-- ----------------------------------------------------------------------------- -- -- (c) The University of Glasgow, 2005 -- -- The GHC API -- -- ----------------------------------------------------------------------------- module GHC ( -- * Initialisation defaultErrorHandler, defaultCleanupHandler, -- * GHC Monad Ghc, GhcT, GhcMonad(..), runGhc, runGhcT, initGhcMonad, gcatch, gbracket, gfinally, clearWarnings, getWarnings, hasWarnings, printExceptionAndWarnings, printWarnings, handleSourceError, -- * Flags and settings DynFlags(..), DynFlag(..), Severity(..), HscTarget(..), dopt, GhcMode(..), GhcLink(..), defaultObjectTarget, parseDynamicFlags, getSessionDynFlags, setSessionDynFlags, parseStaticFlags, -- * Targets Target(..), TargetId(..), Phase, setTargets, getTargets, addTarget, removeTarget, guessTarget, -- * Extending the program scope extendGlobalRdrScope, setGlobalRdrScope, extendGlobalTypeScope, setGlobalTypeScope, -- * Loading\/compiling the program depanal, load, loadWithLogger, LoadHowMuch(..), SuccessFlag(..), -- also does depanal defaultWarnErrLogger, WarnErrLogger, workingDirectoryChanged, parseModule, typecheckModule, desugarModule, loadModule, ParsedModule, TypecheckedModule, DesugaredModule, -- all abstract TypecheckedSource, ParsedSource, RenamedSource, -- ditto TypecheckedMod, ParsedMod, moduleInfo, renamedSource, typecheckedSource, parsedSource, coreModule, compileToCoreModule, compileToCoreSimplified, compileCoreToObj, getModSummary, -- * Parsing Haddock comments parseHaddockComment, -- * Inspecting the module structure of the program ModuleGraph, ModSummary(..), ms_mod_name, ModLocation(..), getModuleGraph, isLoaded, topSortModuleGraph, -- * Inspecting modules ModuleInfo, getModuleInfo, modInfoTyThings, modInfoTopLevelScope, modInfoExports, modInfoInstances, modInfoIsExportedName, modInfoLookupName, lookupGlobalName, findGlobalAnns, mkPrintUnqualifiedForModule, -- * Printing PrintUnqualified, alwaysQualify, -- * Interactive evaluation getBindings, getPrintUnqual, findModule, #ifdef GHCI setContext, getContext, getNamesInScope, getRdrNamesInScope, getGRE, moduleIsInterpreted, getInfo, exprType, typeKind, parseName, RunResult(..), runStmt, SingleStep(..), resume, Resume(resumeStmt, resumeThreadId, resumeBreakInfo, resumeSpan, resumeHistory, resumeHistoryIx), History(historyBreakInfo, historyEnclosingDecl), GHC.getHistorySpan, getHistoryModule, getResumeContext, abandon, abandonAll, InteractiveEval.back, InteractiveEval.forward, showModule, isModuleInterpreted, InteractiveEval.compileExpr, HValue, dynCompileExpr, lookupName, GHC.obtainTermFromId, GHC.obtainTermFromVal, reconstructType, modInfoModBreaks, ModBreaks(..), BreakIndex, BreakInfo(breakInfo_number, breakInfo_module), BreakArray, setBreakOn, setBreakOff, getBreak, #endif -- * Abstract syntax elements -- ** Packages PackageId, -- ** Modules Module, mkModule, pprModule, moduleName, modulePackageId, ModuleName, mkModuleName, moduleNameString, -- ** Names Name, isExternalName, nameModule, pprParenSymName, nameSrcSpan, NamedThing(..), RdrName(Qual,Unqual), -- ** Identifiers Id, idType, isImplicitId, isDeadBinder, isExportedId, isLocalId, isGlobalId, isRecordSelector, isPrimOpId, isFCallId, isClassOpId_maybe, isDataConWorkId, idDataCon, isBottomingId, isDictonaryId, recordSelectorFieldLabel, -- ** Type constructors TyCon, tyConTyVars, tyConDataCons, tyConArity, isClassTyCon, isSynTyCon, isNewTyCon, isPrimTyCon, isFunTyCon, isOpenTyCon, synTyConDefn, synTyConType, synTyConResKind, -- ** Type variables TyVar, alphaTyVars, -- ** Data constructors DataCon, dataConSig, dataConType, dataConTyCon, dataConFieldLabels, dataConIsInfix, isVanillaDataCon, dataConStrictMarks, StrictnessMark(..), isMarkedStrict, -- ** Classes Class, classMethods, classSCTheta, classTvsFds, pprFundeps, -- ** Instances Instance, instanceDFunId, pprInstance, pprInstanceHdr, -- ** Types and Kinds Type, splitForAllTys, funResultTy, pprParendType, pprTypeApp, Kind, PredType, ThetaType, pprThetaArrow, -- ** Entities TyThing(..), -- ** Syntax module HsSyn, -- ToDo: remove extraneous bits -- ** Fixities FixityDirection(..), defaultFixity, maxPrecedence, negateFixity, compareFixity, -- ** Source locations SrcLoc, pprDefnLoc, mkSrcLoc, isGoodSrcLoc, noSrcLoc, srcLocFile, srcLocLine, srcLocCol, SrcSpan, mkSrcSpan, srcLocSpan, isGoodSrcSpan, noSrcSpan, srcSpanStart, srcSpanEnd, srcSpanFile, srcSpanStartLine, srcSpanEndLine, srcSpanStartCol, srcSpanEndCol, -- ** Located Located(..), -- *** Constructing Located noLoc, mkGeneralLocated, -- *** Deconstructing Located getLoc, unLoc, -- *** Combining and comparing Located values eqLocated, cmpLocated, combineLocs, addCLoc, leftmost_smallest, leftmost_largest, rightmost, spans, isSubspanOf, -- * Exceptions GhcException(..), showGhcException, -- * Token stream manipulations Token, getTokenStream, getRichTokenStream, showRichTokenStream, addSourceToTokens, -- * Miscellaneous --sessionHscEnv, cyclicModuleErr, ) where {- ToDo: * inline bits of HscMain here to simplify layering: hscTcExpr, hscStmt. * what StaticFlags should we expose, if any? -} #include "HsVersions.h" #ifdef GHCI import qualified Linker import Linker ( HValue ) import ByteCodeInstr import BreakArray import NameSet import InteractiveEval import TcRnDriver #endif import TcIface import TcRnTypes hiding (LIE) import TcRnMonad ( initIfaceCheck ) import Packages import NameSet import RdrName import qualified HsSyn -- hack as we want to reexport the whole module import HsSyn hiding ((<.>)) import Type hiding (typeKind) import TcType hiding (typeKind) import Id import Var import TysPrim ( alphaTyVars ) import TyCon import Class import FunDeps import DataCon import Name hiding ( varName ) import OccName ( parenSymOcc ) import InstEnv ( Instance, instanceDFunId, pprInstance, pprInstanceHdr, emptyInstEnv ) import FamInstEnv ( emptyFamInstEnv ) import SrcLoc --import CoreSyn import TidyPgm import DriverPipeline import DriverPhases ( HscSource(..), Phase(..), isHaskellSrcFilename, startPhase ) import HeaderInfo import Finder import HscMain import HscTypes import DynFlags import StaticFlagParser import qualified StaticFlags import SysTools ( initSysTools, cleanTempFiles, cleanTempFilesExcept, cleanTempDirs ) import Annotations import Module import LazyUniqFM import UniqSet import Unique import FiniteMap import Panic import Digraph import Bag ( unitBag, listToBag, emptyBag, isEmptyBag ) import ErrUtils import MonadUtils import Util import StringBuffer ( StringBuffer, hGetStringBuffer, nextChar ) import Outputable import BasicTypes import Maybes ( expectJust, mapCatMaybes ) import HaddockParse import HaddockLex ( tokenise ) import FastString import Lexer import Control.Concurrent import System.Directory ( getModificationTime, doesFileExist, getCurrentDirectory ) import Data.Maybe import Data.List import qualified Data.List as List import Data.Typeable ( Typeable ) import Data.Word ( Word8 ) import Control.Monad import System.Exit ( exitWith, ExitCode(..) ) import System.Time ( ClockTime, getClockTime ) import Exception import Data.IORef import System.FilePath import System.IO import System.IO.Error ( try, isDoesNotExistError ) import Prelude hiding (init) -- ----------------------------------------------------------------------------- -- Exception handlers -- | Install some default exception handlers and run the inner computation. -- Unless you want to handle exceptions yourself, you should wrap this around -- the top level of your program. The default handlers output the error -- message(s) to stderr and exit cleanly. defaultErrorHandler :: (ExceptionMonad m, MonadIO m) => DynFlags -> m a -> m a defaultErrorHandler dflags inner = -- top-level exception handler: any unrecognised exception is a compiler bug. ghandle (\exception -> liftIO $ do hFlush stdout case fromException exception of -- an IO exception probably isn't our fault, so don't panic Just (ioe :: IOException) -> fatalErrorMsg dflags (text (show ioe)) _ -> case fromException exception of Just StackOverflow -> fatalErrorMsg dflags (text "stack overflow: use +RTS -K to increase it") _ -> case fromException exception of Just (ex :: ExitCode) -> throw ex _ -> fatalErrorMsg dflags (text (show (Panic (show exception)))) exitWith (ExitFailure 1) ) $ -- error messages propagated as exceptions handleGhcException (\ge -> liftIO $ do hFlush stdout case ge of PhaseFailed _ code -> exitWith code Interrupted -> exitWith (ExitFailure 1) _ -> do fatalErrorMsg dflags (text (show ge)) exitWith (ExitFailure 1) ) $ inner -- | Install a default cleanup handler to remove temporary files deposited by -- a GHC run. This is seperate from 'defaultErrorHandler', because you might -- want to override the error handling, but still get the ordinary cleanup -- behaviour. defaultCleanupHandler :: (ExceptionMonad m, MonadIO m) => DynFlags -> m a -> m a defaultCleanupHandler dflags inner = -- make sure we clean up after ourselves inner `gonException` (liftIO $ do cleanTempFiles dflags cleanTempDirs dflags ) -- exceptions will be blocked while we clean the temporary files, -- so there shouldn't be any difficulty if we receive further -- signals. -- | Print the error message and all warnings. Useful inside exception -- handlers. Clears warnings after printing. printExceptionAndWarnings :: GhcMonad m => SourceError -> m () printExceptionAndWarnings err = do let errs = srcErrorMessages err warns <- getWarnings dflags <- getSessionDynFlags if isEmptyBag errs -- Empty errors means we failed due to -Werror. (Since this function -- takes a source error as argument, we know for sure _some_ error -- did indeed happen.) then liftIO $ do printBagOfWarnings dflags warns printBagOfErrors dflags (unitBag warnIsErrorMsg) else liftIO $ printBagOfErrors dflags errs clearWarnings -- | Print all accumulated warnings using 'log_action'. printWarnings :: GhcMonad m => m () printWarnings = do dflags <- getSessionDynFlags warns <- getWarnings liftIO $ printBagOfWarnings dflags warns clearWarnings -- | Run function for the 'Ghc' monad. -- -- It initialises the GHC session and warnings via 'initGhcMonad'. Each call -- to this function will create a new session which should not be shared among -- several threads. -- -- Any errors not handled inside the 'Ghc' action are propagated as IO -- exceptions. runGhc :: Maybe FilePath -- ^ See argument to 'initGhcMonad'. -> Ghc a -- ^ The action to perform. -> IO a runGhc mb_top_dir ghc = do wref <- newIORef emptyBag ref <- newIORef undefined let session = Session ref wref flip unGhc