{-# LANGUAGE BangPatterns, CPP, MagicHash, NondecreasingIndentation #-} ------------------------------------------------------------------------------- -- -- | Main API for compiling plain Haskell source code. -- -- This module implements compilation of a Haskell source. It is -- /not/ concerned with preprocessing of source files; this is handled -- in "DriverPipeline". -- -- There are various entry points depending on what mode we're in: -- "batch" mode (@--make@), "one-shot" mode (@-c@, @-S@ etc.), and -- "interactive" mode (GHCi). There are also entry points for -- individual passes: parsing, typechecking/renaming, desugaring, and -- simplification. -- -- All the functions here take an 'HscEnv' as a parameter, but none of -- them return a new one: 'HscEnv' is treated as an immutable value -- from here on in (although it has mutable components, for the -- caches). -- -- Warning messages are dealt with consistently throughout this API: -- during compilation warnings are collected, and before any function -- in @HscMain@ returns, the warnings are either printed, or turned -- into a real compialtion error if the @-Werror@ flag is enabled. -- -- (c) The GRASP/AQUA Project, Glasgow University, 1993-2000 -- ------------------------------------------------------------------------------- module HscMain ( -- * Making an HscEnv newHscEnv -- * Compiling complete source files , Messager, batchMsg , HscStatus (..) , hscCompileOneShot , hscCompileCmmFile , hscCompileCore , genericHscCompileGetFrontendResult , genModDetails , hscSimpleIface , hscWriteIface , hscNormalIface , hscGenHardCode , hscInteractive -- * Running passes separately , hscParse , hscTypecheckRename , hscDesugar , makeSimpleIface , makeSimpleDetails , hscSimplify -- ToDo, shouldn't really export this -- * Support for interactive evaluation , hscParseIdentifier , hscTcRcLookupName , hscTcRnGetInfo , hscCheckSafe , hscGetSafe #ifdef GHCI , hscIsGHCiMonad , hscGetModuleInterface , hscRnImportDecls , hscTcRnLookupRdrName , hscStmt, hscStmtWithLocation , hscDecls, hscDeclsWithLocation , hscTcExpr, hscImport, hscKcType , hscCompileCoreExpr -- * Low-level exports for hooks , hscCompileCoreExpr' #endif -- We want to make sure that we export enough to be able to redefine -- hscFileFrontEnd in client code , hscParse', hscSimplify', hscDesugar', tcRnModule' , getHscEnv , hscSimpleIface', hscNormalIface' , oneShotMsg , hscFileFrontEnd, genericHscFrontend, dumpIfaceStats ) where #ifdef GHCI import Id import BasicTypes ( HValue ) import ByteCodeGen ( byteCodeGen, coreExprToBCOs ) import Linker import CoreTidy ( tidyExpr ) import Type ( Type ) import PrelNames import {- Kind parts of -} Type ( Kind ) import CoreLint ( lintInteractiveExpr ) import DsMeta ( templateHaskellNames ) import VarEnv ( emptyTidyEnv ) import Panic import GHC.Exts #endif import Module import Packages import RdrName import HsSyn import CoreSyn import StringBuffer import Parser import Lexer import SrcLoc import TcRnDriver import TcIface ( typecheckIface ) import TcRnMonad import IfaceEnv ( initNameCache ) import LoadIface ( ifaceStats, initExternalPackageState ) import PrelInfo import MkIface import Desugar import SimplCore import TidyPgm import CorePrep import CoreToStg ( coreToStg ) import qualified StgCmm ( codeGen ) import StgSyn import CostCentre import ProfInit import TyCon import Name import SimplStg ( stg2stg ) import Cmm import CmmParse ( parseCmmFile ) import CmmBuildInfoTables import CmmPipeline import CmmInfo import CodeOutput import NameEnv ( emptyNameEnv ) import NameSet ( emptyNameSet ) import InstEnv import FamInstEnv import Fingerprint ( Fingerprint ) import Hooks import DynFlags import ErrUtils import Outputable import HscStats ( ppSourceStats ) import HscTypes import FastString import UniqFM ( emptyUFM ) import UniqSupply