forkM (ptext SLIT("Rule") <+> ftext name) $ bindIfaceBndrs bndrs $ \ bndrs' -> do { args' <- mappM tcIfaceExpr args ; rhs' <- tcIfaceExpr rhs ; return (bndrs', args', rhs') } ; let mb_tcs = map ifTopFreeName args ; lcl <- getLclEnv ; returnM (Rule { ru_name = name, ru_fn = fn, ru_act = act, ru_bndrs = bndrs', ru_args = args', ru_rhs = rhs', ru_rough = mb_tcs, ru_local = False }) } -- An imported RULE is never for a local Id -- or, even if it is (module loop, perhaps) -- we'll just leave it in the non-local set where -- This function *must* mirror exactly what Rules.topFreeName does -- We could have stored the ru_rough field in the iface file -- but that would be redundant, I think. -- The only wrinkle is that we must not be deceived by -- type syononyms at the top of a type arg. Since -- we can't tell at this point, we are careful not -- to write them out in coreRuleToIfaceRule ifTopFreeName :: IfaceExpr -> Maybe Name ifTopFreeName (IfaceType (IfaceTyConApp tc _ )) = Just (ifaceTyConName tc) ifTopFreeName (IfaceApp f a) = ifTopFreeName f ifTopFreeName (IfaceExt n) = Just n ifTopFreeName other = Nothing \end{code} %************************************************************************ %* * Types %* * %************************************************************************ \begin{code} tcIfaceType :: IfaceType -> IfL Type tcIfaceType (IfaceTyVar n) = do { tv <- tcIfaceTyVar n; return (TyVarTy tv) } tcIfaceType (IfaceAppTy t1 t2) = do { t1' <- tcIfaceType t1; t2' <- tcIfaceType t2; return (AppTy t1' t2') } tcIfaceType (IfaceFunTy t1 t2) = do { t1' <- tcIfaceType t1; t2' <- tcIfaceType t2; return (FunTy t1' t2') } tcIfaceType (IfaceTyConApp tc ts) = do { tc' <- tcIfaceTyCon tc; ts' <- tcIfaceTypes ts; return (mkTyConApp tc' ts') } tcIfaceType (IfaceForAllTy tv t) = bindIfaceTyVar tv $ \ tv' -> do { t' <- tcIfaceType t; return (ForAllTy tv' t') } tcIfaceType (IfacePredTy st) = do { st' <- tcIfacePredType st; return (PredTy st') } tcIfaceTypes tys = mapM tcIfaceType tys ----------------------------------------- tcIfacePredType :: IfacePredType -> IfL PredType tcIfacePredType (IfaceClassP cls ts) = do { cls' <- tcIfaceClass cls; ts' <- tcIfaceTypes ts; return (ClassP cls' ts') } tcIfacePredType (IfaceIParam ip t) = do { ip' <- newIPName ip; t' <- tcIfaceType t; return (IParam ip' t') } tcIfacePredType (IfaceEqPred t1 t2) = do { t1' <- tcIfaceType t1; t2' <- tcIfaceType t2; return (EqPred t1' t2') } ----------------------------------------- tcIfaceCtxt :: IfaceContext -> IfL ThetaType tcIfaceCtxt sts = mappM tcIfacePredType sts \end{code} %************************************************************************ %* * Core %* * %************************************************************************ \begin{code} tcIfaceExpr :: IfaceExpr -> IfL CoreExpr tcIfaceExpr (IfaceType ty) = tcIfaceType ty `thenM` \ ty' -> returnM (Type ty') tcIfaceExpr (IfaceLcl name) = tcIfaceLclId name `thenM` \ id -> returnM (Var id) tcIfaceExpr (IfaceExt gbl) = tcIfaceExtId gbl `thenM` \ id -> returnM (Var id) tcIfaceExpr (IfaceLit lit) = returnM (Lit lit) tcIfaceExpr (IfaceFCall cc ty) = tcIfaceType ty `thenM` \ ty' -> newUnique `thenM` \ u -> returnM (Var (mkFCallId u cc ty')) tcIfaceExpr (IfaceTuple boxity args) = mappM tcIfaceExpr args `thenM` \ args' -> let -- Put the missing type arguments back in con_args = map (Type . exprType) args' ++ args' in returnM (mkApps (Var con_id) con_args) where arity = length args con_id = dataConWorkId (tupleCon boxity arity) tcIfaceExpr (IfaceLam bndr body) = bindIfaceBndr bndr $ \ bndr' -> tcIfaceExpr body `thenM` \ body' -> returnM (Lam bndr' body') tcIfaceExpr (IfaceApp fun arg) = tcIfaceExpr fun `thenM` \ fun' -> tcIfaceExpr arg `thenM` \ arg' -> returnM (App fun' arg') tcIfaceExpr (IfaceCase scrut case_bndr ty alts) = tcIfaceExpr scrut `thenM` \ scrut' -> newIfaceName (mkVarOccFS case_bndr) `thenM` \ case_bndr_name -> let scrut_ty = exprType scrut' case_bndr' = mkLocalId case_bndr_name scrut_ty tc_app = splitTyConApp scrut_ty -- NB: Won't always succeed (polymoprhic case) -- but won't be demanded in those cases -- NB: not tcSplitTyConApp; we are looking at Core here -- look through non-rec newtypes to find the tycon that -- corresponds to the datacon in this case alternative in extendIfaceIdEnv [case_bndr'] $ mappM (tcIfaceAlt tc_app) alts `thenM` \ alts' -> tcIfaceType ty `thenM` \ ty' -> returnM (Case scrut' case_bndr' ty' alts') tcIfaceExpr (IfaceLet (IfaceNonRec bndr rhs) body) = tcIfaceExpr rhs `thenM` \ rhs' -> bindIfaceId bndr $ \ bndr' -> tcIfaceExpr body `thenM` \ body' -> returnM (Let (NonRec bndr' rhs') body') tcIfaceExpr (IfaceLet (IfaceRec pairs) body) = bindIfaceIds bndrs $ \ bndrs' -> mappM tcIfaceExpr rhss `thenM` \ rhss' -> tcIfaceExpr body `thenM` \ body' -> returnM (Let (Rec (bndrs' `zip` rhss')) body') where (bndrs, rhss) = unzip pairs tcIfaceExpr (IfaceCast expr co) = do expr' <- tcIfaceExpr expr co' <- tcIfaceType co returnM (Cast expr' co') tcIfaceExpr (IfaceNote note expr) = tcIfaceExpr expr `thenM` \ expr' -> case note of IfaceInlineMe -> returnM (Note InlineMe expr') IfaceSCC cc -> returnM (Note (SCC cc) expr') IfaceCoreNote n -> returnM (Note (CoreNote n) expr') ------------------------- tcIfaceAlt _ (IfaceDefault, names, rhs) = ASSERT( null names ) tcIfaceExpr rhs `thenM` \ rhs' -> returnM (DEFAULT, [], rhs') tcIfaceAlt _ (IfaceLitAlt lit, names, rhs) = ASSERT( null names ) tcIfaceExpr rhs `thenM` \ rhs' -> returnM (LitAlt lit, [], rhs') -- A case alternative is made quite a bit more complicated -- by the fact that we omit type annotations because we can -- work them out. True enough, but its not that easy! tcIfaceAlt (tycon, inst_tys) (IfaceDataAlt data_occ, arg_strs, rhs) = do { con <- tcIfaceDataCon data_occ ; ASSERT2( con `elem` tyConDataCons tycon, ppr con $$ ppr tycon $$ ppr (tyConDataCons tycon) ) tcIfaceDataAlt con inst_tys arg_strs rhs } tcIfaceAlt (tycon, inst_tys) (IfaceTupleAlt boxity, arg_occs, rhs) = ASSERT( isTupleTyCon tycon ) do { let [data_con] = tyConDataCons tycon ; tcIfaceDataAlt data_con inst_tys arg_occs rhs } tcIfaceDataAlt con inst_tys arg_strs rhs = do { us <- newUniqueSupply ; let uniqs = uniqsFromSupply us ; let (ex_tvs, co_tvs, arg_ids) = dataConRepFSInstPat arg_strs uniqs con inst_tys all_tvs = ex_tvs ++ co_tvs ; rhs' <- extendIfaceTyVarEnv all_tvs $ extendIfaceIdEnv arg_ids $ tcIfaceExpr rhs ; return (DataAlt con, all_tvs ++ arg_ids, rhs') } \end{code} \begin{code} tcExtCoreBindings :: [IfaceBinding] -> IfL [CoreBind] -- Used for external core tcExtCoreBindings [] = return [] tcExtCoreBindings (b:bs) = do_one b (tcExtCoreBindings bs) do_one :: IfaceBinding -> IfL [CoreBind] -> IfL [CoreBind] do_one (IfaceNonRec bndr rhs) thing_inside = do { rhs' <- tcIfaceExpr rhs ; bndr' <- newExtCoreBndr bndr ; extendIfaceIdEnv [bndr'] $ do { core_binds <- thing_inside ; return (NonRec bndr' rhs' : core_binds) }} do_one (IfaceRec pairs) thing_inside = do { bndrs' <- mappM newExtCoreBndr bndrs ; extendIfaceIdEnv bndrs' $ do { rhss' <- mappM tcIfaceExpr rhss ; core_binds <- thing_inside ; return (Rec (bndrs' `zip` rhss') : core_binds) }} where (bndrs,rhss) = unzip pairs \end{code} %************************************************************************ %* * IdInfo %* * %************************************************************************ \begin{code} tcIdInfo :: Bool -> Name -> Type -> IfaceIdInfo -> IfL IdInfo tcIdInfo ignore_prags name ty info | ignore_prags = return vanillaIdInfo | otherwise = case info of NoInfo -> return vanillaIdInfo HasInfo info -> foldlM tcPrag init_info info where -- Set the CgInfo to something sensible but uninformative before -- we start; default assumption is that it has CAFs init_info = vanillaIdInfo tcPrag info HsNoCafRefs = returnM (info `setCafInfo` NoCafRefs) tcPrag info (HsArity arity) = returnM (info `setArityInfo` arity) tcPrag info (HsStrictness str) = returnM (info `setAllStrictnessInfo` Just str) -- The next two are lazy, so they don't transitively suck stuff in tcPrag info (HsWorker nm arity) = tcWorkerInfo ty info nm arity tcPrag info (HsInline inline_prag) = returnM (info `setInlinePragInfo` inline_prag) tcPrag info (HsUnfold expr) = tcPragExpr name expr `thenM` \ maybe_expr' -> let -- maybe_expr' doesn't get looked at if the unfolding -- is never inspected; so the typecheck doesn't even happen unfold_info = case maybe_expr' of Nothing -> noUnfolding Just expr' -> mkTopUnfolding expr' in returnM (info `setUnfoldingInfoLazily` unfold_info) \end{code} \begin{code} tcWorkerInfo ty info wkr arity = do { mb_wkr_id <- forkM_maybe doc (tcIfaceExtId wkr) -- We return without testing maybe_wkr_id, but as soon as info is -- looked at we will test it. That's ok, because its outside the -- knot; and there seems no big reason to further defer the -- tcIfaceId lookup. (Contrast with tcPragExpr, where postponing walking -- over the unfolding until it's actually used does seem worth while.) ; us <- newUniqueSupply ; returnM (case mb_wkr_id of Nothing -> info Just wkr_id -> add_wkr_info us wkr_id info) } where doc = text "Worker for" <+> ppr wkr add_wkr_info us wkr_id info = info `setUnfoldingInfoLazily` mk_unfolding us wkr_id `setWorkerInfo` HasWorker wkr_id arity mk_unfolding us wkr_id = mkTopUnfolding (initUs_ us (mkWrapper ty strict_sig) wkr_id) -- We are relying here on strictness info always appearing -- before worker info, fingers crossed .... strict_sig = case newStrictnessInfo info of Just sig -> sig Nothing -> pprPanic "Worker info but no strictness for" (ppr wkr) \end{code} For unfoldings we try to do the job lazily, so that we never type check an unfolding that