{-# LANGUAGE BangPatterns, CPP, NondecreasingIndentation, ScopedTypeVariables #-} {-# OPTIONS_GHC -fno-warn-warnings-deprecations #-} -- NB: we specifically ignore deprecations. GHC 7.6 marks the .QSem module as -- deprecated, although it became un-deprecated later. As a result, using 7.6 -- as your bootstrap compiler throws annoying warnings. -- ----------------------------------------------------------------------------- -- -- (c) The University of Glasgow, 2011 -- -- This module implements multi-module compilation, and is used -- by --make and GHCi. -- -- ----------------------------------------------------------------------------- module GhcMake( depanal, load, LoadHowMuch(..), topSortModuleGraph, noModError, cyclicModuleErr ) where #include "HsVersions.h" #ifdef GHCI import qualified Linker ( unload ) #endif import DriverPhases import DriverPipeline import DynFlags import ErrUtils import Finder import GhcMonad import HeaderInfo import HsSyn import HscTypes import Module import RdrName ( RdrName ) import TcIface ( typecheckIface ) import TcRnMonad ( initIfaceCheck ) import Bag ( listToBag ) import BasicTypes import Digraph import Exception ( tryIO, gbracket, gfinally ) import FastString import Maybes ( expectJust ) import MonadUtils ( allM, MonadIO ) import Outputable import Panic import SrcLoc import StringBuffer import SysTools import UniqFM import Util import Data.Either ( rights, partitionEithers ) import qualified Data.Map as Map import Data.Map (Map) import qualified Data.Set as Set import qualified FiniteMap as Map ( insertListWith ) import Control.Concurrent ( forkIOWithUnmask, killThread ) import qualified GHC.Conc as CC import Control.Concurrent.MVar import Control.Concurrent.QSem import Control.Exception import Control.Monad import Data.IORef import Data.List import qualified Data.List as List import Data.Maybe import Data.Ord ( comparing ) import Data.Time import System.Directory import System.FilePath import System.IO ( fixIO ) import System.IO.Error ( isDoesNotExistError ) import GHC.Conc ( getNumProcessors, getNumCapabilities, setNumCapabilities ) label_self :: String -> IO () label_self thread_name = do self_tid <- CC.myThreadId CC.labelThread self_tid thread_name -- ----------------------------------------------------------------------------- -- Loading the program -- | Perform a dependency analysis starting from the current targets -- and update the session with the new module graph. -- -- Dependency analysis entails parsing the @import@ directives and may -- therefore require running certain preprocessors. -- -- Note that each 'ModSummary' in the module graph caches its 'DynFlags'. -- These 'DynFlags' are determined by the /current/ session 'DynFlags' and the -- @OPTIONS@ and @LANGUAGE@ pragmas of the parsed module. Thus if you want to -- changes to the 'DynFlags' to take effect you need to call this function -- again. -- depanal :: GhcMonad m => [ModuleName] -- ^ excluded modules -> Bool -- ^ allow duplicate roots -> m ModuleGraph depanal excluded_mods allow_dup_roots = do hsc_env <- getSession let dflags = hsc_dflags hsc_env targets = hsc_targets hsc_env old_graph = hsc_mod_graph hsc_env liftIO $ showPass dflags "Chasing dependencies" liftIO $ debugTraceMsg dflags 2 (hcat [ text "Chasing modules from: ", hcat (punctuate comma (map pprTarget targets))]) mod_graphE <- liftIO $ downsweep hsc_env old_graph excluded_mods allow_dup_roots mod_graph <- reportImportErrors mod_graphE modifySession $ \_ -> hsc_env { hsc_mod_graph = mod_graph } return mod_graph -- | Describes which modules of the module graph need to be loaded. data LoadHowMuch = LoadAllTargets -- ^ Load all targets and its dependencies. | LoadUpTo ModuleName -- ^ Load only the given module and its dependencies. | LoadDependenciesOf ModuleName -- ^ Load only the dependencies of the given module, but not the module -- itself. -- | Try to load the program. See 'LoadHowMuch' for the different modes. -- -- This function implements the core of GHC's @--make@ mode. It preprocesses, -- compiles and loads the specified modules, avoiding re-compilation wherever -- possible. Depending on the target (see 'DynFlags.hscTarget') compilating -- and loading may result in files being created on disk. -- -- Calls the 'reportModuleCompilationResult' callback after each compiling -- each module, whether successful or not. -- -- Throw a 'SourceError' if errors are encountered before the actual -- compilation starts (e.g., during dependency analysis). All other errors -- are reported using the callback. -- load :: GhcMonad m => LoadHowMuch -> m SuccessFlag load how_much = do mod_graph <- depanal [] False guessOutputFile hsc_env <- getSession let hpt1 = hsc_HPT hsc_env let dflags = hsc_dflags hsc_env -- The "bad" boot modules are the ones for which we have -- B.hs-boot in the module graph, but no B.hs -- The downsweep should have ensured this does not happen -- (see msDeps) let all_home_mods = [ms_mod_name s | s <- mod_graph, not (isBootSummary s)] bad_boot_mods = [s | s <- mod_graph, isBootSummary s, not (ms_mod_name s `elem` all_home_mods)] ASSERT( null bad_boot_mods ) return () -- check that the module given in HowMuch actually exists, otherwise -- topSortModuleGraph will bomb later. let checkHowMuch (LoadUpTo m) = checkMod m checkHowMuch (LoadDependenciesOf m) = checkMod m checkHowMuch _ = id checkMod m and_then | m `elem` all_home_mods = and_then | otherwise = do liftIO $ errorMsg dflags (text "no such module:" <+> quotes (ppr m)) return Failed checkHowMuch how_much $ do -- mg2_with_srcimps drops the hi-boot nodes, returning a -- graph with cycles. Among other things, it is used for -- backing out partially complete cycles following a failed -- upsweep, and for removing from hpt all the modules -- not in strict downwards closure, during calls to compile. let mg2_with_srcimps :: [SCC ModSummary] mg2_with_srcimps = topSortModuleGraph True mod_graph Nothing -- If we can determine that any of the {-# SOURCE #-} imports -- are definitely unnecessary, then emit a warning. warnUnnecessarySourceImports mg2_with_srcimps let -- check the stability property for each module. stable_mods@(stable_obj,stable_bco) = checkStability hpt1 mg2_with_srcimps all_home_mods -- prune bits of the HPT which are definitely redundant now, -- to save space. pruned_hpt = pruneHomePackageTable hpt1 (flattenSCCs mg2_with_srcimps) stable_mods _ <- liftIO $ evaluate pruned_hpt -- before we unload anything, make sure we don't leave an old -- interactive context around pointing to dead bindings. Also, -- write the pruned HPT to allow the old HPT to be GC'd. modifySession $ \_ -> discardIC $ hsc_env { hsc_HPT = pruned_hpt } liftIO $ debugTraceMsg dflags 2 (text "Stable obj:" <+> ppr stable_obj $$ text "Stable BCO:" <+> ppr stable_bco) -- Unload any modules which are going to be re-linked this time around. let stable_linkables = [ linkable | m <- stable_obj++stable_bco, Just hmi <- [lookupUFM pruned_hpt m], Just linkable <- [hm_linkable hmi] ] liftIO $ unload hsc_env stable_linkables -- We could at this point detect cycles which aren't broken by -- a source-import, and complain immediately, but it seems better -- to let upsweep_mods do this, so at least some useful work gets -- done before the upsweep is abandoned. --hPutStrLn stderr "after tsort:\n" --hPutStrLn stderr (showSDoc (vcat (map ppr mg2))) -- Now do the upsweep, calling compile for each module in -- turn. Final result is version 3 of everything. -- Topologically sort the module graph, this time including hi-boot -- nodes, and possibly just including the portion of the graph -- reachable from the module specified in the 2nd argument to load. -- This graph should be cycle-free. -- If we're restricting the upsweep to a portion of the graph, we -- also want to retain everything that is still stable. let full_mg :: [SCC ModSummary] full_mg = topSortModuleGraph False mod_graph Nothing maybe_top_mod = case how_much of LoadUpTo m -> Just m LoadDependenciesOf m -> Just m _ -> Nothing partial_mg0 :: [SCC ModSummary] partial_mg0 = topSortModuleGraph False mod_graph maybe_top_mod -- LoadDependenciesOf m: we want the upsweep to stop just -- short of the specified module (unless the specified module -- is stable). partial_mg | LoadDependenciesOf _mod <- how_much = ASSERT( case last partial_mg0 of AcyclicSCC ms -> ms_mod_name ms == _mod; _ -> False ) List.init partial_mg0 | otherwise = partial_mg0 stable_mg = [ AcyclicSCC ms | AcyclicSCC ms <- full_mg, ms_mod_name ms `elem` stable_obj++stable_bco ] -- the modules from partial_mg that are not also stable -- NB. also keep cycles, we need to emit an error message later unstable_mg = filter not_stable partial_mg where not_stable (CyclicSCC _) = True not_stable (AcyclicSCC ms) = ms_mod_name ms `notElem` stable_obj++stable_bco -- Load all the stable modules first, before attempting to load -- an unstable module (#7231). mg = stable_mg ++ unstable_mg -- clean up between compilations let cleanup hsc_env = intermediateCleanTempFiles (hsc_dflags hsc_env) (flattenSCCs mg2_with_srcimps) hsc_env liftIO $ debugTraceMsg dflags 2 (hang (text "Ready for upsweep") 2 (ppr mg)) n_jobs <- case parMakeCount dflags of Nothing -> liftIO getNumProcessors Just n -> return n let upsweep_fn | n_jobs > 1 = parUpsweep n_jobs | otherwise = upsweep setSession hsc_env{ hsc_HPT = emptyHomePackageTable } (upsweep_ok, modsUpswept) <- upsweep_fn pruned_hpt stable_mods cleanup mg -- Make modsDone be the summaries for each home module now -- available; this should equal the domain of hpt3. -- Get in in a roughly top .. bottom order (hence reverse). let modsDone = reverse modsUpswept -- Try and do linking in some form, depending on whether the -- upsweep was completely or only partially successful. if succeeded upsweep_ok then -- Easy; just relink it all. do liftIO $ debugTraceMsg dflags 2 (text "Upsweep completely successful.") -- Clean up after ourselves hsc_env1 <- getSession liftIO $ intermediateCleanTempFiles dflags modsDone hsc_env1 -- Issue a warning for the confusing case where the user -- said '-o foo' but we're not going to do any linking. -- We attempt linking if either (a) one of the modules is -- called Main, or (b) the user said -no-hs-main, indicating -- that main() is going to come from somewhere else. -- let ofile = outputFile dflags let no_hs_main = gopt Opt_NoHsMain dflags let main_mod = mainModIs dflags a_root_is_Main = any ((==main_mod).ms_mod) mod_graph do_linking = a_root_is_Main || no_hs_main || ghcLink dflags == LinkDynLib || ghcLink dflags == LinkStaticLib when (ghcLink dflags == LinkBinary && isJust ofile && not do_linking) $ liftIO $ debugTraceMsg dflags 1 $ text ("Warning: output was redirected with -o, " ++ "but no output will be generated\n" ++ "because there is no " ++ moduleNameString (moduleName main_mod) ++ " module.") -- link everything together linkresult <- liftIO $ link (ghcLink dflags) dflags do_linking (hsc_HPT hsc_env1) loadFinish Succeeded linkresult else -- Tricky. We need to back out the effects of compiling any -- half-done cycles, both so as to clean up the top level envs -- and to avoid telling the interactive linker to link them. do liftIO $ debugTraceMsg dflags 2 (text "Upsweep partially successful.") let modsDone_names = map ms_mod modsDone let mods_to_zap_names = findPartiallyCompletedCycles modsDone_names mg2_with_srcimps let mods_to_keep = filter ((`notElem` mods_to_zap_names).ms_mod) modsDone hsc_env1 <- getSession let hpt4 = retainInTopLevelEnvs (map ms_mod_name mods_to_keep) (hsc_HPT hsc_env1) -- Clean up after ourselves liftIO $ intermediateCleanTempFiles dflags mods_to_keep hsc_env1 -- there should be no Nothings where linkables should be, now ASSERT(all (isJust.hm_linkable) (eltsUFM (hsc_HPT hsc_env))) do -- Link everything together linkresult <- liftIO $ link (ghcLink dflags) dflags False hpt4 modifySession $ \hsc_env -> hsc_env{ hsc_HPT = hpt4 } loadFinish Failed linkresult -- | Finish up after a load. loadFinish :: GhcMonad m => SuccessFlag -> SuccessFlag -> m SuccessFlag -- If the link failed, unload everything and return. loadFinish _all_ok Failed = do hsc_env <- getSession liftIO $ unload hsc_env [] modifySession discardProg return Failed -- Empty the interactive context and set the module context to the topmost -- newly loaded module, or the Prelude if none were loaded. loadFinish all_ok Succeeded = do modifySession discardIC return all_ok -- | Forget the current program, but retain the persistent info in HscEnv discardProg :: HscEnv -> HscEnv discardProg hsc_env = discardIC $ hsc_env { hsc_mod_graph = emptyMG , hsc_HPT = emptyHomePackageTable } -- | Discard the contents of the InteractiveContext, but keep the DynFlags discardIC :: HscEnv -> HscEnv discardIC hsc_env = hsc_env { hsc_IC = emptyInteractiveContext (ic_dflags (hsc_IC hsc_env)) } intermediateCleanTempFiles :: DynFlags -> [ModSummary] -> HscEnv -> IO () intermediateCleanTempFiles dflags summaries hsc_env = do notIntermediate <- readIORef (filesToNotIntermediateClean dflags) cleanTempFilesExcept dflags (notIntermediate ++ except) where except = -- Save preprocessed files. The preprocessed file *might* be -- the same as the source file, but that doesn't do any -- harm. map ms_hspp_file summaries ++ -- Save object files for loaded modules. The point of this -- is that we might have generated and compiled a stub C -- file, and in the case of GHCi the object file will be a -- temporary file which we must not remove because we need -- to load/link it later. hptObjs (hsc_HPT hsc_env) -- | If there is no -o option, guess the name of target executable -- by using top-level source file name as a base. guessOutputFile :: GhcMonad m => m () guessOutputFile = modifySession $ \env -> let dflags = hsc_dflags env mod_graph = hsc_mod_graph env mainModuleSrcPath :: Maybe String mainModuleSrcPath = do let isMain = (== mainModIs dflags) . ms_mod [ms] <- return (filter isMain mod_graph) ml_hs_file (ms_location ms) name = fmap dropExtension mainModuleSrcPath name_exe = do #if defined(mingw32_HOST_OS) -- we must add the .exe extention unconditionally here, otherwise -- when name has an extension of its own, the .exe extension will -- not be added by DriverPipeline.exeFileName. See #2248 name' <- fmap (<.> "exe") name #else name' <- name #endif mainModuleSrcPath' <- mainModuleSrcPath -- #9930: don't clobber input files (unless they ask for it) if name' == mainModuleSrcPath' then throwGhcException . UsageError $ "default output name would overwrite the input file; " ++ "must specify -o explicitly" else Just name' in case outputFile dflags of Just _ -> env Nothing -> env { hsc_dflags = dflags { outputFile = name_exe } } -- ----------------------------------------------------------------------------- -- -- | Prune the HomePackageTable -- -- Before doing an upsweep, we can throw away: -- -- - For non-stable modules: -- - all ModDetails, all linked code -- - all unlinked code that is out of date with respect to -- the source file -- -- This is VERY IMPORTANT otherwise we'll end up requiring 2x the -- space at the end of the upsweep, because the topmost ModDetails of the -- old HPT holds on to the entire type environment from the previous -- compilation. pruneHomePackageTable :: HomePackageTable -> [ModSummary] -> ([ModuleName],[ModuleName]) -> HomePackageTable pruneHomePackageTable hpt summ (stable_obj, stable_bco) = mapUFM prune hpt where prune hmi | is_stable modl = hmi' | otherwise = hmi'{ hm_details = emptyModDetails } where modl = moduleName (mi_module (hm_iface hmi)) hmi' | Just l <- hm_linkable hmi, linkableTime l < ms_hs_date ms = hmi{ hm_linkable = Nothing } | otherwise = hmi where ms = expectJust "prune" (lookupUFM ms_map modl) ms_map = listToUFM [(ms_mod_name ms, ms) | ms <- summ] is_stable m = m `elem` stable_obj || m `elem` stable_bco -- ----------------------------------------------------------------------------- -- -- | Return (names of) all those in modsDone who are part of a cycle as defined -- by theGraph. findPartiallyCompletedCycles :: [Module] -> [SCC ModSummary] -> [Module] findPartiallyCompletedCycles modsDone theGraph = chew theGraph where chew [] = [] chew ((AcyclicSCC _):rest) = chew rest -- acyclic? not interesting. chew ((CyclicSCC vs):rest) = let names_in_this_cycle = nub (map ms_mod vs) mods_in_this_cycle = nub ([done | done <- modsDone, done `elem` names_in_this_cycle]) chewed_rest = chew rest in if notNull mods_in_this_cycle && length mods_in_this_cycle < length names_in_this_cycle then mods_in_this_cycle ++ chewed_rest else chewed_rest -- --------------------------------------------------------------------------- -- -- | Unloading unload :: HscEnv -> [Linkable] -> IO () unload hsc_env stable_linkables -- Unload everthing *except* 'stable_linkables' = case ghcLink (hsc_dflags hsc_env) of #ifdef GHCI LinkInMemory -> Linker.unload (hsc_dflags hsc_env) stable_linkables #else LinkInMemory -> panic "unload: no interpreter" -- urgh. avoid warnings: hsc_env stable_linkables #endif _other -> return () -- ----------------------------------------------------------------------------- {- | Stability tells us which modules definitely do not need to be recompiled. There are two main reasons for having stability: - avoid doing a complete upsweep of the module graph in GHCi when modules near the bottom of the tree have not changed. - to tell GHCi when it can load object code: we can only load object code for a module when we also load object code fo all of the imports of the module. So we need to know that we will definitely not be recompiling any of these modules, and