session $ do initGhcMonad mb_top_dir ghc -- XXX: unregister interrupt handlers here? -- | Run function for 'GhcT' monad transformer. -- -- It initialises the GHC session and warnings via 'initGhcMonad'. Each call -- to this function will create a new session which should not be shared among -- several threads. runGhcT :: (ExceptionMonad m, Functor m, MonadIO m) => Maybe FilePath -- ^ See argument to 'initGhcMonad'. -> GhcT m a -- ^ The action to perform. -> m a runGhcT mb_top_dir ghct = do wref <- liftIO $ newIORef emptyBag ref <- liftIO $ newIORef undefined let session = Session ref wref flip unGhcT session $ do initGhcMonad mb_top_dir ghct -- | Initialise a GHC session. -- -- If you implement a custom 'GhcMonad' you must call this function in the -- monad run function. It will initialise the session variable and clear all -- warnings. -- -- The first argument should point to the directory where GHC's library files -- reside. More precisely, this should be the output of @ghc --print-libdir@ -- of the version of GHC the module using this API is compiled with. For -- portability, you should use the @ghc-paths@ package, available at -- . initGhcMonad :: GhcMonad m => Maybe FilePath -> m () initGhcMonad mb_top_dir = do -- catch ^C main_thread <- liftIO $ myThreadId liftIO $ modifyMVar_ interruptTargetThread (return . (main_thread :)) liftIO $ installSignalHandlers liftIO $ StaticFlags.initStaticOpts dflags0 <- liftIO $ initDynFlags defaultDynFlags dflags <- liftIO $ initSysTools mb_top_dir dflags0 env <- liftIO $ newHscEnv dflags setSession env clearWarnings -- ----------------------------------------------------------------------------- -- Flags & settings -- | Grabs the DynFlags from the Session getSessionDynFlags :: GhcMonad m => m DynFlags getSessionDynFlags = withSession (return . hsc_dflags) -- | Updates the DynFlags in a Session. This also reads -- the package database (unless it has already been read), -- and prepares the compilers knowledge about packages. It -- can be called again to load new packages: just add new -- package flags to (packageFlags dflags). -- -- Returns a list of new packages that may need to be linked in using -- the dynamic linker (see 'linkPackages') as a result of new package -- flags. If you are not doing linking or doing static linking, you -- can ignore the list of packages returned. -- setSessionDynFlags :: GhcMonad m => DynFlags -> m [PackageId] setSessionDynFlags dflags = do (dflags', preload) <- liftIO $ initPackages dflags modifySession (\h -> h{ hsc_dflags = dflags' }) return preload -- | If there is no -o option, guess the name of target executable -- by using top-level source file name as a base. guessOutputFile :: GhcMonad m => m () guessOutputFile = modifySession $ \env -> let dflags = hsc_dflags env mod_graph = hsc_mod_graph env mainModuleSrcPath :: Maybe String mainModuleSrcPath = do let isMain = (== mainModIs dflags) . ms_mod [ms] <- return (filter isMain mod_graph) ml_hs_file (ms_location ms) name = fmap dropExtension mainModuleSrcPath #if defined(mingw32_HOST_OS) -- we must add the .exe extention unconditionally here, otherwise -- when name has an extension of its own, the .exe extension will -- not be added by DriverPipeline.exeFileName. See #2248 name_exe = fmap (<.> "exe") name #else name_exe = name #endif in case outputFile dflags of Just _ -> env Nothing -> env { hsc_dflags = dflags { outputFile = name_exe } } -- ----------------------------------------------------------------------------- -- Targets -- ToDo: think about relative vs. absolute file paths. And what -- happens when the current directory changes. -- | Sets the targets for this session. Each target may be a module name -- or a filename. The targets correspond to the set of root modules for -- the program\/library. Unloading the current program is achieved by -- setting the current set of targets to be empty, followed by 'load'. setTargets :: GhcMonad m => [Target] -> m () setTargets targets = modifySession (\h -> h{ hsc_targets = targets }) -- | Returns the current set of targets getTargets :: GhcMonad m => m [Target] getTargets = withSession (return . hsc_targets) -- | Add another target. addTarget :: GhcMonad m => Target -> m () addTarget target = modifySession (\h -> h{ hsc_targets = target : hsc_targets h }) -- | Remove a target removeTarget :: GhcMonad m => TargetId -> m () removeTarget target_id = modifySession (\h -> h{ hsc_targets = filter (hsc_targets h) }) where filter targets = [ t | t@(Target id _ _) <- targets, id /= target_id ] -- | Attempts to guess what Target a string refers to. This function -- implements the @--make@/GHCi command-line syntax for filenames: -- -- - if the string looks like a Haskell source filename, then interpret it -- as such -- -- - if adding a .hs or .lhs suffix yields the name of an existing file, -- then use that -- -- - otherwise interpret the string as a module name -- guessTarget :: GhcMonad m => String -> Maybe Phase -> m Target guessTarget str (Just phase) = return (Target (TargetFile str (Just phase)) True Nothing) guessTarget str Nothing | isHaskellSrcFilename file = return (target (TargetFile file Nothing)) | otherwise = do exists <- liftIO $ doesFileExist hs_file if exists then return (target (TargetFile hs_file Nothing)) else do exists <- liftIO $ doesFileExist lhs_file if exists then return (target (TargetFile lhs_file Nothing)) else do if looksLikeModuleName file then return (target (TargetModule (mkModuleName file))) else do throwGhcException (ProgramError (showSDoc $ text "target" <+> quotes (text file) <+> text "is not a module name or a source file")) where (file,obj_allowed) | '*':rest <- str = (rest, False) | otherwise = (str, True) hs_file = file <.> "hs" lhs_file = file <.> "lhs" target tid = Target tid obj_allowed Nothing -- ----------------------------------------------------------------------------- -- Extending the program scope extendGlobalRdrScope :: GhcMonad m => [GlobalRdrElt] -> m () extendGlobalRdrScope rdrElts = modifySession $ \hscEnv -> let global_rdr = hsc_global_rdr_env hscEnv in hscEnv{ hsc_global_rdr_env = foldl extendGlobalRdrEnv global_rdr rdrElts } setGlobalRdrScope :: GhcMonad m => [GlobalRdrElt] -> m () setGlobalRdrScope rdrElts = modifySession $ \hscEnv -> hscEnv{ hsc_global_rdr_env = foldl extendGlobalRdrEnv emptyGlobalRdrEnv rdrElts } extendGlobalTypeScope :: GhcMonad m => [Id] -> m () extendGlobalTypeScope ids = modifySession $ \hscEnv -> let global_type = hsc_global_type_env hscEnv in hscEnv{ hsc_global_type_env = extendTypeEnvWithIds global_type ids } setGlobalTypeScope :: GhcMonad m => [Id] -> m () setGlobalTypeScope ids = modifySession $ \hscEnv -> hscEnv{ hsc_global_type_env = extendTypeEnvWithIds emptyTypeEnv ids } -- ----------------------------------------------------------------------------- -- Parsing Haddock comments parseHaddockComment :: String -> Either String (HsDoc RdrName) parseHaddockComment string = case parseHaddockParagraphs (tokenise string) of MyLeft x -> Left x MyRight x -> Right x -- ----------------------------------------------------------------------------- -- Loading the program -- | Perform a dependency analysis starting from the current targets -- and update the session with the new module graph. depanal :: GhcMonad m => [ModuleName] -- ^ excluded modules -> Bool -- ^ allow duplicate roots -> m ModuleGraph depanal excluded_mods allow_dup_roots = do hsc_env <- getSession let dflags = hsc_dflags hsc_env targets = hsc_targets hsc_env old_graph = hsc_mod_graph hsc_env liftIO $ showPass dflags "Chasing dependencies" liftIO $ debugTraceMsg dflags 2 (hcat [ text "Chasing modules from: ", hcat (punctuate comma (map pprTarget targets))]) mod_graph <- downsweep hsc_env old_graph excluded_mods allow_dup_roots modifySession $ \_ -> hsc_env { hsc_mod_graph = mod_graph } return mod_graph data LoadHowMuch = LoadAllTargets | LoadUpTo ModuleName | LoadDependenciesOf ModuleName -- | Try to load the program. Calls 'loadWithLogger' with the default -- compiler that just immediately logs all warnings and errors. load :: GhcMonad m => LoadHowMuch -> m SuccessFlag load how_much = loadWithLogger defaultWarnErrLogger how_much -- | A function called to log warnings and errors. type WarnErrLogger = GhcMonad m => Maybe SourceError -> m () defaultWarnErrLogger :: WarnErrLogger defaultWarnErrLogger Nothing = printWarnings defaultWarnErrLogger (Just e) = printExceptionAndWarnings e -- | Try to load the program. If a Module is supplied, then just -- attempt to load up to this target. If no Module is supplied, -- then try to load all targets. -- -- The first argument is a function that is called after compiling each -- module to print wanrings and errors. loadWithLogger :: GhcMonad m => WarnErrLogger -> LoadHowMuch -> m SuccessFlag loadWithLogger logger how_much = do -- Dependency analysis first. Note that this fixes the module graph: -- even if we don't get a fully successful upsweep, the full module -- graph is still retained in the Session. We can tell which modules -- were successfully loaded by inspecting the Session's HPT. mod_graph <- depanal [] False load2 how_much mod_graph logger load2 :: GhcMonad m => LoadHowMuch -> [ModSummary] -> WarnErrLogger -> m SuccessFlag load2 how_much mod_graph logger = do guessOutputFile hsc_env <- getSession let hpt1 = hsc_HPT hsc_env let dflags = hsc_dflags hsc_env -- The "bad" boot modules are the ones for which we have -- B.hs-boot in the module graph, but no B.hs -- The downsweep should have ensured this does not happen -- (see msDeps) let all_home_mods = [ms_mod_name s | s <- mod_graph, not (isBootSummary s)] bad_boot_mods = [s | s <- mod_graph, isBootSummary s, not (ms_mod_name s `elem` all_home_mods)] ASSERT( null bad_boot_mods ) return () -- check that the module given in HowMuch actually exists, otherwise -- topSortModuleGraph will bomb later. let checkHowMuch (LoadUpTo m) = checkMod m checkHowMuch (LoadDependenciesOf m) = checkMod m checkHowMuch _ = id checkMod m and_then | m `elem` all_home_mods = and_then | otherwise = do liftIO $ errorMsg dflags (text "no such module:" <+> quotes (ppr m)) return Failed checkHowMuch how_much $ do -- mg2_with_srcimps drops the hi-boot nodes, returning a -- graph with cycles. Among other things, it is used for -- backing out partially complete cycles following a failed -- upsweep, and for removing from hpt all the modules -- not in strict downwards closure, during calls to compile. let mg2_with_srcimps :: [SCC ModSummary] mg2_with_srcimps = topSortModuleGraph True mod_graph