isn't going to be looked at. \begin{code} tcPragExpr :: Name -> IfaceExpr -> IfL (Maybe CoreExpr) tcPragExpr name expr = forkM_maybe doc $ tcIfaceExpr expr `thenM` \ core_expr' -> -- Check for type consistency in the unfolding ifOptM Opt_DoCoreLinting ( get_in_scope_ids `thenM` \ in_scope -> case lintUnfolding noSrcLoc in_scope core_expr' of Nothing -> returnM () Just fail_msg -> pprPanic "Iface Lint failure" (hang doc 2 fail_msg) ) `thenM_` returnM core_expr' where doc = text "Unfolding of" <+> ppr name get_in_scope_ids -- Urgh; but just for linting = setLclEnv () $ do { env <- getGblEnv ; case if_rec_types env of { Nothing -> return [] ; Just (_, get_env) -> do { type_env <- get_env ; return (typeEnvIds type_env) }}} \end{code} %************************************************************************ %* * Getting from Names to TyThings %* * %************************************************************************ \begin{code} tcIfaceGlobal :: Name -> IfL TyThing tcIfaceGlobal name | Just thing <- wiredInNameTyThing_maybe name -- Wired-in things include TyCons, DataCons, and Ids = do { ifCheckWiredInThing name; return thing } | otherwise = do { (eps,hpt) <- getEpsAndHpt ; dflags <- getDOpts ; case lookupType dflags hpt (eps_PTE eps) name of { Just thing -> return thing ; Nothing -> do { env <- getGblEnv ; case if_rec_types env of { Just (mod, get_type_env) | nameIsLocalOrFrom mod name -> do -- It's defined in the module being compiled { type_env <- setLclEnv () get_type_env -- yuk ; case lookupNameEnv type_env name of Just thing -> return thing Nothing -> pprPanic "tcIfaceGlobal (local): not found:" (ppr name $$ ppr type_env) } ; other -> do { mb_thing <- importDecl name -- It's imported; go get it ; case mb_thing of Failed err -> failIfM err Succeeded thing -> return thing }}}}} ifCheckWiredInThing :: Name -> IfL () -- Even though we are in an interface file, we want to make -- sure the instances of a wired-in thing are loaded (imagine f :: Double -> Double) -- Ditto want to ensure that RULES are loaded too ifCheckWiredInThing name = do { mod <- getIfModule -- Check whether we are typechecking the interface for this -- very module. E.g when compiling the base library in --make mode -- we may typecheck GHC.Base.hi. At that point, GHC.Base is not in -- the HPT, so without the test we'll demand-load it into the PIT! -- C.f. the same test in checkWiredInTyCon above ; unless (mod == nameModule name) (loadWiredInHomeIface name) } tcIfaceTyCon :: IfaceTyCon -> IfL TyCon tcIfaceTyCon IfaceIntTc = tcWiredInTyCon intTyCon tcIfaceTyCon IfaceBoolTc = tcWiredInTyCon boolTyCon tcIfaceTyCon IfaceCharTc = tcWiredInTyCon charTyCon tcIfaceTyCon IfaceListTc = tcWiredInTyCon listTyCon tcIfaceTyCon IfacePArrTc = tcWiredInTyCon parrTyCon tcIfaceTyCon (IfaceTupTc bx ar) = tcWiredInTyCon (tupleTyCon bx ar) tcIfaceTyCon (IfaceTc name) = do { thing <- tcIfaceGlobal name ; return (check_tc (tyThingTyCon thing)) } where #ifdef DEBUG check_tc tc = case toIfaceTyCon tc of IfaceTc _ -> tc other -> pprTrace "check_tc" (ppr tc) tc #else check_tc tc = tc #endif -- we should be okay just returning Kind constructors without extra loading tcIfaceTyCon IfaceLiftedTypeKindTc = return