import Bag import Exception import qualified Stream import Stream (Stream) import Util import Data.List import Control.Monad import Data.Maybe import Data.IORef import System.FilePath as FilePath import System.Directory import qualified Data.Map as Map #include "HsVersions.h" {- ********************************************************************** %* * Initialisation %* * %********************************************************************* -} newHscEnv :: DynFlags -> IO HscEnv newHscEnv dflags = do eps_var <- newIORef initExternalPackageState us <- mkSplitUniqSupply 'r' nc_var <- newIORef (initNameCache us knownKeyNames) fc_var <- newIORef emptyUFM mlc_var <- newIORef emptyModuleEnv return HscEnv { hsc_dflags = dflags, hsc_targets = [], hsc_mod_graph = [], hsc_IC = emptyInteractiveContext dflags, hsc_HPT = emptyHomePackageTable, hsc_EPS = eps_var, hsc_NC = nc_var, hsc_FC = fc_var, hsc_MLC = mlc_var, hsc_type_env_var = Nothing } knownKeyNames :: [Name] -- Put here to avoid loops involving DsMeta, knownKeyNames = -- where templateHaskellNames are defined map getName wiredInThings ++ basicKnownKeyNames #ifdef GHCI ++ templateHaskellNames #endif -- ----------------------------------------------------------------------------- getWarnings :: Hsc WarningMessages getWarnings = Hsc $ \_ w -> return (w, w) clearWarnings :: Hsc () clearWarnings = Hsc $ \_ _ -> return ((), emptyBag) logWarnings :: WarningMessages -> Hsc () logWarnings w = Hsc $ \_ w0 -> return ((), w0 `unionBags` w) getHscEnv :: Hsc HscEnv getHscEnv = Hsc $ \e w -> return (e, w) handleWarnings :: Hsc () handleWarnings = do dflags <- getDynFlags w <- getWarnings liftIO $ printOrThrowWarnings dflags w clearWarnings -- | log warning in the monad, and if there are errors then -- throw a SourceError exception. logWarningsReportErrors :: Messages -> Hsc () logWarningsReportErrors (warns,errs) = do logWarnings warns when (not $ isEmptyBag errs) $ throwErrors errs -- | Throw some errors. throwErrors :: ErrorMessages -> Hsc a throwErrors = liftIO . throwIO . mkSrcErr -- | Deal with errors and warnings returned by a compilation step -- -- In order to reduce dependencies to other parts of the compiler, functions -- outside the "main" parts of GHC return warnings and errors as a parameter -- and signal success via by wrapping the result in a 'Maybe' type. This -- function logs the returned warnings and propagates errors as exceptions -- (of type 'SourceError'). -- -- This function assumes the following invariants: -- -- 1. If the second result indicates success (is of the form 'Just x'), -- there must be no error messages in the first result. -- -- 2. If there are no error messages, but the second result indicates failure -- there should be warnings in the first result. That is, if the action -- failed, it must have been due to the warnings (i.e., @-Werror@). ioMsgMaybe :: IO (Messages, Maybe a) -> Hsc a ioMsgMaybe ioA = do ((warns,errs), mb_r) <- liftIO ioA logWarnings warns case mb_r of Nothing -> throwErrors errs Just r -> ASSERT( isEmptyBag errs ) return r -- | like ioMsgMaybe, except that we ignore error messages and return -- 'Nothing' instead. ioMsgMaybe' :: IO (Messages, Maybe a) -> Hsc (Maybe a) ioMsgMaybe' ioA = do ((warns,_errs), mb_r) <- liftIO $ ioA logWarnings warns return mb_r -- ----------------------------------------------------------------------------- -- | Lookup things in the compiler's environment #ifdef GHCI hscTcRnLookupRdrName :: HscEnv -> RdrName -> IO [Name] hscTcRnLookupRdrName hsc_env0 rdr_name = runInteractiveHsc hsc_env0 $ do hsc_env <- getHscEnv ioMsgMaybe $ tcRnLookupRdrName hsc_env rdr_name #endif hscTcRcLookupName :: HscEnv -> Name -> IO (Maybe TyThing) hscTcRcLookupName hsc_env0 name = runInteractiveHsc hsc_env0 $ do hsc_env <- getHscEnv ioMsgMaybe' $ tcRnLookupName