Nothing -- If we can determine that any of the {-# SOURCE #-} imports -- are definitely unnecessary, then emit a warning. warnUnnecessarySourceImports dflags mg2_with_srcimps let -- check the stability property for each module. stable_mods@(stable_obj,stable_bco) = checkStability hpt1 mg2_with_srcimps all_home_mods -- prune bits of the HPT which are definitely redundant now, -- to save space. pruned_hpt = pruneHomePackageTable hpt1 (flattenSCCs mg2_with_srcimps) stable_mods liftIO $ evaluate pruned_hpt -- before we unload anything, make sure we don't leave an old -- interactive context around pointing to dead bindings. Also, -- write the pruned HPT to allow the old HPT to be GC'd. modifySession $ \_ -> hsc_env{ hsc_IC = emptyInteractiveContext, hsc_HPT = pruned_hpt } liftIO $ debugTraceMsg dflags 2 (text "Stable obj:" <+> ppr stable_obj $$ text "Stable BCO:" <+> ppr stable_bco) -- Unload any modules which are going to be re-linked this time around. let stable_linkables = [ linkable | m <- stable_obj++stable_bco, Just hmi <- [lookupUFM pruned_hpt m], Just linkable <- [hm_linkable hmi] ] liftIO $ unload hsc_env stable_linkables -- We could at this point detect cycles which aren't broken by -- a source-import, and complain immediately, but it seems better -- to let upsweep_mods do this, so at least some useful work gets -- done before the upsweep is abandoned. --hPutStrLn stderr "after tsort:\n" --hPutStrLn stderr (showSDoc (vcat (map ppr mg2))) -- Now do the upsweep, calling compile for each module in -- turn. Final result is version 3 of everything. -- Topologically sort the module graph, this time including hi-boot -- nodes, and possibly just including the portion of the graph -- reachable from the module specified in the 2nd argument to load. -- This graph should be cycle-free. -- If we're restricting the upsweep to a portion of the graph, we -- also want to retain everything that is still stable. let full_mg :: [SCC ModSummary] full_mg = topSortModuleGraph False mod_graph Nothing maybe_top_mod = case how_much of LoadUpTo m -> Just m LoadDependenciesOf m -> Just m _ -> Nothing partial_mg0 :: [SCC ModSummary] partial_mg0 = topSortModuleGraph False mod_graph maybe_top_mod -- LoadDependenciesOf m: we want the upsweep to stop just -- short of the specified module (unless the specified module -- is stable). partial_mg | LoadDependenciesOf _mod <- how_much = ASSERT( case last partial_mg0 of AcyclicSCC ms -> ms_mod_name ms == _mod; _ -> False ) List.init partial_mg0 | otherwise = partial_mg0 stable_mg = [ AcyclicSCC ms | AcyclicSCC ms <- full_mg, ms_mod_name ms `elem` stable_obj++stable_bco, ms_mod_name ms `notElem` [ ms_mod_name ms' | AcyclicSCC ms' <- partial_mg ] ] mg = stable_mg ++ partial_mg -- clean up between compilations let cleanup = cleanTempFilesExcept dflags (ppFilesFromSummaries (flattenSCCs mg2_with_srcimps)) liftIO $ debugTraceMsg dflags 2 (hang (text "Ready for upsweep") 2 (ppr mg)) (upsweep_ok, hsc_env1, modsUpswept) <- upsweep logger (hsc_env { hsc_HPT = emptyHomePackageTable }) pruned_hpt stable_mods cleanup mg -- Make modsDone be the summaries for each home module now -- available; this should equal the domain of hpt3. -- Get in in a roughly top .. bottom order (hence reverse). let modsDone = reverse modsUpswept -- Try and do linking in some form, depending on whether the -- upsweep was completely or only partially successful. if succeeded upsweep_ok then -- Easy; just relink it all. do liftIO $ debugTraceMsg dflags 2 (text "Upsweep completely successful.") -- Clean up after ourselves liftIO $ cleanTempFilesExcept dflags (ppFilesFromSummaries modsDone) -- Issue a warning for the confusing case where the user -- said '-o foo' but we're not going to do any linking. -- We attempt linking if either (a) one of the modules is -- called Main, or (b) the user said -no-hs-main, indicating -- that main() is going to come from somewhere else. -- let ofile = outputFile dflags let no_hs_main = dopt Opt_NoHsMain dflags let main_mod = mainModIs dflags a_root_is_Main = any ((==main_mod).ms_mod) mod_graph do_linking = a_root_is_Main || no_hs_main when (ghcLink dflags == LinkBinary && isJust ofile && not do_linking) $ liftIO $ debugTraceMsg dflags 1 $ text ("Warning: output was redirected with -o, " ++ "but no output will be generated\n" ++ "because there is no " ++ moduleNameString (moduleName main_mod) ++ " module.") -- link everything together linkresult <- liftIO $ link (ghcLink dflags) dflags do_linking (hsc_HPT hsc_env1) loadFinish Succeeded linkresult hsc_env1 else -- Tricky. We need to back out the effects of compiling any -- half-done cycles, both so as to clean up the top level envs -- and to avoid telling the interactive linker to link them. do liftIO $ debugTraceMsg dflags 2 (text "Upsweep partially successful.") let modsDone_names = map ms_mod modsDone let mods_to_zap_names = findPartiallyCompletedCycles modsDone_names mg2_with_srcimps let mods_to_keep = filter ((`notElem` mods_to_zap_names).ms_mod) modsDone let hpt4 = retainInTopLevelEnvs (map ms_mod_name mods_to_keep) (hsc_HPT hsc_env1) -- Clean up after ourselves liftIO $ cleanTempFilesExcept dflags (ppFilesFromSummaries mods_to_keep) -- there should be no Nothings where linkables should be, now ASSERT(all (isJust.hm_linkable) (eltsUFM (hsc_HPT hsc_env))) do -- Link everything together linkresult <- liftIO $ link (ghcLink dflags) dflags False hpt4 let hsc_env4 = hsc_env1{ hsc_HPT = hpt4 } loadFinish Failed linkresult hsc_env4 -- Finish up after a load. -- If the link failed, unload everything and return. loadFinish :: GhcMonad m => SuccessFlag -> SuccessFlag -> HscEnv -> m SuccessFlag loadFinish _all_ok Failed hsc_env = do liftIO $ unload hsc_env [] modifySession $ \_ -> discardProg hsc_env return Failed -- Empty the interactive context and set the module context to the topmost -- newly loaded module, or the Prelude if none were loaded. loadFinish all_ok Succeeded hsc_env = do modifySession $ \_ -> hsc_env{ hsc_IC = emptyInteractiveContext } return all_ok -- Forget the current program, but retain the persistent info in HscEnv discardProg :: HscEnv -> HscEnv discardProg hsc_env = hsc_env { hsc_mod_graph = emptyMG, hsc_IC = emptyInteractiveContext, hsc_HPT = emptyHomePackageTable } -- used to fish out the preprocess output files for the purposes of -- cleaning up. The preprocessed file *might* be the same as the -- source file, but that doesn't do any harm. ppFilesFromSummaries :: [ModSummary] -> [FilePath] ppFilesFromSummaries summaries = map ms_hspp_file summaries -- ----------------------------------------------------------------------------- class ParsedMod m where modSummary :: m -> ModSummary parsedSource :: m -> ParsedSource class ParsedMod m => TypecheckedMod m where renamedSource :: m -> Maybe RenamedSource typecheckedSource :: m -> TypecheckedSource moduleInfo :: m -> ModuleInfo tm_internals :: m -> (TcGblEnv, ModDetails) -- ToDo: improvements that could be made here: -- if the module succeeded renaming but not typechecking, -- we can still get back the GlobalRdrEnv and exports, so -- perhaps the ModuleInfo should be split up into separate -- fields. class TypecheckedMod m => DesugaredMod m where coreModule :: m -> ModGuts -- | The result of successful parsing. data ParsedModule = ParsedModule { pm_mod_summary :: ModSummary , pm_parsed_source :: ParsedSource } instance ParsedMod ParsedModule where modSummary m = pm_mod_summary m parsedSource m = pm_parsed_source m -- | The result of successful typechecking. It also contains the parser -- result. data TypecheckedModule = TypecheckedModule { tm_parsed_module :: ParsedModule , tm_renamed_source :: Maybe RenamedSource , tm_typechecked_source :: TypecheckedSource , tm_checked_module_info :: ModuleInfo , tm_internals_ :: (TcGblEnv, ModDetails) } instance ParsedMod TypecheckedModule where modSummary m = modSummary (tm_parsed_module m) parsedSource m = parsedSource (tm_parsed_module m) instance TypecheckedMod TypecheckedModule where renamedSource m = tm_renamed_source m typecheckedSource m = tm_typechecked_source m moduleInfo m = tm_checked_module_info m tm_internals m = tm_internals_ m -- | The result of successful desugaring (i.e., translation to core). Also -- contains all the information of a typechecked module. data DesugaredModule = DesugaredModule { dm_typechecked_module :: TypecheckedModule , dm_core_module :: ModGuts } instance ParsedMod DesugaredModule where modSummary m = modSummary (dm_typechecked_module m) parsedSource m = parsedSource (dm_typechecked_module m) instance TypecheckedMod DesugaredModule where renamedSource m = renamedSource (dm_typechecked_module m) typecheckedSource m = typecheckedSource (dm_typechecked_module m) moduleInfo m = moduleInfo (dm_typechecked_module m) tm_internals m = tm_internals_ (dm_typechecked_module m) instance DesugaredMod DesugaredModule where coreModule m = dm_core_module m type ParsedSource = Located (HsModule RdrName) type RenamedSource = (HsGroup Name, [LImportDecl Name], Maybe [LIE Name], Maybe (HsDoc Name), HaddockModInfo Name) type TypecheckedSource = LHsBinds Id -- NOTE: -- - things that aren't in the output of the typechecker right now: -- - the export list -- - the imports -- - type signatures -- - type/data/newtype declarations -- - class declarations -- - instances -- - extra things in the typechecker's output: -- - default methods are turned into top-level decls. -- - dictionary bindings -- | Return the 'ModSummary' of a module with the given name. -- -- The module must be part of the module graph (see 'hsc_mod_graph' and -- 'ModuleGraph'). If this is not the case, this function will throw a -- 'GhcApiError'. -- -- This function ignores boot modules and requires that there is only one -- non-boot module with the given name. getModSummary :: GhcMonad m => ModuleName -> m ModSummary getModSummary mod = do mg <- liftM hsc_mod_graph getSession case [ ms | ms <- mg, ms_mod_name ms == mod, not (isBootSummary ms) ] of [] -> throw $ mkApiErr (text "Module not part of module graph") [ms] -> return ms multiple -> throw $ mkApiErr (text "getModSummary is ambiguous: " <+> ppr multiple) -- | Parse a module. -- -- Throws a 'SourceError' on parse error. parseModule :: GhcMonad m => ModSummary -> m ParsedModule parseModule ms = do hsc_env0 <- getSession let hsc_env = hsc_env0 { hsc_dflags = ms_hspp_opts ms } rdr_module <- parseFile hsc_env ms return (ParsedModule ms rdr_module) -- | Typecheck and rename a parsed module. -- -- Throws a 'SourceError' if either fails. typecheckModule :: GhcMonad