liftedTypeKindTyCon tcIfaceTyCon IfaceOpenTypeKindTc = return openTypeKindTyCon tcIfaceTyCon IfaceUnliftedTypeKindTc = return unliftedTypeKindTyCon tcIfaceTyCon IfaceArgTypeKindTc = return argTypeKindTyCon tcIfaceTyCon IfaceUbxTupleKindTc = return ubxTupleKindTyCon -- Even though we are in an interface file, we want to make -- sure the instances and RULES of this tycon are loaded -- Imagine: f :: Double -> Double tcWiredInTyCon :: TyCon -> IfL TyCon tcWiredInTyCon tc = do { ifCheckWiredInThing (tyConName tc) ; return tc } tcIfaceClass :: Name -> IfL Class tcIfaceClass name = do { thing <- tcIfaceGlobal name ; return (tyThingClass thing) } tcIfaceDataCon :: Name -> IfL DataCon tcIfaceDataCon name = do { thing <- tcIfaceGlobal name ; case thing of ADataCon dc -> return dc other -> pprPanic "tcIfaceExtDC" (ppr name$$ ppr thing) } tcIfaceExtId :: Name -> IfL Id tcIfaceExtId name = do { thing <- tcIfaceGlobal name ; case thing of AnId id -> return id other -> pprPanic "tcIfaceExtId" (ppr name$$ ppr thing) } \end{code} %************************************************************************ %* * Bindings %* * %************************************************************************ \begin{code} bindIfaceBndr :: IfaceBndr -> (CoreBndr -> IfL a) -> IfL a bindIfaceBndr (IfaceIdBndr bndr) thing_inside = bindIfaceId bndr thing_inside bindIfaceBndr (IfaceTvBndr bndr) thing_inside = bindIfaceTyVar bndr thing_inside bindIfaceBndrs :: [IfaceBndr] -> ([CoreBndr] -> IfL a) -> IfL a bindIfaceBndrs [] thing_inside = thing_inside [] bindIfaceBndrs (b:bs) thing_inside = bindIfaceBndr b $ \ b' -> bindIfaceBndrs bs $ \ bs' -> thing_inside (b':bs') ----------------------- bindIfaceId :: IfaceIdBndr -> (Id -> IfL a) -> IfL a bindIfaceId (occ, ty) thing_inside = do { name <- newIfaceName (mkVarOccFS occ) ; ty' <- tcIfaceType ty ; let { id = mkLocalId name ty' } ; extendIfaceIdEnv [id] (thing_inside id) } bindIfaceIds :: [IfaceIdBndr] -> ([Id] -> IfL a) -> IfL a bindIfaceIds bndrs thing_inside = do { names <- newIfaceNames (map mkVarOccFS occs) ; tys' <- mappM tcIfaceType tys ; let { ids = zipWithEqual "tcCoreValBndr" mkLocalId names tys' } ; extendIfaceIdEnv ids (thing_inside ids) } where (occs,tys) = unzip bndrs ----------------------- newExtCoreBndr :: IfaceIdBndr -> IfL Id newExtCoreBndr (var, ty) = do { mod <- getIfModule ; name <- newGlobalBinder mod (mkVarOccFS var) noSrcLoc ; ty' <- tcIfaceType ty ; return (mkLocalId name ty') } ----------------------- bindIfaceTyVar :: IfaceTvBndr -> (TyVar -> IfL a) -> IfL a bindIfaceTyVar (occ,kind) thing_inside = do { name <- newIfaceName (mkTyVarOcc occ) ; tyvar <- mk_iface_tyvar name kind ; extendIfaceTyVarEnv [tyvar] (thing_inside tyvar) } bindIfaceTyVars :: [IfaceTvBndr] -> ([TyVar] -> IfL a) -> IfL a bindIfaceTyVars bndrs thing_inside = do { names <- newIfaceNames (map mkTyVarOcc occs) ; tyvars <- TcRnMonad.zipWithM mk_iface_tyvar names kinds ; extendIfaceTyVarEnv tyvars (thing_inside tyvars) } where (occs,kinds) = unzip bndrs mk_iface_tyvar :: Name -> IfaceKind -> IfL TyVar mk_iface_tyvar name ifKind = do { kind <- tcIfaceType ifKind ; if isCoercionKind kind then return (Var.mkCoVar name kind) else return (Var.mkTyVar name kind) } \end{code}