we can use the object code. The stability check is as follows. Both stableObject and stableBCO are used during the upsweep phase later. @ stable m = stableObject m || stableBCO m stableObject m = all stableObject (imports m) && old linkable does not exist, or is == on-disk .o && date(on-disk .o) > date(.hs) stableBCO m = all stable (imports m) && date(BCO) > date(.hs) @ These properties embody the following ideas: - if a module is stable, then: - if it has been compiled in a previous pass (present in HPT) then it does not need to be compiled or re-linked. - if it has not been compiled in a previous pass, then we only need to read its .hi file from disk and link it to produce a 'ModDetails'. - if a modules is not stable, we will definitely be at least re-linking, and possibly re-compiling it during the 'upsweep'. All non-stable modules can (and should) therefore be unlinked before the 'upsweep'. - Note that objects are only considered stable if they only depend on other objects. We can't link object code against byte code. -} checkStability :: HomePackageTable -- HPT from last compilation -> [SCC ModSummary] -- current module graph (cyclic) -> [ModuleName] -- all home modules -> ([ModuleName], -- stableObject [ModuleName]) -- stableBCO checkStability hpt sccs all_home_mods = foldl checkSCC ([],[]) sccs where checkSCC (stable_obj, stable_bco) scc0 | stableObjects = (scc_mods ++ stable_obj, stable_bco) | stableBCOs = (stable_obj, scc_mods ++ stable_bco) | otherwise = (stable_obj, stable_bco) where scc = flattenSCC scc0 scc_mods = map ms_mod_name scc home_module m = m `elem` all_home_mods && m `notElem` scc_mods scc_allimps = nub (filter home_module (concatMap ms_home_allimps scc)) -- all imports outside the current SCC, but in the home pkg stable_obj_imps = map (`elem` stable_obj) scc_allimps stable_bco_imps = map (`elem` stable_bco) scc_allimps stableObjects = and stable_obj_imps && all object_ok scc stableBCOs = and (zipWith (||) stable_obj_imps stable_bco_imps) && all bco_ok scc object_ok ms | gopt Opt_ForceRecomp (ms_hspp_opts ms) = False | Just t <- ms_obj_date ms = t >= ms_hs_date ms && same_as_prev t | otherwise = False where same_as_prev t = case lookupUFM hpt (ms_mod_name ms) of Just hmi | Just l <- hm_linkable hmi -> isObjectLinkable l && t == linkableTime l _other -> True -- why '>=' rather than '>' above? If the filesystem stores -- times to the nearset second, we may occasionally find that -- the object & source have the same modification time, -- especially if the source was automatically generated -- and compiled. Using >= is slightly unsafe, but it matches -- make's behaviour. -- -- But see #5527, where someone ran into this and it caused -- a problem. bco_ok ms | gopt Opt_ForceRecomp (ms_hspp_opts ms) = False | otherwise = case lookupUFM hpt (ms_mod_name ms) of Just hmi | Just l <- hm_linkable hmi -> not (isObjectLinkable l) && linkableTime l >= ms_hs_date ms _other -> False {- Parallel Upsweep - - The parallel upsweep attempts to concurrently compile the modules in the - compilation graph using multiple Haskell threads. - - The Algorithm - - A Haskell thread is spawned for each module in the module graph, waiting for - its direct dependencies to finish building before it itself begins to build. - - Each module is associated with an initially empty MVar that stores the - result of that particular module's compile. If the compile succeeded, then - the HscEnv (synchronized by an MVar) is updated with the fresh HMI of that - module, and the module's HMI is deleted from the old HPT (synchronized by an - IORef) to save space. - - Instead of immediately outputting messages to the standard handles, all - compilation output is deferred to a per-module TQueue. A QSem is used to - limit the number of workers that are compiling simultaneously. - - Meanwhile, the main thread sequentially loops over all the modules in the - module graph, outputting the messages stored in each module's TQueue. -} -- | Each module is given a unique 'LogQueue' to redirect compilation messages -- to. A 'Nothing' value contains the result of compilation, and denotes the -- end of the message queue. data LogQueue = LogQueue !(IORef [Maybe (Severity, SrcSpan, PprStyle, MsgDoc)]) !(MVar ()) -- | The graph of modules to compile and their corresponding result 'MVar' and -- 'LogQueue'. type CompilationGraph = [(ModSummary, MVar SuccessFlag, LogQueue)] -- | Build a 'CompilationGraph' out of a list of strongly-connected modules, -- also returning the first, if any, encountered module cycle. buildCompGraph :: [SCC ModSummary] -> IO (CompilationGraph, Maybe [ModSummary]) buildCompGraph [] = return ([], Nothing) buildCompGraph (scc:sccs) = case scc of AcyclicSCC ms -> do mvar <- newEmptyMVar log_queue <- do ref <- newIORef [] sem <- newEmptyMVar return (LogQueue ref sem) (rest,cycle) <- buildCompGraph sccs return ((ms,mvar,log_queue):rest, cycle) CyclicSCC mss -> return ([], Just mss) -- A Module and whether it is a boot module. type BuildModule = (Module, IsBoot) -- | 'Bool' indicating if a module is a boot module or not. We need to treat -- boot modules specially when building compilation graphs, since they break -- cycles. Regular source files and signature files are treated equivalently. data IsBoot = IsBoot | NotBoot deriving (Ord, Eq, Show, Read) -- | Tests if an 'HscSource' is a boot file, primarily for constructing -- elements of 'BuildModule'. hscSourceToIsBoot :: HscSource -> IsBoot hscSourceToIsBoot HsBootFile = IsBoot hscSourceToIsBoot _ = NotBoot mkBuildModule :: ModSummary -> BuildModule mkBuildModule ms = (ms_mod ms, if isBootSummary ms then IsBoot else NotBoot) -- | The entry point to the parallel upsweep. -- -- See also the simpler, sequential 'upsweep'. parUpsweep :: GhcMonad m => Int -- ^ The number of workers we wish to run in parallel -> HomePackageTable -> ([ModuleName],[ModuleName]) -> (HscEnv -> IO ()) -> [SCC ModSummary] -> m (SuccessFlag, [ModSummary]) parUpsweep n_jobs old_hpt stable_mods cleanup sccs = do hsc_env <- getSession let dflags = hsc_dflags hsc_env -- The bits of shared state we'll be using: -- The global HscEnv is updated with the module's HMI when a module -- successfully compiles. hsc_env_var <- liftIO $ newMVar hsc_env -- The old HPT is used for recompilation checking in upsweep_mod. When a -- module sucessfully gets compiled, its HMI is pruned from the old HPT. old_hpt_var <- liftIO $ newIORef old_hpt -- What we use to limit parallelism with. par_sem <- liftIO $ newQSem n_jobs let updNumCapabilities = liftIO $ do n_capabilities <- getNumCapabilities unless (n_capabilities /= 1) $ setNumCapabilities n_jobs return n_capabilities -- Reset the number of capabilities once the upsweep ends. let resetNumCapabilities orig_n = liftIO $ setNumCapabilities orig_n gbracket updNumCapabilities resetNumCapabilities $ \_ -> do -- Sync the global session with the latest HscEnv once the upsweep ends. let finallySyncSession io = io `gfinally` do hsc_env <- liftIO $ readMVar hsc_env_var setSession hsc_env finallySyncSession $ do -- Build the compilation graph out of the list of SCCs. Module cycles are -- handled at the very end, after some useful work gets done. Note that -- this list is topologically sorted (by virtue of 'sccs' being sorted so). (comp_graph,cycle) <- liftIO $ buildCompGraph sccs let comp_graph_w_idx = zip comp_graph [1..] -- The list of all loops in the compilation graph. -- NB: For convenience, the last module of each loop (aka the module that -- finishes the loop) is prepended to the beginning of the loop. let comp_graph_loops = go (map fstOf3 (reverse comp_graph)) where go [] = [] go (ms:mss) | Just loop <- getModLoop ms (ms:mss) = map mkBuildModule (ms:loop) : go mss | otherwise = go mss -- Build a Map out of the compilation graph with which we can efficiently -- look up the result MVar associated with a particular home module. let home_mod_map :: Map BuildModule (MVar SuccessFlag, Int) home_mod_map = Map.fromList [ (mkBuildModule ms, (mvar, idx)) | ((ms,mvar,_),idx) <- comp_graph_w_idx ] liftIO $ label_self "main --make thread" -- For each module in the module graph, spawn a worker thread that will -- compile this module. let { spawnWorkers = forM comp_graph_w_idx $ \((mod,!mvar,!log_queue),!mod_idx) -> forkIOWithUnmask $ \unmask -> do liftIO $ label_self $ unwords [ "worker --make thread" , "for module" , show (moduleNameString (ms_mod_name mod)) , "number" , show mod_idx ] -- Replace the default log_action with one that writes each -- message to the module's log_queue. The main thread will -- deal with synchronously printing these messages. -- -- Use a local filesToClean var so that we can clean up -- intermediate files in a timely fashion (as soon as -- compilation for that module is finished) without having to -- worry about accidentally deleting a simultaneous compile's -- important files. lcl_files_to_clean <- newIORef [] let lcl_dflags = dflags { log_action = parLogAction log_queue , filesToClean = lcl_files_to_clean } -- Unmask asynchronous exceptions and perform the thread-local -- work to compile the module (see parUpsweep_one). m_res <- try $ unmask $ prettyPrintGhcErrors lcl_dflags $ parUpsweep_one mod home_mod_map comp_graph_loops lcl_dflags cleanup par_sem hsc_env_var old_hpt_var stable_mods mod_idx (length sccs) res <- case m_res of Right flag -> return flag Left exc -> do -- Don't print ThreadKilled exceptions: they are used -- to kill the worker thread in the event of a user -- interrupt, and the user doesn't have to be informed -- about that. when (fromException exc /= Just ThreadKilled) (errorMsg lcl_dflags (text (show exc))) return Failed -- Populate the result MVar. putMVar mvar res -- Write the end marker to the message queue, telling the main -- thread that it can stop waiting for messages from this -- particular compile. writeLogQueue log_queue Nothing -- Add the remaining files that weren't cleaned up to the -- global filesToClean ref, for cleanup later. files_kept <- readIORef (filesToClean lcl_dflags) addFilesToClean dflags files_kept -- Kill all the workers, masking interrupts (since killThread is -- interruptible). XXX: This is not ideal. ; killWorkers = uninterruptibleMask_ . mapM_ killThread } -- Spawn the workers, making sure to kill them later. Collect the results -- of each compile. results <- liftIO $ bracket spawnWorkers killWorkers $ \_ -> -- Loop over each module in the compilation graph in order, printing -- each message from its log_queue. forM comp_graph $ \(mod,mvar,log_queue) -> do printLogs dflags log_queue result <- readMVar mvar if succeeded result then return (Just mod) else return Nothing -- Collect and return the ModSummaries of all the successful compiles. -- NB: Reverse this list to maintain output parity with the sequential upsweep. let ok_results = reverse (catMaybes results) -- Handle any cycle in the original compilation graph and return the result -- of the upsweep. case cycle of Just mss -> do liftIO $ fatalErrorMsg dflags (cyclicModuleErr mss) return (Failed,ok_results) Nothing -> do let success_flag = successIf (all isJust results) return (success_flag,ok_results) where writeLogQueue :: LogQueue -> Maybe (Severity,SrcSpan,PprStyle,MsgDoc) -> IO () writeLogQueue (LogQueue ref sem) msg = do atomicModifyIORef' ref $ \msgs -> (msg:msgs,()) _ <- tryPutMVar sem () return () -- The log_action callback that is used to synchronize messages from a -- worker thread. parLogAction :: LogQueue -> LogAction parLogAction log_queue _dflags !severity !srcSpan !style !msg = do writeLogQueue log_queue (Just (severity,srcSpan,style,msg)) -- Print each message from the log_queue using the log_action from the -- session's DynFlags. printLogs :: DynFlags -> LogQueue -> IO () printLogs !dflags (LogQueue ref sem) = read_msgs where read_msgs = do takeMVar sem msgs <- atomicModifyIORef' ref $ \xs -> ([], reverse xs) print_loop msgs print_loop [] = read_msgs print_loop (x:xs) = case x of Just (severity,srcSpan,style,msg) -> do log_action dflags dflags severity srcSpan style msg print_loop xs -- Exit the loop once we encounter the end marker. Nothing -> return () -- The interruptible subset of the worker threads' work. parUpsweep_one :: ModSummary -- ^ The module we wish to compile -> Map BuildModule (MVar SuccessFlag, Int) -- ^ The map of home modules and their result MVar -> [[BuildModule]] -- ^ The list of all module loops within the compilation graph. -> DynFlags -- ^ The thread-local DynFlags -> (HscEnv -> IO ()) -- ^ The callback for cleaning up intermediate files -> QSem -- ^ The semaphore for limiting the number of simultaneous compiles -> MVar HscEnv -- ^ The MVar that synchronizes updates to the global HscEnv -> IORef HomePackageTable -- ^ The old HPT -> ([ModuleName],[ModuleName]) -- ^ Lists of stable objects and BCOs -> Int -- ^ The index of this module -> Int -- ^ The total number of modules -> IO SuccessFlag -- ^ The result of this compile parUpsweep_one mod home_mod_map comp_graph_loops lcl_dflags cleanup par_sem hsc_env_var old_hpt_var stable_mods mod_index num_mods = do let this_build_mod = mkBuildModule mod let home_imps = map unLoc $ ms_home_imps mod let home_src_imps = map unLoc $ ms_home_srcimps mod -- All the textual imports of this module. let textual_deps = Set.fromList $ mapFst (mkModule (thisPackage lcl_dflags)) $ zip home_imps (repeat NotBoot) ++ zip home_src_imps (repeat IsBoot) -- Dealing with module loops -- ~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- Not only do we have to deal with explicit textual dependencies, we also -- have to deal with implicit dependencies introduced by import cycles that -- are broken by an hs-boot file. We have to ensure that: -- -- 1. A module that breaks a loop must depend on all the modules in the -- loop (transitively or otherwise). This is normally always fulfilled -- by the module's textual dependencies except in degenerate loops, -- e.g.: -- -- A.hs imports B.hs-boot -- B.hs doesn't import A.hs -- C.hs imports A.hs, B.hs -- -- In this scenario, getModLoop will detect the module loop [A,B] but -- the loop finisher B doesn't depend on A. So we have to explicitly add -- A in as a dependency of B when we are compiling B. -- -- 2. A module that depends on a module in an external loop can't proceed -- until the entire loop is re-typechecked. -- -- These two invariants have to be maintained to correctly build a -- compilation graph with one or more loops. -- The loop that this module will finish. After this module successfully -- compiles, this loop is going to get re-typechecked. let finish_loop = listToMaybe [ tail loop | loop <- comp_graph_loops , head loop == this_build_mod ] -- If this module finishes a loop then it must depend on all the other -- modules in that loop because the entire module loop is going to be -- re-typechecked once this module gets compiled. These extra dependencies -- are this module's "internal" loop dependencies, because this module is -- inside the loop in question. let int_loop_deps = Set.fromList $ case finish_loop of Nothing -> [] Just loop -> filter (/= this_build_mod) loop -- If this module depends on a module within a loop then it must wait for -- that loop to get re-typechecked, i.e. it must wait on the module that -- finishes that loop. These extra dependencies are this module's -- "external" loop dependencies, because this module is outside of the -- loop(s) in question. let ext_loop_deps = Set.fromList [ head loop | loop <- comp_graph_loops , any (`Set.member` textual_deps) loop , this_build_mod `notElem` loop ] let all_deps = foldl1 Set.union [textual_deps, int_loop_deps, ext_loop_deps] -- All of the module's home-module dependencies. let home_deps_with_idx = [ home_dep | dep <- Set.toList all_deps , Just home_dep <- [Map.lookup dep home_mod_map] ] -- Sort the list of dependencies in reverse-topological order. This way, by -- the time we get woken up by the result of an earlier dependency, -- subsequent dependencies are more likely to have finished. This step -- effectively reduces the number of MVars that each thread blocks on. let home_deps = map fst $ sortBy (flip (comparing snd)) home_deps_with_idx -- Wait for the all the module's dependencies to finish building. deps_ok <- allM (fmap succeeded . readMVar) home_deps -- We can't build this module if any of its dependencies failed to build. if not deps_ok then return Failed else do -- Any hsc_env at this point is OK to use since we only really require -- that the HPT contains the HMIs of our dependencies. hsc_env <- readMVar hsc_env_var old_hpt <- readIORef old_hpt_var let logger err = printBagOfErrors lcl_dflags (srcErrorMessages err) -- Limit the number of parallel compiles. let withSem sem = bracket_ (waitQSem sem) (signalQSem sem) mb_mod_info <- withSem par_sem $ handleSourceError (\err -> do logger err; return Nothing) $ do -- Have the ModSummary and HscEnv point to our local log_action -- and filesToClean var. let lcl_mod = localize_mod mod let lcl_hsc_env = localize_hsc_env hsc_env -- Compile the module. mod_info <- upsweep_mod lcl_hsc_env old_hpt stable_mods lcl_mod mod_index num_mods return (Just mod_info) case mb_mod_info of Nothing -> return Failed Just mod_info -> do let this_mod = ms_mod_name mod -- Prune the old HPT unless this is an hs-boot module. unless (isBootSummary mod) $ atomicModifyIORef' old_hpt_var $ \old_hpt -> (delFromUFM old_hpt this_mod, ()) -- Update and fetch the global HscEnv. lcl_hsc_env' <- modifyMVar hsc_env_var $ \hsc_env -> do let hsc_env' = hsc_env { hsc_HPT = addToUFM (hsc_HPT hsc_env) this_mod mod_info } -- If this