m => ParsedModule -> m TypecheckedModule typecheckModule pmod = do let ms = modSummary pmod hsc_env0 <- getSession let hsc_env = hsc_env0 { hsc_dflags = ms_hspp_opts ms } (tc_gbl_env, rn_info) <- typecheckRenameModule hsc_env ms (parsedSource pmod) details <- liftIO $ makeSimpleDetails hsc_env tc_gbl_env return $ TypecheckedModule { tm_internals_ = (tc_gbl_env, details), tm_parsed_module = pmod, tm_renamed_source = rn_info, tm_typechecked_source = tcg_binds tc_gbl_env, tm_checked_module_info = ModuleInfo { minf_type_env = md_types details, minf_exports = availsToNameSet $ md_exports details, minf_rdr_env = Just (tcg_rdr_env tc_gbl_env), minf_instances = md_insts details #ifdef GHCI ,minf_modBreaks = emptyModBreaks #endif }} -- | Desugar a typechecked module. desugarModule :: GhcMonad m => TypecheckedModule -> m DesugaredModule desugarModule tcm = do let ms = modSummary tcm hsc_env0 <- getSession let hsc_env = hsc_env0 { hsc_dflags = ms_hspp_opts ms } let (tcg, _) = tm_internals tcm guts <- deSugarModule hsc_env ms tcg return $ DesugaredModule { dm_typechecked_module = tcm, dm_core_module = guts } -- | Load a module. Input doesn't need to be desugared. -- -- XXX: Describe usage. loadModule :: (TypecheckedMod mod, GhcMonad m) => mod -> m mod loadModule tcm = do let ms = modSummary tcm let mod = ms_mod_name ms hsc_env0 <- getSession let hsc_env = hsc_env0 { hsc_dflags = ms_hspp_opts ms } let (tcg, details) = tm_internals tcm (iface,_) <- liftIO $ makeSimpleIface hsc_env Nothing tcg details let mod_info = HomeModInfo { hm_iface = iface, hm_details = details, hm_linkable = Nothing } let hpt_new = addToUFM (hsc_HPT hsc_env) mod mod_info modifySession $ \_ -> hsc_env0{ hsc_HPT = hpt_new } return tcm -- | This is the way to get access to the Core bindings corresponding -- to a module. 'compileToCore' parses, typechecks, and -- desugars the module, then returns the resulting Core module (consisting of -- the module name, type declarations, and function declarations) if -- successful. compileToCoreModule :: GhcMonad m => FilePath -> m CoreModule compileToCoreModule = compileCore False -- | Like compileToCoreModule, but invokes the simplifier, so -- as to return simplified and tidied Core. compileToCoreSimplified :: GhcMonad m => FilePath -> m CoreModule compileToCoreSimplified = compileCore True {- -- | Provided for backwards-compatibility: compileToCore returns just the Core -- bindings, but for most purposes, you probably want to call -- compileToCoreModule. compileToCore :: GhcMonad m => FilePath -> m [CoreBind] compileToCore fn = do mod <- compileToCoreModule session fn return $ cm_binds mod -} -- | Takes a CoreModule and compiles the bindings therein -- to object code. The first argument is a bool flag indicating -- whether to run the simplifier. -- The resulting .o, .hi, and executable files, if any, are stored in the -- current directory, and named according to the module name. -- Returns True iff compilation succeeded. -- This has only so far been tested with a single self-contained module. compileCoreToObj :: GhcMonad m => Bool -> CoreModule -> m () compileCoreToObj simplify cm@(CoreModule{ cm_module = mName }) = do hscEnv <- getSession dflags <- getSessionDynFlags currentTime <- liftIO $ getClockTime cwd <- liftIO $ getCurrentDirectory modLocation <- liftIO $ mkHiOnlyModLocation dflags (hiSuf dflags) cwd ((moduleNameSlashes . moduleName) mName) let modSummary = ModSummary { ms_mod = mName, ms_hsc_src = ExtCoreFile, ms_location = modLocation, -- By setting the object file timestamp to Nothing, -- we always force recompilation, which is what we -- want. (Thus it doesn't matter what the timestamp -- for the (nonexistent) source file is.) ms_hs_date = currentTime, ms_obj_date = Nothing, -- Only handling the single-module case for now, so no imports. ms_srcimps = [], ms_imps = [], -- No source file ms_hspp_file = "", ms_hspp_opts = dflags, ms_hspp_buf = Nothing } ioMsgMaybe $ flip evalComp (CompState{ compHscEnv=hscEnv, compModSummary=modSummary, compOldIface=Nothing}) $ let maybe_simplify mod_guts | simplify = hscSimplify mod_guts | otherwise = return mod_guts in maybe_simplify (mkModGuts cm) >>= hscNormalIface >>= hscWriteIface >>= hscOneShot return () -- Makes a "vanilla" ModGuts. mkModGuts :: CoreModule -> ModGuts mkModGuts coreModule = ModGuts { mg_module = cm_module coreModule, mg_boot = False, mg_exports = [], mg_deps = noDependencies, mg_dir_imps = emptyModuleEnv, mg_used_names = emptyNameSet, mg_rdr_env = emptyGlobalRdrEnv, mg_fix_env = emptyFixityEnv, mg_types = emptyTypeEnv, mg_insts = [], mg_fam_insts = [], mg_rules = [], mg_binds = cm_binds coreModule, mg_foreign = NoStubs, mg_warns = NoWarnings, mg_anns = [], mg_hpc_info = emptyHpcInfo False, mg_modBreaks = emptyModBreaks, mg_vect_info = noVectInfo, mg_inst_env = emptyInstEnv, mg_fam_inst_env = emptyFamInstEnv } compileCore :: GhcMonad m => Bool -> FilePath -> m CoreModule compileCore simplify fn = do -- First, set the target to the desired filename target <- guessTarget fn Nothing addTarget target load LoadAllTargets -- Then find dependencies modGraph <- depanal [] True case find ((== fn) . msHsFilePath) modGraph of Just modSummary -> do -- Now we have the module name; -- parse, typecheck and desugar the module mod_guts <- coreModule `fmap` (desugarModule =<< typecheckModule =<< parseModule modSummary) liftM gutsToCoreModule $ if simplify then do -- If simplify is true: simplify (hscSimplify), then tidy -- (tidyProgram). hsc_env <- getSession simpl_guts <- ioMsg $ evalComp (hscSimplify mod_guts) (CompState{ compHscEnv = hsc_env, compModSummary = modSummary, compOldIface = Nothing}) tidy_guts <- liftIO $ tidyProgram hsc_env simpl_guts return $ Left tidy_guts else return $ Right mod_guts Nothing -> panic "compileToCoreModule: target FilePath not found in\ module dependency graph" where -- two versions, based on whether we simplify (thus run tidyProgram, -- which returns a (CgGuts, ModDetails) pair, or not (in which case -- we just have a ModGuts. gutsToCoreModule :: Either (CgGuts, ModDetails) ModGuts -> CoreModule gutsToCoreModule (Left (cg, md)) = CoreModule { cm_module = cg_module cg, cm_types = md_types md, cm_imports = cg_dir_imps cg, cm_binds = cg_binds cg } gutsToCoreModule (Right mg) = CoreModule { cm_module = mg_module mg, cm_types = mg_types mg, cm_imports = moduleEnvKeys (mg_dir_imps mg), cm_binds = mg_binds mg } -- --------------------------------------------------------------------------- -- Unloading unload :: HscEnv -> [Linkable] -> IO () unload hsc_env stable_linkables -- Unload everthing *except* 'stable_linkables' = case ghcLink (hsc_dflags hsc_env) of #ifdef GHCI LinkInMemory -> Linker.unload (hsc_dflags hsc_env) stable_linkables #else LinkInMemory -> panic "unload: no interpreter" -- urgh. avoid warnings: hsc_env stable_linkables #endif _other -> return () -- ----------------------------------------------------------------------------- {- | Stability tells us which modules definitely do not need to be recompiled. There are two main reasons for having stability: - avoid doing a complete upsweep of the module graph in GHCi when modules near the bottom of the tree have not changed. - to tell GHCi when it can load object code: we can only load object code for a module when we also load object code fo all of the imports of the module. So we need to know that we will definitely not be recompiling any of these modules, and we can use the object code. The stability check is as follows. Both stableObject and stableBCO are used during the upsweep phase later. @ stable m = stableObject m || stableBCO m stableObject m = all stableObject (imports m) && old linkable does not exist, or is == on-disk .o && date(on-disk .o) > date(.hs) stableBCO m = all stable (imports m) && date(BCO) > date(.hs) @ These properties embody the following ideas: - if a module is stable, then: - if it has been compiled in a previous pass (present in HPT) then it does not need to be compiled or re-linked. - if it has not been compiled in a previous pass, then we only need to read its .hi file from disk and link it to produce a 'ModDetails'. - if a modules is not stable, we will definitely be at least re-linking, and possibly re-compiling it during the 'upsweep'. All non-stable modules can (and should) therefore be unlinked before the 'upsweep'. - Note that objects are only considered stable if they only depend on other objects. We can't link object code against byte code. -} checkStability :: HomePackageTable -- HPT from last compilation -> [SCC ModSummary] -- current module graph (cyclic) -> [ModuleName] -- all home modules -> ([ModuleName], -- stableObject [ModuleName]) -- stableBCO checkStability hpt sccs all_home_mods = foldl checkSCC ([],[]) sccs where checkSCC (stable_obj, stable_bco) scc0 | stableObjects = (scc_mods ++ stable_obj, stable_bco) | stableBCOs = (stable_obj, scc_mods ++ stable_bco) | otherwise = (stable_obj, stable_bco) where scc = flattenSCC scc0 scc_mods = map ms_mod_name scc home_module m = m `elem` all_home_mods && m `notElem` scc_mods scc_allimps = nub (filter home_module (concatMap ms_allimps scc)) -- all imports outside the current SCC, but in the home pkg stable_obj_imps = map (`elem` stable_obj) scc_allimps stable_bco_imps = map (`elem` stable_bco) scc_allimps stableObjects = and stable_obj_imps && all object_ok scc stableBCOs = and (zipWith (||) stable_obj_imps stable_bco_imps) && all bco_ok scc object_ok ms | Just t <- ms_obj_date ms = t >= ms_hs_date ms && same_as_prev t | otherwise = False where same_as_prev t = case lookupUFM hpt (ms_mod_name ms) of Just hmi | Just l <- hm_linkable hmi -> isObjectLinkable l && t == linkableTime l _other -> True -- why '>=' rather than '>' above? If the filesystem stores -- times to the nearset second, we may occasionally find that -- the object & source have the same modification time, -- especially if the source was automatically generated -- and compiled. Using >= is slightly unsafe, but it matches -- make's behaviour. bco_ok ms = case lookupUFM hpt (ms_mod_name ms) of Just hmi | Just l <- hm_linkable hmi -> not (isObjectLinkable l) && linkableTime l >= ms_hs_date ms _other -> False ms_allimps :: ModSummary -> [ModuleName] ms_allimps ms = map unLoc (ms_srcimps ms ++ ms_imps ms) -- ----------------------------------------------------------------------------- -- | Prune the HomePackageTable -- -- Before doing an upsweep, we can throw away: -- -- - For non-stable modules: -- - all ModDetails, all linked code -- - all unlinked code that is out of date with respect to -- the source file -- -- This is VERY IMPORTANT otherwise we'll end up requiring 2x the -- space at the end of the upsweep, because the topmost ModDetails of the -- old HPT holds on to the entire type environment from the previous -- compilation. pruneHomePackageTable :: HomePackageTable -> [ModSummary] -> ([ModuleName],[ModuleName]) -> HomePackageTable pruneHomePackageTable hpt summ (stable_obj, stable_bco) = mapUFM prune hpt where prune hmi | is_stable modl = hmi' | otherwise = hmi'{ hm_details = emptyModDetails } where modl = moduleName (mi_module (hm_iface hmi)) hmi' | Just l <- hm_linkable hmi, linkableTime l < ms_hs_date ms = hmi{ hm_linkable = Nothing } | otherwise = hmi where ms = expectJust "prune" (lookupUFM ms_map modl) ms_map = listToUFM [(ms_mod_name ms, ms) | ms <- summ] is_stable m = m `elem` stable_obj || m `elem` stable_bco -- ----------------------------------------------------------------------------- -- Return (names of) all those in modsDone who are part of a cycle -- as defined by theGraph. findPartiallyCompletedCycles :: [Module] -> [SCC ModSummary] -> [Module] findPartiallyCompletedCycles modsDone theGraph = chew theGraph where chew [] = [] chew ((AcyclicSCC _):rest) = chew rest -- acyclic? not interesting. chew ((CyclicSCC vs):rest) = let names_in_this_cycle = nub (map ms_mod vs) mods_in_this_cycle = nub ([done | done <- modsDone, done `elem` names_in_this_cycle]) chewed_rest = chew rest in if notNull mods_in_this_cycle && length mods_in_this_cycle < length names_in_this_cycle then mods_in_this_cycle ++ chewed_rest else chewed_rest -- ----------------------------------------------------------------------------- -- | The upsweep -- -- This is where we compile each module in the module graph, in a pass -- from the bottom to the top of the graph. -- -- There better had not be any cyclic groups here -- we check for them. upsweep :: GhcMonad m => WarnErrLogger -- ^ Called to print warnings and errors. -> HscEnv -- ^ Includes initially-empty HPT -> HomePackageTable -- ^ HPT from last time round (pruned) -> ([ModuleName],[ModuleName]) -- ^ stable modules (see checkStability) -> IO () -- ^ How to clean up unwanted tmp files -> [SCC ModSummary] -- ^ Mods to do (the worklist) -> m (SuccessFlag, HscEnv, -- With an updated HPT [ModSummary]) -- Mods which succeeded upsweep logger hsc_env old_hpt stable_mods cleanup sccs = do (res, hsc_env, done) <- upsweep' hsc_env old_hpt [] sccs 1 (length sccs) return (res, hsc_env, reverse done) where upsweep' hsc_env _old_hpt done [] _ _ = return (Succeeded, hsc_env, done) upsweep' hsc_env _old_hpt done (CyclicSCC ms:_) _ _ = do liftIO $ fatalErrorMsg (hsc_dflags hsc_env) (cyclicModuleErr ms) return (Failed, hsc_env, done) upsweep' hsc_env old_hpt done (AcyclicSCC mod:mods) mod_index nmods = do -- putStrLn ("UPSWEEP_MOD: hpt = " ++ -- show (map (moduleUserString.moduleName.mi_module.hm_iface) -- (moduleEnvElts (hsc_HPT hsc_env))) mb_mod_info <- handleSourceError (\err -> do logger (Just err); return Nothing) $ do mod_info <- upsweep_mod hsc_env old_hpt stable_mods mod mod_index nmods logger Nothing -- log warnings return (Just mod_info) liftIO cleanup -- Remove unwanted tmp files between compilations case mb_mod_info of Nothing -> return (Failed, hsc_env, done) Just mod_info -> do let this_mod = ms_mod_name mod -- Add new info to hsc_env hpt1 = addToUFM (hsc_HPT hsc_env) this_mod mod_info hsc_env1 = hsc_env { hsc_HPT = hpt1 } -- Space-saving: delete the old HPT entry -- for mod BUT if mod is a hs-boot -- node, don't delete it. For the -- interface, the HPT entry is probaby for the -- main Haskell source file. Deleting it -- would force the real module to be recompiled -- every time. old_hpt1 | isBootSummary mod = old_hpt | otherwise = delFromUFM old_hpt this_mod done' = mod:done -- fixup our HomePackageTable after we've finished compiling -- a mutually-recursive loop. See reTypecheckLoop, below. hsc_env2 <- liftIO $ reTypecheckLoop hsc_env1 mod done' upsweep' hsc_env2 old_hpt1 done' mods (mod_index+1) nmods -- | Compile a single module. Always produce a Linkable for it if -- successful. If no compilation happened, return the old Linkable. upsweep_mod :: GhcMonad m => HscEnv -> HomePackageTable -> ([ModuleName],[ModuleName]) -> ModSummary -> Int -- index of module -> Int -- total number of modules -> m HomeModInfo upsweep_mod hsc_env old_hpt (stable_obj, stable_bco) summary mod_index nmods = let this_mod_name = ms_mod_name summary this_mod = ms_mod summary mb_obj_date = ms_obj_date summary obj_fn = ml_obj_file (ms_location summary) hs_date = ms_hs_date summary is_stable_obj = this_mod_name `elem` stable_obj is_stable_bco = this_mod_name `elem` stable_bco old_hmi = lookupUFM old_hpt this_mod_name -- We're using the dflags for this module now, obtained by -- applying any options in its LANGUAGE & OPTIONS_GHC pragmas. dflags = ms_hspp_opts summary prevailing_target = hscTarget (hsc_dflags hsc_env) local_target = hscTarget dflags -- If OPTIONS_GHC contains -fasm or -fvia-C, be careful that -- we don't do anything dodgy: these should only work to change -- from -fvia-C to -fasm and vice-versa, otherwise we could -- end up trying to link object code to byte code. target = if prevailing_target /= local_target && (not (isObjectTarget prevailing_target) || not (isObjectTarget local_target)) then prevailing_target else local_target -- store the corrected hscTarget into the summary summary' = summary{ ms_hspp_opts = dflags { hscTarget = target } } -- The old interface is ok if -- a) we're compiling a source file, and the old HPT -- entry is for a source file -- b) we're compiling a hs-boot file -- Case (b) allows an hs-boot file to get the interface of its -- real source file on the second iteration of the compilation -- manager, but that does no harm. Otherwise the hs-boot file -- will always be recompiled mb_old_iface = case old_hmi of Nothing -> Nothing Just hm_info | isBootSummary summary -> Just iface | not (mi_boot iface) -> Just iface | otherwise -> Nothing where iface = hm_iface hm_info compile_it :: GhcMonad m => Maybe Linkable -> m HomeModInfo compile_it = compile hsc_env summary' mod_index nmods mb_old_iface compile_it_discard_iface :: GhcMonad m => Maybe Linkable -> m HomeModInfo compile_it_discard_iface = compile hsc_env summary' mod_index nmods Nothing in case target of _any -- Regardless of whether we're generating object code or -- byte code, we can always use an existing object file -- if it is *stable* (see checkStability). | is_stable_obj, isJust old_hmi -> let Just hmi = old_hmi in return hmi -- object is stable, and we have an entry in the -- old HPT: nothing to do | is_stable_obj, isNothing old_hmi -> do linkable <- liftIO $ findObjectLinkable this_mod obj_fn (expectJust "upsweep1" mb_obj_date) compile_it (Just linkable) -- object is stable, but we need to load the interface -- off disk to make a HMI. HscInterpreted | is_stable_bco -> ASSERT(isJust old_hmi) -- must be in the old_hpt let Just hmi = old_hmi in return hmi -- BCO is stable: nothing to do | Just hmi <- old_hmi, Just l <- hm_linkable hmi, not (isObjectLinkable l), linkableTime l >= ms_hs_date summary -> compile_it (Just l) -- we have an old BCO that is up to date with respect -- to the source: do a recompilation check as normal. | otherwise -> compile_it Nothing -- no existing code at all: we must recompile. -- When generating object code, if there's an up-to-date -- object file on the disk, then we can use it. -- However, if the object file is new (compared to any -- linkable we had from a previous compilation), then we -- must discard any in-memory interface, because this -- means the user has compiled the source file -- separately and generated a new interface, that we must -- read from the disk. -- obj | isObjectTarget obj, Just obj_date <- mb_obj_date, obj_date >= hs_date -> do case old_hmi of Just hmi | Just l <- hm_linkable hmi, isObjectLinkable l && linkableTime l == obj_date -> compile_it (Just l) _otherwise -> do linkable <- liftIO $ findObjectLinkable this_mod obj_fn obj_date compile_it_discard_iface (Just linkable) _otherwise -> compile_it Nothing -- Filter modules in the HPT retainInTopLevelEnvs :: [ModuleName] -> HomePackageTable -> HomePackageTable retainInTopLevelEnvs keep_these hpt = listToUFM [ (mod, expectJust "retain" mb_mod_info) | mod <- keep_these , let mb_mod_info = lookupUFM hpt mod , isJust mb_mod_info ] -- --------------------------------------------------------------------------- -- Typecheck module loops {- See bug #930. This code fixes a long-standing bug in --make. The problem is that when compiling the modules *inside* a loop, a data type that is only defined at the top of the loop looks opaque; but after the loop is done, the structure of the data type becomes apparent. The difficulty is then that two different bits of code have different notions of what the data type looks like. The idea is that after we compile a module which also has an .hs-boot file, we re-generate the ModDetails for each of the modules that depends on the .hs-boot file, so that everyone points to the proper TyCons, Ids etc. defined by the real module, not the boot module. Fortunately re-generating a ModDetails from a ModIface is easy: the function TcIface.typecheckIface does exactly that. Picking the modules to re-typecheck is slightly tricky. Starting from the module graph consisting of the modules that have already been compiled, we reverse the edges (so they point from the imported module to the importing module), and depth-first-search from the .hs-boot node. This gives us all the modules that depend transitively on the .hs-boot module, and those are exactly the modules that we need to re-typecheck. Following this fix, GHC can compile itself with --make -O2. -} reTypecheckLoop :: HscEnv -> ModSummary -> ModuleGraph -> IO HscEnv reTypecheckLoop hsc_env ms graph | not (isBootSummary ms) && any (\m -> ms_mod m == this_mod && isBootSummary m) graph = do let mss = reachableBackwards (ms_mod_name ms) graph non_boot = filter (not.isBootSummary) mss debugTraceMsg (hsc_dflags hsc_env) 2 $ text "Re-typechecking loop: " <> ppr (map ms_mod_name non_boot) typecheckLoop hsc_env (map ms_mod_name non_boot) | otherwise = return hsc_env where this_mod = ms_mod ms typecheckLoop :: HscEnv -> [ModuleName] -> IO HscEnv typecheckLoop hsc_env mods = do new_hpt <- fixIO $ \new_hpt -> do let new_hsc_env = hsc_env{ hsc_HPT = new_hpt } mds <- initIfaceCheck new_hsc_env $ mapM (typecheckIface . hm_iface) hmis let new_hpt = addListToUFM old_hpt (zip mods [ hmi{ hm_details = details } | (hmi,details) <- zip hmis mds ]) return new_hpt return hsc_env{ hsc_HPT = new_hpt } where old_hpt = hsc_HPT hsc_env hmis = map (expectJust "typecheckLoop" . lookupUFM old_hpt) mods reachableBackwards :: ModuleName -> [ModSummary] -> [ModSummary] reachableBackwards mod summaries = [ ms | (ms,_,_) <- reachableG (transposeG graph) root ] where -- the rest just sets up the graph: (graph, lookup_node) = moduleGraphNodes False summaries root = expectJust "reachableBackwards" (lookup_node HsBootFile mod) -- --------------------------------------------------------------------------- -- Topological sort of the module graph type SummaryNode = (ModSummary, Int, [Int]) topSortModuleGraph :: Bool -- ^ Drop hi-boot nodes? (see below) -> [ModSummary] -> Maybe ModuleName -> [SCC ModSummary] -- ^ Calculate SCCs of the module graph, possibly dropping the hi-boot nodes -- The resulting list of strongly-connected-components is in topologically -- sorted order, starting with the module(s) at the bottom of the -- dependency graph (ie compile them first) and ending with the ones at -- the top. -- -- Drop hi-boot nodes (first boolean arg)? -- -- - @False@: treat the hi-boot summaries as nodes of the graph, -- so the graph must be acyclic -- -- - @True@: eliminate the hi-boot nodes, and instead pretend -- the a source-import of Foo is an import of Foo -- The resulting graph has no hi-boot nodes, but can be cyclic topSortModuleGraph drop_hs_boot_nodes summaries mb_root_mod = map (fmap summaryNodeSummary) $ stronglyConnCompG initial_graph where (graph, lookup_node) = moduleGraphNodes drop_hs_boot_nodes summaries initial_graph = case mb_root_mod of Nothing -> graph Just root_mod -> -- restrict the graph to just those modules reachable from -- the specified module. We do this by building a graph with -- the full set of nodes, and determining the reachable set from -- the specified node. let root | Just node <- lookup_node HsSrcFile root_mod, graph `hasVertexG` node = node | otherwise = ghcError (ProgramError "module does not exist") in graphFromEdgedVertices (seq root (reachableG graph root)) summaryNodeKey :: SummaryNode -> Int summaryNodeKey (_, k, _) = k summaryNodeSummary :: SummaryNode -> ModSummary summaryNodeSummary (s, _, _) = s moduleGraphNodes :: Bool -> [ModSummary] -> (Graph SummaryNode, HscSource -> ModuleName -> Maybe SummaryNode) moduleGraphNodes drop_hs_boot_nodes summaries = (graphFromEdgedVertices nodes, lookup_node) where numbered_summaries = zip summaries [1..] lookup_node :: HscSource -> ModuleName -> Maybe SummaryNode lookup_node hs_src mod = lookupFM node_map (mod, hs_src) lookup_key :: HscSource -> ModuleName -> Maybe Int lookup_key hs_src mod = fmap summaryNodeKey (lookup_node hs_src mod) node_map :: NodeMap SummaryNode node_map = listToFM [ ((moduleName (ms_mod s), ms_hsc_src s), node) | node@(s, _, _) <- nodes ] -- We use integers as the keys for the SCC algorithm nodes :: [SummaryNode] nodes = [ (s, key, out_keys) | (s, key) <- numbered_summaries -- Drop the hi-boot ones if told to do so , not (isBootSummary s && drop_hs_boot_nodes) , let out_keys = out_edge_keys hs_boot_key (map unLoc (ms_srcimps s)) ++ out_edge_keys HsSrcFile (map unLoc (ms_imps s)) ++ (-- see [boot-edges] below if drop_hs_boot_nodes || ms_hsc_src s == HsBootFile then [] else case lookup_key HsBootFile (ms_mod_name s) of Nothing -> [] Just k -> [k]) ] -- [boot-edges] if this is a .hs and there is an equivalent -- .hs-boot, add a link from the former to the latter. This -- has the effect of detecting bogus cases where the .hs-boot -- depends on the .hs, by introducing a cycle. Additionally, -- it ensures that we will always process the .hs-boot before -- the .hs, and so the HomePackageTable will always have the -- most up to date information. -- Drop hs-boot nodes by using HsSrcFile as the key hs_boot_key | drop_hs_boot_nodes = HsSrcFile | otherwise = HsBootFile out_edge_keys :: HscSource -> [ModuleName] -> [Int] out_edge_keys hi_boot ms = mapCatMaybes (lookup_key hi_boot) ms -- If we want keep_hi_boot_nodes, then we do lookup_key with -- the IsBootInterface parameter True; else False type NodeKey = (ModuleName, HscSource) -- The nodes of the graph are type NodeMap a = FiniteMap NodeKey a -- keyed by (mod, src_file_type) pairs msKey :: ModSummary -> NodeKey msKey (ModSummary { ms_mod = mod, ms_hsc_src = boot }) = (moduleName mod,boot) mkNodeMap :: [ModSummary] -> NodeMap ModSummary mkNodeMap summaries = listToFM [ (msKey s, s) | s <- summaries] nodeMapElts :: NodeMap a -> [a] nodeMapElts = eltsFM -- | If there are {-# SOURCE #-} imports between strongly connected -- components in the topological sort, then those imports can -- definitely be replaced by ordinary non-SOURCE imports: if SOURCE -- were necessary, then the edge would be part of a cycle. warnUnnecessarySourceImports :: GhcMonad m => DynFlags -> [SCC ModSummary] -> m () warnUnnecessarySourceImports dflags sccs = liftIO $ printBagOfWarnings dflags (listToBag (concatMap (check.flattenSCC) sccs)) where check ms = let mods_in_this_cycle = map ms_mod_name ms in [ warn i | m <- ms, i <- ms_srcimps m, unLoc i `notElem` mods_in_this_cycle ] warn :: Located ModuleName -> WarnMsg warn (L loc mod) = mkPlainErrMsg loc (ptext (sLit "Warning: {-# SOURCE #-} unnecessary in import of ") <+> quotes (ppr mod)) ----------------------------------------------------------------------------- -- Downsweep (dependency analysis) -- Chase downwards from the specified root set, returning summaries -- for all home modules encountered. Only follow source-import -- links. -- We pass in the previous collection of summaries, which is used as a -- cache to avoid recalculating a module summary if the source is -- unchanged. -- -- The returned list of [ModSummary] nodes has one node for each home-package -- module, plus one for any hs-boot files. The imports of these nodes -- are all there, including the imports of non-home-package modules. downsweep :: GhcMonad m => HscEnv -> [ModSummary] -- Old summaries -> [ModuleName] -- Ignore dependencies on these; treat -- them as if they were package modules -> Bool -- True <=> allow multiple targets to have -- the same module name; this is -- very useful for ghc -M -> m [ModSummary] -- The elts of [ModSummary] all have distinct -- (Modules, IsBoot) identifiers, unless the Bool is true -- in which case there can be repeats downsweep hsc_env old_summaries excl_mods allow_dup_roots = do -- catch error messages and return them --handleErrMsg -- should be covered by GhcMonad now -- (\err_msg -> printBagOfErrors (hsc_dflags hsc_env) (unitBag err_msg) >> return Nothing) $ do rootSummaries <- mapM getRootSummary roots let root_map = mkRootMap rootSummaries checkDuplicates root_map summs <- loop (concatMap msDeps rootSummaries) root_map return summs where roots = hsc_targets hsc_env old_summary_map :: NodeMap ModSummary old_summary_map = mkNodeMap old_summaries getRootSummary :: GhcMonad m => Target -> m ModSummary getRootSummary (Target (TargetFile file mb_phase) obj_allowed maybe_buf) = do exists <- liftIO $ doesFileExist file if exists then summariseFile hsc_env old_summaries file mb_phase obj_allowed maybe_buf else throwOneError $ mkPlainErrMsg noSrcSpan $ text "can't find file:" <+> text file getRootSummary (Target (TargetModule modl) obj_allowed maybe_buf) = do maybe_summary <- summariseModule hsc_env old_summary_map False (L rootLoc modl) obj_allowed maybe_buf excl_mods case maybe_summary of Nothing -> packageModErr modl Just s -> return s rootLoc = mkGeneralSrcSpan (fsLit "") -- In a root module, the filename is allowed to diverge from the module -- name, so we have to check that there aren't multiple root files -- defining the same module (otherwise the duplicates will be silently -- ignored, leading to confusing behaviour). checkDuplicates :: GhcMonad m => NodeMap [ModSummary] -> m () checkDuplicates root_map | allow_dup_roots = return () | null dup_roots = return () | otherwise = liftIO $ multiRootsErr (head dup_roots) where dup_roots :: [[ModSummary]] -- Each at least of length 2 dup_roots = filterOut isSingleton (nodeMapElts root_map) loop :: GhcMonad m => [(Located ModuleName,IsBootInterface)] -- Work list: process these modules -> NodeMap [ModSummary] -- Visited set; the range is a list because -- the roots can have the same module names -- if allow_dup_roots is True -> m [ModSummary] -- The result includes the worklist, except -- for those mentioned in the visited set loop [] done = return (concat (nodeMapElts done)) loop ((wanted_mod, is_boot) : ss) done | Just summs <- lookupFM done key = if isSingleton summs then loop ss done else do { liftIO $ multiRootsErr summs; return [] } | otherwise = do mb_s <- summariseModule hsc_env old_summary_map is_boot wanted_mod True Nothing excl_mods case mb_s of Nothing -> loop ss done Just s -> loop (msDeps s ++ ss) (addToFM done key [s]) where key = (unLoc wanted_mod, if is_boot then HsBootFile else HsSrcFile) mkRootMap :: [ModSummary] -> NodeMap [ModSummary] mkRootMap summaries = addListToFM_C (++) emptyFM [ (msKey s, [s]) | s <- summaries ] msDeps :: ModSummary -> [(Located ModuleName, IsBootInterface)] -- (msDeps s) returns the dependencies of the ModSummary s. -- A wrinkle is that for a {-# SOURCE #-} import we return -- *both* the hs-boot file -- *and* the source file -- as "dependencies". That ensures that the list of all relevant -- modules always contains B.hs if it contains B.hs-boot. -- Remember, this pass isn't doing the topological sort. It's -- just gathering the list of all relevant ModSummaries msDeps s = concat [ [(m,True), (m,False)] | m <- ms_srcimps s ] ++ [ (m,False) | m <- ms_imps s ] ----------------------------------------------------------------------------- -- Summarising modules -- We have two types of summarisation: -- -- * Summarise a file. This is used for the root module(s) passed to -- cmLoadModules. The file is read, and used to determine the root -- module name. The module name may differ from the filename. -- -- * Summarise a module. We are given a module name, and must provide -- a summary. The finder is used to locate the file in which the module -- resides. summariseFile :: GhcMonad m => HscEnv -> [ModSummary] -- old summaries -> FilePath -- source file name -> Maybe Phase -- start phase -> Bool -- object code allowed? -> Maybe (StringBuffer,ClockTime) -> m ModSummary summariseFile hsc_env old_summaries file mb_phase obj_allowed maybe_buf -- we can use a cached summary