module is a loop finisher, now is the time to -- re-typecheck the loop. hsc_env'' <- case finish_loop of Nothing -> return hsc_env' Just loop -> typecheckLoop lcl_dflags hsc_env' $ map (moduleName . fst) loop return (hsc_env'', localize_hsc_env hsc_env'') -- Clean up any intermediate files. cleanup lcl_hsc_env' return Succeeded where localize_mod mod = mod { ms_hspp_opts = (ms_hspp_opts mod) { log_action = log_action lcl_dflags , filesToClean = filesToClean lcl_dflags } } localize_hsc_env hsc_env = hsc_env { hsc_dflags = (hsc_dflags hsc_env) { log_action = log_action lcl_dflags , filesToClean = filesToClean lcl_dflags } } -- ----------------------------------------------------------------------------- -- -- | The upsweep -- -- This is where we compile each module in the module graph, in a pass -- from the bottom to the top of the graph. -- -- There better had not be any cyclic groups here -- we check for them. upsweep :: GhcMonad m => HomePackageTable -- ^ HPT from last time round (pruned) -> ([ModuleName],[ModuleName]) -- ^ stable modules (see checkStability) -> (HscEnv -> IO ()) -- ^ How to clean up unwanted tmp files -> [SCC ModSummary] -- ^ Mods to do (the worklist) -> m (SuccessFlag, [ModSummary]) -- ^ Returns: -- -- 1. A flag whether the complete upsweep was successful. -- 2. The 'HscEnv' in the monad has an updated HPT -- 3. A list of modules which succeeded loading. upsweep old_hpt stable_mods cleanup sccs = do (res, done) <- upsweep' old_hpt [] sccs 1 (length sccs) return (res, reverse done) where upsweep' _old_hpt done [] _ _ = return (Succeeded, done) upsweep' _old_hpt done (CyclicSCC ms:_) _ _ = do dflags <- getSessionDynFlags liftIO $ fatalErrorMsg dflags (cyclicModuleErr ms) return (Failed, done) upsweep' old_hpt done (AcyclicSCC mod:mods) mod_index nmods = do -- putStrLn ("UPSWEEP_MOD: hpt = " ++ -- show (map (moduleUserString.moduleName.mi_module.hm_iface) -- (moduleEnvElts (hsc_HPT hsc_env))) let logger _mod = defaultWarnErrLogger hsc_env <- getSession -- Remove unwanted tmp files between compilations liftIO (cleanup hsc_env) mb_mod_info <- handleSourceError (\err -> do logger mod (Just err); return Nothing) $ do mod_info <- liftIO $ upsweep_mod hsc_env old_hpt stable_mods mod mod_index nmods logger mod Nothing -- log warnings return (Just mod_info) case mb_mod_info of Nothing -> return (Failed, done) Just mod_info -> do let this_mod = ms_mod_name mod -- Add new info to hsc_env hpt1 = addToUFM (hsc_HPT hsc_env) this_mod mod_info hsc_env1 = hsc_env { hsc_HPT = hpt1 } -- Space-saving: delete the old HPT entry -- for mod BUT if mod is a hs-boot -- node, don't delete it. For the -- interface, the HPT entry is probaby for the -- main Haskell source file. Deleting it -- would force the real module to be recompiled -- every time. old_hpt1 | isBootSummary mod = old_hpt | otherwise = delFromUFM old_hpt this_mod done' = mod:done -- fixup our HomePackageTable after we've finished compiling -- a mutually-recursive loop. See reTypecheckLoop, below. hsc_env2 <- liftIO $ reTypecheckLoop hsc_env1 mod done' setSession hsc_env2 upsweep' old_hpt1 done' mods (mod_index+1) nmods maybeGetIfaceDate :: DynFlags -> ModLocation -> IO (Maybe UTCTime) maybeGetIfaceDate dflags location | writeInterfaceOnlyMode dflags -- Minor optimization: it should be harmless to check the hi file location -- always, but it's better to avoid hitting the filesystem if possible. = modificationTimeIfExists (ml_hi_file location) | otherwise = return Nothing -- | Compile a single module. Always produce a Linkable for it if -- successful. If no compilation happened, return the old Linkable. upsweep_mod :: HscEnv -> HomePackageTable -> ([ModuleName],[ModuleName]) -> ModSummary -> Int -- index of module -> Int -- total number of modules -> IO HomeModInfo upsweep_mod hsc_env old_hpt (stable_obj, stable_bco) summary mod_index nmods = let this_mod_name = ms_mod_name summary this_mod = ms_mod summary mb_obj_date = ms_obj_date summary mb_if_date = ms_iface_date summary obj_fn = ml_obj_file (ms_location summary) hs_date = ms_hs_date summary is_stable_obj = this_mod_name `elem` stable_obj is_stable_bco = this_mod_name `elem` stable_bco old_hmi = lookupUFM old_hpt this_mod_name -- We're using the dflags for this module now, obtained by -- applying any options in its LANGUAGE & OPTIONS_GHC pragmas. dflags = ms_hspp_opts summary prevailing_target = hscTarget (hsc_dflags hsc_env) local_target = hscTarget dflags -- If OPTIONS_GHC contains -fasm or -fllvm, be careful that -- we don't do anything dodgy: these should only work to change -- from -fllvm to -fasm and vice-versa, otherwise we could -- end up trying to link object code to byte code. target = if prevailing_target /= local_target && (not (isObjectTarget prevailing_target) || not (isObjectTarget local_target)) then prevailing_target else local_target -- store the corrected hscTarget into the summary summary' = summary{ ms_hspp_opts = dflags { hscTarget = target } } -- The old interface is ok if -- a) we're compiling a source file, and the old HPT -- entry is for a source file -- b) we're compiling a hs-boot file -- Case (b) allows an hs-boot file to get the interface of its -- real source file on the second iteration of the compilation -- manager, but that does no harm. Otherwise the hs-boot file -- will always be recompiled mb_old_iface = case old_hmi of Nothing -> Nothing Just hm_info | isBootSummary summary -> Just iface | not (mi_boot iface) -> Just iface | otherwise -> Nothing where iface = hm_iface hm_info compile_it :: Maybe Linkable -> SourceModified -> IO HomeModInfo compile_it mb_linkable src_modified = compileOne hsc_env summary' mod_index nmods mb_old_iface mb_linkable src_modified compile_it_discard_iface :: Maybe Linkable -> SourceModified -> IO HomeModInfo compile_it_discard_iface mb_linkable src_modified = compileOne hsc_env summary' mod_index nmods Nothing mb_linkable src_modified -- With the HscNothing target we create empty linkables to avoid -- recompilation. We have to detect these to recompile anyway if -- the target changed since the last compile. is_fake_linkable | Just hmi <- old_hmi, Just l <- hm_linkable hmi = null (linkableUnlinked l) | otherwise = -- we have no linkable, so it cannot be fake False implies False _ = True implies True x = x in case () of _ -- Regardless of whether we're generating object code or -- byte code, we can always use an existing object file -- if it is *stable* (see checkStability). | is_stable_obj, Just hmi <- old_hmi -> do liftIO $ debugTraceMsg (hsc_dflags hsc_env) 5 (text "skipping stable obj mod:" <+> ppr this_mod_name) return hmi -- object is stable, and we have an entry in the -- old HPT: nothing to do | is_stable_obj, isNothing old_hmi -> do liftIO $ debugTraceMsg (hsc_dflags hsc_env) 5 (text "compiling stable on-disk mod:" <+> ppr this_mod_name) linkable <- liftIO $ findObjectLinkable this_mod obj_fn (expectJust "upsweep1" mb_obj_date) compile_it (Just linkable) SourceUnmodifiedAndStable -- object is stable, but we need to load the interface -- off disk to make a HMI. | not (isObjectTarget target), is_stable_bco, (target /= HscNothing) `implies` not is_fake_linkable -> ASSERT(isJust old_hmi) -- must be in the old_hpt let Just hmi = old_hmi in do liftIO $ debugTraceMsg (hsc_dflags hsc_env) 5 (text "skipping stable BCO mod:" <+> ppr this_mod_name) return hmi -- BCO is stable: nothing to do | not (isObjectTarget target), Just hmi <- old_hmi, Just l <- hm_linkable hmi, not (isObjectLinkable l), (target /= HscNothing) `implies` not is_fake_linkable, linkableTime l >= ms_hs_date summary -> do liftIO $ debugTraceMsg (hsc_dflags hsc_env) 5 (text "compiling non-stable BCO mod:" <+> ppr this_mod_name) compile_it (Just l) SourceUnmodified -- we have an old BCO that is up to date with respect -- to the source: do a recompilation check as normal. -- When generating object code, if there's an up-to-date -- object file on the disk, then we can use it. -- However, if the object file is new (compared to any -- linkable we had from a previous compilation), then we -- must discard any in-memory interface, because this -- means the user has compiled the source file -- separately and generated a new interface, that we must -- read from the disk. -- | isObjectTarget target, Just obj_date <- mb_obj_date, obj_date >= hs_date -> do case old_hmi of Just hmi | Just l <- hm_linkable hmi, isObjectLinkable l && linkableTime l == obj_date -> do liftIO $ debugTraceMsg (hsc_dflags hsc_env) 5 (text "compiling mod with new on-disk obj:" <+> ppr this_mod_name) compile_it (Just l) SourceUnmodified _otherwise -> do liftIO $ debugTraceMsg (hsc_dflags hsc_env) 5 (text "compiling mod with new on-disk obj2:" <+> ppr this_mod_name) linkable <- liftIO $ findObjectLinkable this_mod obj_fn obj_date