if one is available and the -- source file hasn't changed, But we have to look up the summary -- by source file, rather than module name as we do in summarise. | Just old_summary <- findSummaryBySourceFile old_summaries file = do let location = ms_location old_summary -- return the cached summary if the source didn't change src_timestamp <- case maybe_buf of Just (_,t) -> return t Nothing -> liftIO $ getModificationTime file -- The file exists; we checked in getRootSummary above. -- If it gets removed subsequently, then this -- getModificationTime may fail, but that's the right -- behaviour. if ms_hs_date old_summary == src_timestamp then do -- update the object-file timestamp obj_timestamp <- if isObjectTarget (hscTarget (hsc_dflags hsc_env)) || obj_allowed -- bug #1205 then liftIO $ getObjTimestamp location False else return Nothing return old_summary{ ms_obj_date = obj_timestamp } else new_summary | otherwise = new_summary where new_summary = do let dflags = hsc_dflags hsc_env (dflags', hspp_fn, buf) <- preprocessFile hsc_env file mb_phase maybe_buf (srcimps,the_imps, L _ mod_name) <- liftIO $ getImports dflags' buf hspp_fn file -- Make a ModLocation for this file location <- liftIO $ mkHomeModLocation dflags mod_name file -- Tell the Finder cache where it is, so that subsequent calls -- to findModule will find it, even if it's not on any search path mod <- liftIO $ addHomeModuleToFinder hsc_env mod_name location src_timestamp <- case maybe_buf of Just (_,t) -> return t Nothing -> liftIO $ getModificationTime file -- getMofificationTime may fail -- when the user asks to load a source file by name, we only -- use an object file if -fobject-code is on. See #1205. obj_timestamp <- if isObjectTarget (hscTarget (hsc_dflags hsc_env)) || obj_allowed -- bug #1205 then liftIO $ modificationTimeIfExists (ml_obj_file location) else return Nothing return (ModSummary { ms_mod = mod, ms_hsc_src = HsSrcFile, ms_location = location, ms_hspp_file = hspp_fn, ms_hspp_opts = dflags', ms_hspp_buf = Just buf, ms_srcimps = srcimps, ms_imps = the_imps, ms_hs_date = src_timestamp, ms_obj_date = obj_timestamp }) findSummaryBySourceFile :: [ModSummary] -> FilePath -> Maybe ModSummary findSummaryBySourceFile summaries file = case [ ms | ms <- summaries, HsSrcFile <- [ms_hsc_src ms], expectJust "findSummaryBySourceFile" (ml_hs_file (ms_location ms)) == file ] of [] -> Nothing (x:_) -> Just x -- Summarise a module, and pick up source and timestamp. summariseModule :: GhcMonad m => HscEnv -> NodeMap ModSummary -- Map of old summaries -> IsBootInterface -- True <=> a {-# SOURCE #-} import -> Located ModuleName -- Imported module to be summarised -> Bool -- object code allowed? -> Maybe (StringBuffer, ClockTime) -> [ModuleName] -- Modules to exclude -> m (Maybe ModSummary) -- Its new summary summariseModule hsc_env old_summary_map is_boot (L loc wanted_mod) obj_allowed maybe_buf excl_mods | wanted_mod `elem` excl_mods = return Nothing | Just old_summary <- lookupFM old_summary_map (wanted_mod, hsc_src) = do -- Find its new timestamp; all the -- ModSummaries in the old map have valid ml_hs_files let location = ms_location old_summary src_fn = expectJust "summariseModule" (ml_hs_file location) -- check the modification time on the source file, and -- return the cached summary if it hasn't changed. If the -- file has disappeared, we need to call the Finder again. case maybe_buf of Just (_,t) -> check_timestamp old_summary location src_fn t Nothing -> do m <- liftIO $ System.IO.Error.try (getModificationTime src_fn) case m of Right t -> check_timestamp old_summary location src_fn t Left e | isDoesNotExistError e -> find_it | otherwise -> liftIO $ ioError e | otherwise = find_it where dflags = hsc_dflags hsc_env hsc_src = if is_boot then HsBootFile else HsSrcFile check_timestamp old_summary location src_fn src_timestamp | ms_hs_date old_summary == src_timestamp = do -- update the object-file timestamp obj_timestamp <- liftIO $ if isObjectTarget (hscTarget (hsc_dflags hsc_env)) || obj_allowed -- bug #1205 then getObjTimestamp location is_boot else return Nothing return (Just old_summary{ ms_obj_date = obj_timestamp }) | otherwise = -- source changed: re-summarise. new_summary location (ms_mod old_summary) src_fn src_timestamp find_it = do -- Don't use the Finder's cache this time. If the module was -- previously a package module, it may have now appeared on the -- search path, so we want to consider it to be a home module. If -- the module was previously a home module, it may have moved. liftIO $ uncacheModule hsc_env wanted_mod found <- liftIO $ findImportedModule hsc_env wanted_mod Nothing case found of Found location mod | isJust (ml_hs_file location) -> -- Home package just_found location mod | otherwise -> -- Drop external-pkg ASSERT(modulePackageId mod /= thisPackage dflags) return Nothing err -> liftIO $ noModError dflags loc wanted_mod err -- Not found just_found location mod = do -- Adjust location to point to the hs-boot source file, -- hi file, object file, when is_boot says so let location' | is_boot = addBootSuffixLocn location | otherwise = location src_fn = expectJust "summarise2" (ml_hs_file location') -- Check that it exists -- It might have been deleted since the Finder last found it maybe_t <- liftIO $ modificationTimeIfExists src_fn case maybe_t of Nothing -> noHsFileErr loc src_fn Just t -> new_summary location' mod src_fn t new_summary location mod src_fn src_timestamp = do -- Preprocess the source file and get its imports -- The dflags' contains the OPTIONS pragmas (dflags', hspp_fn, buf) <- preprocessFile hsc_env src_fn Nothing maybe_buf (srcimps, the_imps, L mod_loc mod_name) <- liftIO $ getImports dflags' buf hspp_fn src_fn when (mod_name /= wanted_mod) $ throwOneError $ mkPlainErrMsg mod_loc $ text "File name does not match module name:" $$ text "Saw:" <+> quotes (ppr mod_name) $$ text "Expected:" <+> quotes (ppr wanted_mod) -- Find the object timestamp, and return the summary obj_timestamp <- liftIO $ if isObjectTarget (hscTarget (hsc_dflags hsc_env)) || obj_allowed -- bug #1205 then getObjTimestamp location is_boot else return Nothing return (Just (ModSummary { ms_mod = mod, ms_hsc_src = hsc_src, ms_location = location, ms_hspp_file = hspp_fn, ms_hspp_opts = dflags', ms_hspp_buf = Just buf, ms_srcimps = srcimps, ms_imps = the_imps, ms_hs_date = src_timestamp, ms_obj_date = obj_timestamp })) getObjTimestamp :: ModLocation -> Bool -> IO (Maybe ClockTime) getObjTimestamp location is_boot = if is_boot then return Nothing else modificationTimeIfExists (ml_obj_file location) preprocessFile :: GhcMonad m => HscEnv -> FilePath -> Maybe Phase -- ^ Starting phase -> Maybe (StringBuffer,ClockTime) -> m (DynFlags, FilePath, StringBuffer) preprocessFile hsc_env src_fn mb_phase Nothing = do (dflags', hspp_fn) <- preprocess hsc_env (src_fn, mb_phase) buf <- liftIO $ hGetStringBuffer hspp_fn return (dflags', hspp_fn, buf) preprocessFile hsc_env src_fn mb_phase (Just (buf, _time)) = do let dflags = hsc_dflags hsc_env -- case we bypass the preprocessing stage? let local_opts = getOptions dflags buf src_fn -- (dflags', leftovers, warns) <- parseDynamicNoPackageFlags dflags local_opts liftIO $ checkProcessArgsResult leftovers -- XXX: throws exceptions liftIO $ handleFlagWarnings dflags' warns -- XXX: throws exceptions let needs_preprocessing | Just (Unlit _) <- mb_phase = True | Nothing <- mb_phase, Unlit _ <- startPhase src_fn = True -- note: local_opts is only required if there's no Unlit phase | dopt Opt_Cpp dflags' = True | dopt Opt_Pp dflags' = True | otherwise = False when needs_preprocessing $ ghcError (ProgramError "buffer needs preprocesing; interactive check disabled") return (dflags', src_fn, buf) ----------------------------------------------------------------------------- -- Error messages ----------------------------------------------------------------------------- noModError :: DynFlags -> SrcSpan -> ModuleName -> FindResult -> IO ab -- ToDo: we don't have a proper line number for this error noModError dflags loc wanted_mod err = throwOneError $ mkPlainErrMsg loc $ cannotFindModule dflags wanted_mod err noHsFileErr :: GhcMonad m => SrcSpan -> String -> m a noHsFileErr loc path = throwOneError $ mkPlainErrMsg loc $ text "Can't find" <+> text path packageModErr :: GhcMonad m => ModuleName -> m a packageModErr mod = throwOneError $ mkPlainErrMsg noSrcSpan $ text "module" <+> quotes (ppr mod) <+> text "is a package module" multiRootsErr :: [ModSummary] -> IO () multiRootsErr [] = panic "multiRootsErr" multiRootsErr summs@(summ1:_) = throwOneError $ mkPlainErrMsg noSrcSpan $ text "module" <+> quotes (ppr mod) <+> text "is defined in multiple files:" <+> sep (map text files) where mod = ms_mod summ1 files = map (expectJust "checkDup" . ml_hs_file . ms_location) summs cyclicModuleErr :: [ModSummary] -> SDoc cyclicModuleErr ms = hang (ptext (sLit "Module imports form a cycle for modules:")) 2 (vcat (map show_one ms)) where show_one ms = sep [ show_mod (ms_hsc_src ms) (ms_mod ms), nest 2 $ ptext (sLit "imports:") <+> (pp_imps HsBootFile (ms_srcimps ms) $$ pp_imps HsSrcFile (ms_imps ms))] show_mod hsc_src mod = ppr mod <> text (hscSourceString hsc_src) pp_imps src mods = fsep (map (show_mod src) mods) -- | Inform GHC that the working directory has changed. GHC will flush -- its cache of module locations, since it may no longer be valid. -- Note: if you change the working directory, you should also unload -- the current program (set targets to empty, followed by load). workingDirectoryChanged :: GhcMonad m => m () workingDirectoryChanged = withSession $ (liftIO . flushFinderCaches) -- ----------------------------------------------------------------------------- -- inspecting the session -- | Get the module dependency graph. getModuleGraph :: GhcMonad m => m ModuleGraph -- ToDo: DiGraph ModSummary getModuleGraph = liftM hsc_mod_graph getSession -- | Return @True@ <==> module is loaded. isLoaded :: GhcMonad m => ModuleName -> m Bool isLoaded m = withSession $ \hsc_env -> return $! isJust (lookupUFM (hsc_HPT hsc_env) m) -- | Return the bindings for the current interactive session. getBindings :: GhcMonad m => m [TyThing] getBindings = withSession $ \hsc_env -> -- we have to implement the shadowing behaviour of ic_tmp_ids here -- (see InteractiveContext) and the quickest way is to use an OccEnv. let tmp_ids = ic_tmp_ids (hsc_IC hsc_env) filtered = foldr f (const []) tmp_ids emptyUniqSet f id rest set | uniq `elementOfUniqSet` set = rest set | otherwise = AnId id : rest (addOneToUniqSet set uniq) where uniq = getUnique (nameOccName (idName id)) in return filtered getPrintUnqual :: GhcMonad m => m PrintUnqualified getPrintUnqual = withSession $ \hsc_env -> return (icPrintUnqual (hsc_dflags hsc_env) (hsc_IC hsc_env)) -- | Container for information about a 'Module'. data ModuleInfo = ModuleInfo { minf_type_env :: TypeEnv, minf_exports :: NameSet, -- ToDo, [AvailInfo] like ModDetails? minf_rdr_env :: Maybe GlobalRdrEnv, -- Nothing for a compiled/package mod minf_instances :: [Instance] #ifdef GHCI ,minf_modBreaks :: ModBreaks #endif -- ToDo: this should really contain the ModIface too } -- We don't want HomeModInfo here, because a ModuleInfo applies -- to package modules too. -- | Request information about a loaded 'Module' getModuleInfo :: GhcMonad m => Module -> m (Maybe ModuleInfo) -- XXX: Maybe X getModuleInfo mdl = withSession $ \hsc_env -> do let mg = hsc_mod_graph hsc_env if mdl `elem` map ms_mod mg then liftIO $ getHomeModuleInfo hsc_env (moduleName mdl) else do {- if isHomeModule (hsc_dflags hsc_env) mdl then return Nothing else -} liftIO $ getPackageModuleInfo hsc_env mdl -- getPackageModuleInfo will attempt to find the interface, so -- we don't want to call it for a home module, just in case there -- was a problem loading the module and the interface doesn't -- exist... hence the isHomeModule test here. (ToDo: reinstate) getPackageModuleInfo :: HscEnv -> Module -> IO (Maybe ModuleInfo) #ifdef GHCI getPackageModuleInfo hsc_env mdl = do (_msgs, mb_avails) <- getModuleExports hsc_env mdl case mb_avails of Nothing -> return Nothing Just avails -> do eps <- readIORef (hsc_EPS hsc_env) let names = availsToNameSet avails pte = eps_PTE eps tys = [ ty | name <- concatMap availNames avails, Just ty <- [lookupTypeEnv pte name] ] -- return (Just (ModuleInfo { minf_type_env = mkTypeEnv tys, minf_exports = names, minf_rdr_env = Just $! nameSetToGlobalRdrEnv names (moduleName mdl), minf_instances = error "getModuleInfo: instances for package module unimplemented", minf_modBreaks = emptyModBreaks })) #else getPackageModuleInfo _hsc_env _mdl = do -- bogusly different for non-GHCI (ToDo) return Nothing #endif getHomeModuleInfo :: HscEnv -> ModuleName -> IO (Maybe ModuleInfo) getHomeModuleInfo hsc_env mdl = case lookupUFM (hsc_HPT hsc_env) mdl of Nothing -> return Nothing Just hmi -> do let details = hm_details hmi return (Just (ModuleInfo { minf_type_env = md_types details, minf_exports = availsToNameSet (md_exports details), minf_rdr_env = mi_globals $! hm_iface hmi, minf_instances = md_insts details #ifdef GHCI ,minf_modBreaks = getModBreaks hmi #endif })) -- | The list of top-level entities defined in a module modInfoTyThings :: ModuleInfo -> [TyThing] modInfoTyThings minf = typeEnvElts (minf_type_env minf) modInfoTopLevelScope :: ModuleInfo -> Maybe [Name] modInfoTopLevelScope minf = fmap (map gre_name . globalRdrEnvElts) (minf_rdr_env minf) modInfoExports :: ModuleInfo -> [Name] modInfoExports minf = nameSetToList $! minf_exports minf -- | Returns the instances defined by the specified module. -- Warning: currently unimplemented for package modules. modInfoInstances :: ModuleInfo -> [Instance] modInfoInstances = minf_instances modInfoIsExportedName :: ModuleInfo -> Name -> Bool modInfoIsExportedName minf name = elemNameSet name (minf_exports minf) mkPrintUnqualifiedForModule :: GhcMonad m => ModuleInfo -> m (Maybe PrintUnqualified) -- XXX: returns a Maybe X mkPrintUnqualifiedForModule minf = withSession $ \hsc_env -> do return (fmap (mkPrintUnqualified (hsc_dflags hsc_env)) (minf_rdr_env minf)) modInfoLookupName :: GhcMonad m => ModuleInfo -> Name -> m (Maybe TyThing) -- XXX: returns a Maybe X modInfoLookupName minf name = withSession $ \hsc_env -> do case lookupTypeEnv (minf_type_env minf) name of Just tyThing -> return (Just tyThing) Nothing -> do eps <- liftIO $ readIORef (hsc_EPS hsc_env) return $! lookupType (hsc_dflags hsc_env) (hsc_HPT hsc_env) (eps_PTE eps) name #ifdef GHCI modInfoModBreaks :: ModuleInfo -> ModBreaks modInfoModBreaks = minf_modBreaks #endif isDictonaryId :: Id -> Bool isDictonaryId id = case tcSplitSigmaTy (idType id) of { (_tvs, _theta, tau) -> isDictTy tau } -- | Looks up a global name: that is, any top-level name in any -- visible module. Unlike 'lookupName', lookupGlobalName does not use -- the interactive context, and therefore does not require a preceding -- 'setContext'. lookupGlobalName :: GhcMonad m => Name -> m (Maybe TyThing) lookupGlobalName name = withSession $ \hsc_env -> do liftIO $ lookupTypeHscEnv hsc_env name findGlobalAnns :: (GhcMonad m, Typeable a) => ([Word8] -> a) -> AnnTarget Name -> m [a] findGlobalAnns deserialize target = withSession $ \hsc_env -> do ann_env <- liftIO $ prepareAnnotations hsc_env Nothing return (findAnns deserialize ann_env target) #ifdef GHCI -- | get the GlobalRdrEnv for a session getGRE :: GhcMonad m => m GlobalRdrEnv getGRE = withSession $ \hsc_env-> return $ ic_rn_gbl_env (hsc_IC hsc_env) #endif -- ----------------------------------------------------------------------------- -- Misc exported utils dataConType :: DataCon -> Type dataConType dc = idType (dataConWrapId dc) -- | print a 'NamedThing', adding parentheses if the name is an operator. pprParenSymName :: NamedThing a => a -> SDoc pprParenSymName a = parenSymOcc (getOccName a) (ppr (getName a)) -- ---------------------------------------------------------------------------- #if 0 -- ToDo: -- - Data and Typeable instances for HsSyn. -- ToDo: check for small transformations that happen to the syntax in -- the typechecker (eg. -e ==> negate e, perhaps for fromIntegral) -- ToDo: maybe use TH syntax instead of IfaceSyn? There's already a way -- to get from TyCons, Ids etc. to TH syntax (reify). -- :browse will use either lm_toplev or inspect lm_interface, depending -- on whether the module is interpreted or not. #endif -- Extract the filename, stringbuffer content and dynflags associed to a module -- -- XXX: Explain pre-conditions getModuleSourceAndFlags :: GhcMonad m => Module -> m (String, StringBuffer, DynFlags) getModuleSourceAndFlags mod = do m <- getModSummary (moduleName mod) case ml_hs_file $ ms_location m of Nothing -> throw $ mkApiErr (text "No source available for module " <+> ppr mod) Just sourceFile -> do source <- liftIO $ hGetStringBuffer sourceFile return (sourceFile, source, ms_hspp_opts m) -- | Return module source as token stream, including comments. -- -- The module must be in the module graph and its source must be available. -- Throws a 'HscTypes.SourceError' on parse error. getTokenStream :: GhcMonad m => Module -> m [Located Token] getTokenStream mod = do (sourceFile, source, flags) <- getModuleSourceAndFlags mod let startLoc = mkSrcLoc (mkFastString sourceFile) 0 0 case lexTokenStream source startLoc flags of POk _ ts -> return ts PFailed span err -> throw $ mkSrcErr (unitBag $ mkPlainErrMsg span err) -- | Give even more information on the source than 'getTokenStream' -- This function allows reconstructing the source completely with -- 'showRichTokenStream'. getRichTokenStream :: GhcMonad m => Module -> m [(Located Token, String)] getRichTokenStream mod = do (sourceFile, source, flags) <- getModuleSourceAndFlags mod let startLoc = mkSrcLoc (mkFastString sourceFile) 0 0 case lexTokenStream source startLoc flags of POk _ ts -> return $ addSourceToTokens startLoc source ts PFailed span err -> throw $ mkSrcErr (unitBag $ mkPlainErrMsg span err) -- | Given a source location and a StringBuffer corresponding to this -- location, return a rich token stream with the source associated to the -- tokens. addSourceToTokens :: SrcLoc -> StringBuffer -> [Located Token] -> [(Located Token, String)] addSourceToTokens _ _ [] = [] addSourceToTokens loc buf (t@(L span _) : ts) | not (isGoodSrcSpan span) = (t,"") : addSourceToTokens loc buf ts | otherwise = (t,str) : addSourceToTokens newLoc newBuf ts where (newLoc, newBuf, str) = go "" loc buf start = srcSpanStart span end = srcSpanEnd span go acc loc buf | loc < start = go acc nLoc nBuf | start <= loc && loc < end = go (ch:acc) nLoc nBuf | otherwise = (loc, buf, reverse acc) where (ch, nBuf) = nextChar buf nLoc = advanceSrcLoc loc ch -- | Take a rich token stream such as produced from 'getRichTokenStream' and -- return source code almost identical to the original code (except for -- insignificant whitespace.) showRichTokenStream :: [(Located Token, String)] -> String showRichTokenStream ts = go startLoc ts "" where sourceFile = srcSpanFile (getLoc . fst . head $ ts) startLoc = mkSrcLoc sourceFile 0 0 go _ [] = id go loc ((L span _, str):ts) | not (isGoodSrcSpan span) = go loc ts | locLine == tokLine = ((replicate (tokCol - locCol) ' ') ++) . (str ++) . go tokEnd ts | otherwise = ((replicate (tokLine - locLine) '\n') ++) . ((replicate tokCol ' ') ++) . (str ++) . go tokEnd ts where (locLine, locCol) = (srcLocLine loc, srcLocCol loc) (tokLine, tokCol) = (srcSpanStartLine span, srcSpanStartCol span) tokEnd = srcSpanEnd span -- ----------------------------------------------------------------------------- -- Interactive evaluation -- | Takes a 'ModuleName' and possibly a 'PackageId', and consults the -- filesystem and package database to find the corresponding 'Module', -- using the algorithm that is used for an @import@ declaration. findModule :: GhcMonad m => ModuleName -> Maybe FastString -> m Module findModule mod_name maybe_pkg = withSession $ \hsc_env -> liftIO $ -- XXX let dflags = hsc_dflags hsc_env hpt = hsc_HPT hsc_env this_pkg = thisPackage dflags in case lookupUFM hpt mod_name of Just mod_info -> return (mi_module (hm_iface mod_info)) _not_a_home_module -> do res <- findImportedModule hsc_env mod_name maybe_pkg case res of Found _ m | modulePackageId m /= this_pkg -> return m | otherwise -> ghcError (CmdLineError (showSDoc $ text "module" <+> quotes (ppr (moduleName m)) <+> text "is not loaded")) err -> let msg = cannotFindModule dflags mod_name err in ghcError (CmdLineError (showSDoc msg)) #ifdef GHCI getHistorySpan :: GhcMonad m => History -> m SrcSpan getHistorySpan h = withSession $ \hsc_env -> return$ InteractiveEval.getHistorySpan hsc_env h obtainTermFromVal :: GhcMonad m => Int -> Bool -> Type -> a -> m Term obtainTermFromVal bound force ty a = withSession $ \hsc_env -> liftIO $ InteractiveEval.obtainTermFromVal hsc_env bound force ty a obtainTermFromId :: GhcMonad m => Int -> Bool -> Id -> m Term obtainTermFromId bound force id = withSession $ \hsc_env -> liftIO $ InteractiveEval.obtainTermFromId hsc_env bound force id #endif