compile_it_discard_iface (Just linkable) SourceUnmodified -- See Note [Recompilation checking when typechecking only] | writeInterfaceOnlyMode dflags, Just if_date <- mb_if_date, if_date >= hs_date -> do liftIO $ debugTraceMsg (hsc_dflags hsc_env) 5 (text "skipping tc'd mod:" <+> ppr this_mod_name) compile_it Nothing SourceUnmodified _otherwise -> do liftIO $ debugTraceMsg (hsc_dflags hsc_env) 5 (text "compiling mod:" <+> ppr this_mod_name) compile_it Nothing SourceModified -- Note [Recompilation checking when typechecking only] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- If we are compiling with -fno-code -fwrite-interface, there won't -- be any object code that we can compare against, nor should there -- be: we're *just* generating interface files. In this case, we -- want to check if the interface file is new, in lieu of the object -- file. See also Trac #9243. -- Filter modules in the HPT retainInTopLevelEnvs :: [ModuleName] -> HomePackageTable -> HomePackageTable retainInTopLevelEnvs keep_these hpt = listToUFM [ (mod, expectJust "retain" mb_mod_info) | mod <- keep_these , let mb_mod_info = lookupUFM hpt mod , isJust mb_mod_info ] -- --------------------------------------------------------------------------- -- Typecheck module loops {- See bug #930. This code fixes a long-standing bug in --make. The problem is that when compiling the modules *inside* a loop, a data type that is only defined at the top of the loop looks opaque; but after the loop is done, the structure of the data type becomes apparent. The difficulty is then that two different bits of code have different notions of what the data type looks like. The idea is that after we compile a module which also has an .hs-boot file, we re-generate the ModDetails for each of the modules that depends on the .hs-boot file, so that everyone points to the proper TyCons, Ids etc. defined by the real module, not the boot module. Fortunately re-generating a ModDetails from a ModIface is easy: the function TcIface.typecheckIface does exactly that. Picking the modules to re-typecheck is slightly tricky. Starting from the module graph consisting of the modules that have already been compiled, we reverse the edges (so they point from the imported module to the importing module), and depth-first-search from the .hs-boot node. This gives us all the modules that depend transitively on the .hs-boot module, and those are exactly the modules that we need to re-typecheck. Following this fix, GHC can compile itself with --make -O2. -} reTypecheckLoop :: HscEnv -> ModSummary -> ModuleGraph -> IO HscEnv reTypecheckLoop hsc_env ms graph | Just loop <- getModLoop ms graph , let non_boot = filter (not.isBootSummary) loop = typecheckLoop (hsc_dflags hsc_env) hsc_env (map ms_mod_name non_boot) | otherwise = return hsc_env getModLoop :: ModSummary -> ModuleGraph -> Maybe [ModSummary] getModLoop ms graph | not (isBootSummary ms) , any (\m -> ms_mod m == this_mod && isBootSummary m) graph , let mss = reachableBackwards (ms_mod_name ms) graph = Just mss | otherwise = Nothing where this_mod = ms_mod ms typecheckLoop :: DynFlags -> HscEnv -> [ModuleName] -> IO HscEnv typecheckLoop dflags hsc_env mods = do debugTraceMsg dflags 2 $ text "Re-typechecking loop: " <> ppr mods new_hpt <- fixIO $ \new_hpt -> do let new_hsc_env = hsc_env{ hsc_HPT = new_hpt } mds <- initIfaceCheck new_hsc_env $ mapM (typecheckIface . hm_iface) hmis let new_hpt = addListToUFM old_hpt (zip mods [ hmi{ hm_details = details } | (hmi,details) <- zip hmis mds ]) return new_hpt return hsc_env{ hsc_HPT = new_hpt } where old_hpt = hsc_HPT hsc_env hmis = map (expectJust "typecheckLoop" . lookupUFM old_hpt) mods reachableBackwards :: ModuleName -> [ModSummary] -> [ModSummary] reachableBackwards mod summaries = [ ms | (ms,_,_) <- reachableG (transposeG graph) root ] where -- the rest just sets up the graph: (graph, lookup_node) = moduleGraphNodes False summaries root = expectJust "reachableBackwards" (lookup_node HsBootFile mod) -- --------------------------------------------------------------------------- -- -- | Topological sort of the module graph topSortModuleGraph :: Bool -- ^ Drop hi-boot nodes? (see below) -> [ModSummary] -> Maybe ModuleName -- ^ Root module name. If @Nothing@, use the full graph. -> [SCC ModSummary] -- ^ Calculate SCCs of the module graph, possibly dropping the hi-boot nodes -- The resulting list of strongly-connected-components is in topologically -- sorted order, starting with the module(s) at the bottom of the -- dependency graph (ie compile them first) and ending with the ones at -- the top. -- -- Drop hi-boot nodes (first boolean arg)? -- -- - @False@: treat the hi-boot summaries as nodes of the graph, -- so the graph must be acyclic -- -- - @True@: eliminate the hi-boot nodes, and instead pretend -- the a source-import of Foo is an import of Foo -- The resulting graph has no hi-boot nodes, but can be cyclic topSortModuleGraph drop_hs_boot_nodes summaries mb_root_mod = map (fmap summaryNodeSummary) $ stronglyConnCompG initial_graph where (graph, lookup_node) = moduleGraphNodes drop_hs_boot_nodes summaries initial_graph = case mb_root_mod of Nothing -> graph Just root_mod -> -- restrict the graph to just those modules reachable from -- the specified module. We do this by building a graph with -- the full set of nodes, and determining the reachable set from -- the specified node. let root | Just node <- lookup_node HsSrcFile root_mod, graph `hasVertexG` node = node | otherwise = throwGhcException (ProgramError "module does not exist") in graphFromEdgedVertices (seq root (reachableG graph root)) type SummaryNode = (ModSummary, Int, [Int]) summaryNodeKey :: SummaryNode -> Int summaryNodeKey (_, k, _) = k summaryNodeSummary :: SummaryNode -> ModSummary summaryNodeSummary (s, _, _) = s moduleGraphNodes :: Bool -> [ModSummary] -> (Graph SummaryNode, HscSource -> ModuleName -> Maybe SummaryNode) moduleGraphNodes drop_hs_boot_nodes summaries = (graphFromEdgedVertices nodes, lookup_node) where numbered_summaries = zip summaries [1..] lookup_node :: HscSource -> ModuleName -> Maybe SummaryNode lookup_node hs_src mod = Map.lookup (mod, hscSourceToIsBoot hs_src) node_map lookup_key :: HscSource -> ModuleName -> Maybe Int lookup_key hs_src mod = fmap summaryNodeKey (lookup_node hs_src mod) node_map :: NodeMap SummaryNode node_map = Map.fromList [ ((moduleName (ms_mod s), hscSourceToIsBoot (ms_hsc_src s)), node) | node@(s, _, _) <- nodes ] -- We use integers as the keys for the SCC algorithm nodes :: [SummaryNode] nodes = [ (s, key, out_keys) | (s, key) <- numbered_summaries -- Drop the hi-boot ones if told to do so , not (isBootSummary s && drop_hs_boot_nodes) , let out_keys = out_edge_keys hs_boot_key (map unLoc (ms_home_srcimps s)) ++ out_edge_keys HsSrcFile (map unLoc (ms_home_imps s)) ++ (-- see [boot-edges] below if drop_hs_boot_nodes || ms_hsc_src s == HsBootFile then [] else case lookup_key HsBootFile (ms_mod_name s) of Nothing -> [] Just k -> [k]) ] -- [boot-edges] if this is a .hs and there is an equivalent -- .hs-boot, add a link from the former to the latter. This -- has the effect of detecting bogus cases where the .hs-boot -- depends on the .hs, by introducing a cycle. Additionally, -- it ensures that we will always process the .hs-boot before -- the .hs, and so the HomePackageTable will always have the -- most up to date information. -- Drop hs-boot nodes by using HsSrcFile as the key hs_boot_key | drop_hs_boot_nodes = HsSrcFile | otherwise = HsBootFile out_edge_keys :: HscSource -> [ModuleName] -> [Int] out_edge_keys hi_boot ms = mapMaybe (lookup_key hi_boot) ms -- If we want keep_hi_boot_nodes, then we do lookup_key with -- IsBoot; else NotBoot -- The nodes of the graph are keyed by (mod, is boot?) pairs -- NB: hsig files show up as *normal* nodes (not boot!), since they don't -- participate in cycles (for now) type NodeKey = (ModuleName, IsBoot) type NodeMap a = Map.Map NodeKey a msKey :: ModSummary -> NodeKey msKey (ModSummary { ms_mod = mod, ms_hsc_src = boot }) = (moduleName mod, hscSourceToIsBoot boot) mkNodeMap :: [ModSummary] -> NodeMap ModSummary mkNodeMap summaries = Map.fromList [ (msKey s, s) | s <- summaries] nodeMapElts :: NodeMap a -> [a] nodeMapElts = Map.elems -- | If there are {-# SOURCE #-} imports between strongly connected -- components in the topological sort, then those imports can -- definitely be replaced by ordinary non-SOURCE imports: if SOURCE -- were necessary, then the edge would be part of a cycle. warnUnnecessarySourceImports :: GhcMonad m => [SCC ModSummary] -> m () warnUnnecessarySourceImports sccs = do dflags <- getDynFlags logWarnings (listToBag (concatMap (check dflags . flattenSCC) sccs)) where check dflags ms = let mods_in_this_cycle = map ms_mod_name ms in [ warn dflags i | m <- ms, i <- ms_home_srcimps m, unLoc i `notElem` mods_in_this_cycle ] warn :: DynFlags -> Located ModuleName -> WarnMsg warn dflags (L loc mod) = mkPlainErrMsg dflags loc (ptext (sLit "Warning: {-# SOURCE #-} unnecessary in import of ") <+> quotes (ppr mod)) reportImportErrors :: MonadIO m => [Either ErrMsg b] -> m [b] reportImportErrors xs | null errs = return oks | otherwise = throwManyErrors errs where (errs, oks) = partitionEithers xs throwManyErrors :: MonadIO m => [ErrMsg] -> m ab throwManyErrors errs = liftIO $ throwIO $ mkSrcErr $ listToBag errs ----------------------------------------------------------------------------- -- -- | Downsweep (dependency analysis) -- -- Chase downwards from the specified root set, returning summaries -- for all home modules encountered. Only follow source-import -- links. -- -- We pass in the previous collection of summaries, which is used as a -- cache to avoid recalculating a module summary if the source is -- unchanged. -- -- The returned list of [ModSummary] nodes has one node for each home-package -- module, plus one for any hs-boot files. The imports of these nodes -- are all there, including the imports of non-home-package modules. downsweep :: HscEnv -> [ModSummary] -- Old summaries -> [ModuleName] -- Ignore dependencies on these; treat -- them as if they were package modules -> Bool -- True <=> allow multiple targets to have -- the same module name; this is -- very useful for ghc -M -> IO [Either ErrMsg ModSummary] -- The elts of [ModSummary] all have distinct -- (Modules, IsBoot) identifiers, unless the Bool is true -- in which case there can be repeats downsweep hsc_env old_summaries excl_mods allow_dup_roots = do rootSummaries <- mapM getRootSummary roots rootSummariesOk <- reportImportErrors rootSummaries let root_map = mkRootMap rootSummariesOk checkDuplicates root_map summs <- loop (concatMap calcDeps rootSummariesOk) root_map return summs where -- When we're compiling a signature file, we have an implicit -- dependency on what-ever the signature's implementation is. -- (But not when we're type checking!) calcDeps summ | HsigFile <- ms_hsc_src summ , Just m <- getSigOf (hsc_dflags hsc_env) (moduleName (ms_mod summ)) , modulePackageKey m == thisPackage (hsc_dflags hsc_env) = (noLoc (moduleName m), NotBoot) : msDeps summ | otherwise = msDeps summ dflags = hsc_dflags hsc_env roots = hsc_targets hsc_env old_summary_map :: NodeMap ModSummary old_summary_map = mkNodeMap old_summaries getRootSummary :: Target -> IO (Either ErrMsg ModSummary) getRootSummary (Target (TargetFile file mb_phase) obj_allowed maybe_buf) = do exists <- liftIO $ doesFileExist file if exists then Right `fmap` summariseFile hsc_env old_summaries file mb_phase obj_allowed maybe_buf else return $ Left $ mkPlainErrMsg dflags noSrcSpan $ text "can't find file:" <+> text file getRootSummary (Target (TargetModule modl) obj_allowed maybe_buf) = do maybe_summary <- summariseModule hsc_env old_summary_map NotBoot (L rootLoc modl) obj_allowed maybe_buf excl_mods case maybe_summary of Nothing -> return $ Left $ packageModErr dflags modl Just s -> return s rootLoc = mkGeneralSrcSpan (fsLit "") -- In a root module, the filename is allowed to diverge from the module -- name, so we have to check that there aren't multiple root files -- defining the same module (otherwise the duplicates will be silently -- ignored, leading to confusing behaviour). checkDuplicates :: NodeMap [Either ErrMsg ModSummary] -> IO () checkDuplicates root_map | allow_dup_roots = return () | null dup_roots = return () | otherwise = liftIO $ multiRootsErr dflags (head dup_roots) where dup_roots :: [[ModSummary]] -- Each at least of length 2 dup_roots = filterOut isSingleton $ map rights $ nodeMapElts root_map loop :: [(Located ModuleName,IsBoot)] -- Work list: process these modules -> NodeMap [Either ErrMsg ModSummary] -- Visited set; the range is a list because -- the roots can have the same module names -- if allow_dup_roots is True -> IO [Either ErrMsg ModSummary] -- The result includes the worklist, except -- for those mentioned in the visited set loop [] done = return (concat (nodeMapElts done)) loop ((wanted_mod, is_boot) : ss) done | Just summs <- Map.lookup key done = if isSingleton summs then loop ss done else do { multiRootsErr dflags (rights summs); return [] } | otherwise = do mb_s <- summariseModule hsc_env old_summary_map is_boot wanted_mod True Nothing excl_mods case mb_s of Nothing -> loop ss done Just (Left e) -> loop ss (Map.insert key [Left e] done) Just (Right s)-> loop (calcDeps s ++ ss) (Map.insert key [Right s] done) where key = (unLoc wanted_mod, is_boot) mkRootMap :: [ModSummary] -> NodeMap [Either ErrMsg ModSummary] mkRootMap summaries = Map.insertListWith (flip (++)) [ (msKey s, [Right s]) | s <- summaries ] Map.empty -- | Returns the dependencies of the ModSummary s. -- A wrinkle is that for a {-# SOURCE #-} import we return -- *both* the hs-boot file -- *and* the source file -- as "dependencies". That ensures that the list of all relevant -- modules always contains B.hs if it contains B.hs-boot. -- Remember, this pass isn't doing the topological sort. It's -- just gathering the list of all relevant ModSummaries msDeps :: ModSummary -> [(Located ModuleName, IsBoot)] msDeps s = concat [ [(m,IsBoot), (m,NotBoot)] | m <- ms_home_srcimps s ] ++ [ (m,NotBoot) | m <- ms_home_imps s ] home_imps :: [Located (ImportDecl RdrName)] -> [Located ModuleName] home_imps imps = [ ideclName i | L _ i <- imps, isLocal (ideclPkgQual i) ] where isLocal Nothing = True isLocal (Just pkg) | pkg == fsLit "this" = True -- "this" is special isLocal _ = False ms_home_allimps :: ModSummary -> [ModuleName] ms_home_allimps ms = map unLoc (ms_home_srcimps ms ++ ms_home_imps ms) ms_home_srcimps :: ModSummary -> [Located ModuleName] ms_home_srcimps = home_imps . ms_srcimps ms_home_imps :: ModSummary -> [Located ModuleName] ms_home_imps = home_imps . ms_imps ----------------------------------------------------------------------------- -- Summarising modules -- We have two types of summarisation: -- -- * Summarise a file. This is used for the root module(s) passed to -- cmLoadModules. The file is read, and used to determine the root -- module name. The module name may differ from the filename. -- -- * Summarise a module. We are given a module name, and must provide -- a summary. The finder is used to locate the file in which the module -- resides. summariseFile :: HscEnv -> [ModSummary] -- old summaries -> FilePath -- source file name -> Maybe Phase -- start phase -> Bool -- object code allowed? -> Maybe (StringBuffer,UTCTime) -> IO ModSummary summariseFile hsc_env old_summaries file mb_phase obj_allowed maybe_buf -- we can use a cached summary if one is available and the -- source file hasn't changed, But we have to look up the summary -- by source file, rather than module name as we do in summarise. | Just old_summary <- findSummaryBySourceFile old_summaries file = do let location = ms_location old_summary dflags = hsc_dflags hsc_env src_timestamp <- get_src_timestamp -- The file exists; we checked in getRootSummary above. -- If it gets removed subsequently, then this -- getModificationUTCTime may fail, but that's the right -- behaviour. -- return the cached summary if the source didn't change if ms_hs_date old_summary == src_timestamp && not (gopt Opt_ForceRecomp (hsc_dflags hsc_env)) then do -- update the object-file timestamp obj_timestamp <- if isObjectTarget (hscTarget (hsc_dflags hsc_env)) || obj_allowed -- bug #1205 then liftIO $ getObjTimestamp location NotBoot else return Nothing hi_timestamp <- maybeGetIfaceDate dflags location return old_summary{ ms_obj_date = obj_timestamp , ms_iface_date = hi_timestamp } else new_summary src_timestamp | otherwise = do src_timestamp <- get_src_timestamp new_summary src_timestamp where get_src_timestamp = case maybe_buf of Just (_,t) -> return t Nothing -> liftIO $ getModificationUTCTime file -- getMofificationUTCTime may fail new_summary src_timestamp = do let dflags = hsc_dflags hsc_env let hsc_src = if isHaskellSigFilename file then HsigFile else HsSrcFile (dflags', hspp_fn, buf) <- preprocessFile hsc_env file mb_phase maybe_buf (srcimps,the_imps, L _ mod_name) <- getImports dflags' buf hspp_fn file -- Make a ModLocation for this file location <- liftIO $ mkHomeModLocation dflags mod_name file -- Tell the Finder cache where it is, so that subsequent calls -- to findModule will find it, even if it's not on any search path mod <- liftIO $ addHomeModuleToFinder hsc_env mod_name location -- when the user asks to load a source file by name, we only -- use an object file if -fobject-code is on. See #1205. obj_timestamp <- if isObjectTarget (hscTarget (hsc_dflags hsc_env)) || obj_allowed -- bug #1205 then liftIO $ modificationTimeIfExists (ml_obj_file location) else return Nothing hi_timestamp <- maybeGetIfaceDate dflags location return (ModSummary { ms_mod = mod, ms_hsc_src = hsc_src, ms_location = location, ms_hspp_file = hspp_fn, ms_hspp_opts = dflags', ms_hspp_buf = Just buf, ms_srcimps = srcimps, ms_textual_imps = the_imps, ms_hs_date = src_timestamp, ms_iface_date = hi_timestamp, ms_obj_date = obj_timestamp }) findSummaryBySourceFile :: [ModSummary] -> FilePath -> Maybe ModSummary findSummaryBySourceFile summaries file = case [ ms | ms <- summaries, HsSrcFile <- [ms_hsc_src ms], expectJust "findSummaryBySourceFile" (ml_hs_file (ms_location ms)) == file ] of [] -> Nothing (x:_) -> Just x -- Summarise a module, and pick up source and timestamp. summariseModule :: HscEnv -> NodeMap ModSummary -- Map of old summaries -> IsBoot -- IsBoot <=> a {-# SOURCE #-} import -> Located ModuleName -- Imported module to be summarised -> Bool -- object code allowed? -> Maybe (StringBuffer, UTCTime) -> [ModuleName] -- Modules to exclude -> IO (Maybe (Either ErrMsg ModSummary)) -- Its new summary summariseModule hsc_env old_summary_map is_boot (L loc wanted_mod) obj_allowed maybe_buf excl_mods | wanted_mod `elem` excl_mods = return Nothing | Just old_summary <- Map.lookup (wanted_mod, is_boot) old_summary_map = do -- Find its new timestamp; all the -- ModSummaries in the old map have valid ml_hs_files let location = ms_location old_summary src_fn = expectJust "summariseModule" (ml_hs_file location) -- check the modification time on the source file, and -- return the cached summary if it hasn't changed. If the -- file has disappeared, we need to call the Finder again. case maybe_buf of Just (_,t) -> check_timestamp old_summary location src_fn t Nothing -> do m <- tryIO (getModificationUTCTime src_fn) case m of Right t -> check_timestamp old_summary location src_fn t Left e | isDoesNotExistError e -> find_it | otherwise -> ioError e | otherwise = find_it where dflags = hsc_dflags hsc_env check_timestamp old_summary location src_fn src_timestamp | ms_hs_date old_summary == src_timestamp && not (gopt Opt_ForceRecomp dflags) = do -- update the object-file timestamp obj_timestamp <- if isObjectTarget (hscTarget (hsc_dflags hsc_env)) || obj_allowed -- bug #1205 then getObjTimestamp location is_boot else return Nothing hi_timestamp <- maybeGetIfaceDate dflags location return (Just (Right old_summary{ ms_obj_date = obj_timestamp , ms_iface_date = hi_timestamp})) | otherwise = -- source changed: re-summarise. new_summary location (ms_mod old_summary) src_fn src_timestamp find_it = do -- Don't use the Finder's cache this time. If the module was -- previously a package module, it may have now appeared on the -- search path, so we want to consider it to be a home module. If -- the module was previously a home module, it may have moved. uncacheModule hsc_env wanted_mod found <- findImportedModule hsc_env wanted_mod Nothing case found of Found location mod | isJust (ml_hs_file location) -> -- Home package just_found location mod | otherwise -> -- Drop external-pkg ASSERT(modulePackageKey mod /= thisPackage dflags) return Nothing err -> return $ Just $ Left $ noModError dflags loc wanted_mod err -- Not found just_found location mod = do -- Adjust location to point to the hs-boot source file, -- hi file, object file, when is_boot says so let location' | IsBoot <- is_boot = addBootSuffixLocn location | otherwise = location src_fn = expectJust "summarise2" (ml_hs_file location') -- Check that it exists -- It might have been deleted since the Finder last found it maybe_t <- modificationTimeIfExists src_fn case maybe_t of Nothing -> return $ Just $ Left $ noHsFileErr dflags loc src_fn Just t -> new_summary location' mod src_fn t new_summary location mod src_fn src_timestamp = do -- Preprocess the source file and get its imports -- The dflags' contains the OPTIONS pragmas (dflags', hspp_fn, buf) <- preprocessFile hsc_env src_fn Nothing maybe_buf (srcimps, the_imps, L mod_loc mod_name) <- getImports dflags' buf hspp_fn src_fn -- NB: Despite the fact that is_boot is a top-level parameter, we -- don't actually know coming into this function what the HscSource -- of the module in question is. This is because we may be processing -- this module because another module in the graph imported it: in this -- case, we know if it's a boot or not because of the {-# SOURCE #-} -- annotation, but we don't know if it's a signature or a regular -- module until we actually look it up on the filesystem. let hsc_src = case is_boot of IsBoot -> HsBootFile _ | isHaskellSigFilename src_fn -> HsigFile | otherwise -> HsSrcFile when (mod_name /= wanted_mod) $ throwOneError $ mkPlainErrMsg dflags' mod_loc $ text "File name does not match module name:" $$ text "Saw:" <+> quotes (ppr mod_name) $$ text "Expected:" <+> quotes (ppr wanted_mod) -- Find the object timestamp, and return the summary obj_timestamp <- if isObjectTarget (hscTarget (hsc_dflags hsc_env)) || obj_allowed -- bug #1205 then getObjTimestamp location is_boot else return Nothing hi_timestamp <- maybeGetIfaceDate dflags location return (Just (Right (ModSummary { ms_mod = mod, ms_hsc_src = hsc_src, ms_location = location, ms_hspp_file = hspp_fn, ms_hspp_opts = dflags', ms_hspp_buf = Just buf, ms_srcimps = srcimps, ms_textual_imps = the_imps, ms_hs_date = src_timestamp, ms_iface_date = hi_timestamp, ms_obj_date = obj_timestamp }))) getObjTimestamp :: ModLocation -> IsBoot -> IO (Maybe UTCTime) getObjTimestamp location is_boot = if is_boot == IsBoot then return Nothing else modificationTimeIfExists (ml_obj_file location) preprocessFile :: HscEnv -> FilePath -> Maybe Phase -- ^ Starting phase -> Maybe (StringBuffer,UTCTime) -> IO (DynFlags, FilePath, StringBuffer) preprocessFile hsc_env src_fn mb_phase Nothing = do (dflags', hspp_fn) <- preprocess hsc_env (src_fn, mb_phase) buf <- hGetStringBuffer hspp_fn return (dflags', hspp_fn, buf) preprocessFile hsc_env src_fn mb_phase (Just (buf, _time)) = do let dflags = hsc_dflags hsc_env let local_opts = getOptions dflags buf src_fn (dflags', leftovers, warns) <- parseDynamicFilePragma dflags local_opts checkProcessArgsResult dflags leftovers handleFlagWarnings dflags' warns let needs_preprocessing | Just (Unlit _) <- mb_phase = True | Nothing <- mb_phase, Unlit _ <- startPhase src_fn = True -- note: local_opts is only required if there's no Unlit phase | xopt Opt_Cpp dflags' = True | gopt Opt_Pp dflags' = True | otherwise = False when needs_preprocessing $ throwGhcExceptionIO (ProgramError "buffer needs preprocesing; interactive check disabled") return (dflags', src_fn, buf) ----------------------------------------------------------------------------- -- Error messages ----------------------------------------------------------------------------- noModError :: DynFlags -> SrcSpan -> ModuleName -> FindResult -> ErrMsg -- ToDo: we don't have a proper line number for this error noModError dflags loc wanted_mod err = mkPlainErrMsg dflags loc $ cannotFindModule dflags wanted_mod err noHsFileErr :: DynFlags -> SrcSpan -> String -> ErrMsg noHsFileErr dflags loc path = mkPlainErrMsg dflags loc $ text "Can't find" <+> text path packageModErr :: DynFlags -> ModuleName -> ErrMsg packageModErr dflags mod = mkPlainErrMsg dflags noSrcSpan $ text "module" <+> quotes (ppr mod) <+> text "is a package module" multiRootsErr :: DynFlags -> [ModSummary] -> IO () multiRootsErr _ [] = panic "multiRootsErr" multiRootsErr dflags summs@(summ1:_) = throwOneError $ mkPlainErrMsg dflags noSrcSpan $ text "module" <+> quotes (ppr mod) <+> text "is defined in multiple files:" <+> sep (map text files) where mod = ms_mod summ1 files = map (expectJust "checkDup" . ml_hs_file . ms_location) summs cyclicModuleErr :: [ModSummary] -> SDoc -- From a strongly connected component we find -- a single cycle to report cyclicModuleErr mss = ASSERT( not (null mss) ) case findCycle graph of Nothing -> ptext (sLit "Unexpected non-cycle") <+> ppr mss Just path -> vcat [ ptext (sLit "Module imports form a cycle:") , nest 2 (show_path path) ] where graph :: [Node NodeKey ModSummary] graph = [(ms, msKey ms, get_deps ms) | ms <- mss] get_deps :: ModSummary -> [NodeKey] get_deps ms = ([ (unLoc m, IsBoot) | m <- ms_home_srcimps ms ] ++ [ (unLoc m, NotBoot) | m <- ms_home_imps ms ]) show_path [] = panic "show_path" show_path [m] = ptext (sLit "module") <+> ppr_ms m <+> ptext (sLit "imports itself") show_path (m1:m2:ms) = vcat ( nest 7 (ptext (sLit "module") <+> ppr_ms m1) : nest 6 (ptext (sLit "imports") <+> ppr_ms m2) : go ms ) where go [] = [ptext (sLit "which imports") <+> ppr_ms m1] go (m:ms) = (ptext (sLit "which imports") <+> ppr_ms m) : go ms ppr_ms :: ModSummary -> SDoc ppr_ms ms = quotes (ppr (moduleName (ms_mod ms))) <+> (parens (text (msHsFilePath ms)))