hsc_env name -- ignore errors: the only error we're likely to get is -- "name not found", and the Maybe in the return type -- is used to indicate that. hscTcRnGetInfo :: HscEnv -> Name -> IO (Maybe (TyThing, Fixity, [ClsInst], [FamInst])) hscTcRnGetInfo hsc_env0 name = runInteractiveHsc hsc_env0 $ do { hsc_env <- getHscEnv ; ioMsgMaybe' $ tcRnGetInfo hsc_env name } #ifdef GHCI hscIsGHCiMonad :: HscEnv -> String -> IO Name hscIsGHCiMonad hsc_env name = runHsc hsc_env $ ioMsgMaybe $ isGHCiMonad hsc_env name hscGetModuleInterface :: HscEnv -> Module -> IO ModIface hscGetModuleInterface hsc_env0 mod = runInteractiveHsc hsc_env0 $ do hsc_env <- getHscEnv ioMsgMaybe $ getModuleInterface hsc_env mod -- ----------------------------------------------------------------------------- -- | Rename some import declarations hscRnImportDecls :: HscEnv -> [LImportDecl RdrName] -> IO GlobalRdrEnv hscRnImportDecls hsc_env0 import_decls = runInteractiveHsc hsc_env0 $ do hsc_env <- getHscEnv ioMsgMaybe $ tcRnImportDecls hsc_env import_decls #endif -- ----------------------------------------------------------------------------- -- | parse a file, returning the abstract syntax hscParse :: HscEnv -> ModSummary -> IO HsParsedModule hscParse hsc_env mod_summary = runHsc hsc_env $ hscParse' mod_summary -- internal version, that doesn't fail due to -Werror hscParse' :: ModSummary -> Hsc HsParsedModule hscParse' mod_summary = do dflags <- getDynFlags let src_filename = ms_hspp_file mod_summary maybe_src_buf = ms_hspp_buf mod_summary -------------------------- Parser ---------------- liftIO $ showPass dflags "Parser" {-# SCC "Parser" #-} do -- sometimes we already have the buffer in memory, perhaps -- because we needed to parse the imports out of it, or get the -- module name. buf <- case maybe_src_buf of Just b -> return b Nothing -> liftIO $ hGetStringBuffer src_filename let loc = mkRealSrcLoc (mkFastString src_filename) 1 1 case unP parseModule (mkPState dflags buf loc) of PFailed span err -> liftIO $ throwOneError (mkPlainErrMsg dflags span err) POk pst rdr_module -> do logWarningsReportErrors (getMessages pst) liftIO $ dumpIfSet_dyn dflags Opt_D_dump_parsed "Parser" $ ppr rdr_module liftIO $ dumpIfSet_dyn dflags Opt_D_source_stats "Source Statistics" $ ppSourceStats False rdr_module -- To get the list of extra source files, we take the list -- that the parser gave us, -- - eliminate files beginning with '<'. gcc likes to use -- pseudo-filenames like "" and "" -- - normalise them (elimiante differences between ./f and f) -- - filter out the preprocessed source file -- - filter out anything beginning with tmpdir -- - remove duplicates -- - filter out the .hs/.lhs source filename if we have one -- let n_hspp = FilePath.normalise src_filename srcs0 = nub $ filter (not . (tmpDir dflags `isPrefixOf`)) $ filter (not . (== n_hspp)) $ map FilePath.normalise $ filter (not . (isPrefixOf "<")) $ map unpackFS $ srcfiles pst srcs1 = case ml_hs_file (ms_location mod_summary) of Just f -> filter (/= FilePath.normalise f) srcs0 Nothing -> srcs0 -- sometimes we see source files from earlier -- preprocessing stages that cannot be found, so just -- filter them out: srcs2 <- liftIO $ filterM doesFileExist srcs1 return HsParsedModule { hpm_module = rdr_module, hpm_src_files = srcs2, hpm_annotations = (Map.fromListWith (++) $ annotations pst, Map.fromList $ ((noSrcSpan,comment_q pst) :(annotations_comments pst))) } -- XXX: should this really be a Maybe X? Check under which circumstances this -- can become a Nothing and decide whether this should instead throw an -- exception/signal an error. type RenamedStuff = (Maybe (HsGroup Name, [LImportDecl Name], Maybe [LIE Name], Maybe LHsDocString)) -- | Rename and typecheck a module, additionally returning the renamed syntax hscTypecheckRename :: HscEnv -> ModSummary -> HsParsedModule -> IO (TcGblEnv, RenamedStuff) hscTypecheckRename hsc_env mod_summary rdr_module = runHsc hsc_env $ do tc_result <- tcRnModule' hsc_env mod_summary True rdr_module -- This 'do' is in the Maybe monad! let rn_info = do decl <- tcg_rn_decls tc_result let imports = tcg_rn_imports tc_result exports = tcg_rn_exports tc_result doc_hdr = tcg_doc_hdr tc_result return (decl,imports,exports,doc_hdr) return (tc_result, rn_info) -- wrapper around tcRnModule to handle safe haskell extras tcRnModule' :: HscEnv -> ModSummary -> Bool -> HsParsedModule -> Hsc TcGblEnv tcRnModule' hsc_env sum save_rn_syntax mod = do tcg_res <- {-# SCC "Typecheck-Rename" #-} ioMsgMaybe $ tcRnModule hsc_env (ms_hsc_src sum) save_rn_syntax mod tcSafeOK <- liftIO $ readIORef (tcg_safeInfer tcg_res) dflags <- getDynFlags let allSafeOK = safeInferred dflags && tcSafeOK -- end of the safe haskell line, how to respond to user? if not (safeHaskellOn dflags) || (safeInferOn dflags && not allSafeOK) -- if safe Haskell off or safe infer failed, mark unsafe then markUnsafeInfer tcg_res emptyBag -- module (could be) safe, throw warning if needed else do tcg_res' <- hscCheckSafeImports tcg_res safe <- liftIO $ readIORef (tcg_safeInfer tcg_res') when safe $ do case wopt Opt_WarnSafe dflags of True -> (logWarnings $ unitBag $ mkPlainWarnMsg dflags (warnSafeOnLoc dflags) $ errSafe tcg_res') False | safeHaskell dflags == Sf_Trustworthy && wopt Opt_WarnTrustworthySafe dflags -> (logWarnings $ unitBag $ mkPlainWarnMsg dflags (trustworthyOnLoc dflags) $ errTwthySafe tcg_res') False -> return () return tcg_res' where pprMod t = ppr $ moduleName $ tcg_mod t errSafe t = quotes (pprMod t) <+> text "has been inferred as safe!" errTwthySafe t = quotes (pprMod t) <+> text "is marked as Trustworthy but has been inferred as safe!" -- | Convert a typechecked module to Core hscDesugar :: HscEnv -> ModSummary -> TcGblEnv -> IO ModGuts hscDesugar hsc_env mod_summary tc_result = runHsc hsc_env $ hscDesugar' (ms_location mod_summary) tc_result hscDesugar' :: ModLocation -> TcGblEnv -> Hsc ModGuts hscDesugar' mod_location tc_result = do hsc_env <- getHscEnv r <- ioMsgMaybe $ {-# SCC "deSugar" #-} deSugar hsc_env mod_location tc_result -- always check -Werror after desugaring, this is the last opportunity for -- warnings to arise before the backend. handleWarnings return r -- | Make a 'ModIface' from the results of typechecking. Used when -- not optimising, and the interface doesn't need to contain any -- unfoldings or other cross-module optimisation info. -- ToDo: the old interface is only needed to get the version numbers, -- we should use fingerprint versions instead. makeSimpleIface :: HscEnv -> Maybe ModIface -> TcGblEnv -> ModDetails -> IO (ModIface,Bool) makeSimpleIface hsc_env maybe_old_iface tc_result details = runHsc hsc_env $ do safe_mode <- hscGetSafeMode tc_result ioMsgMaybe $ do mkIfaceTc hsc_env (fmap mi_iface_hash maybe_old_iface) safe_mode details tc_result -- | Make a 'ModDetails' from the results of typechecking. Used when -- typechecking only, as opposed to full compilation. makeSimpleDetails :: HscEnv -> TcGblEnv -> IO ModDetails makeSimpleDetails hsc_env tc_result = mkBootModDetailsTc hsc_env tc_result {- ********************************************************************** %* * The main compiler pipeline %* * %********************************************************************* -} {- -------------------------------- The compilation proper -------------------------------- It's the task of the compilation proper to compile Haskell, hs-boot and core files to either byte-code, hard-code (C, asm, LLVM, ect) or to nothing at all (the module is still parsed and type-checked. This feature is mostly used by IDE's and the likes). Compilation can happen in either 'one-shot', 'batch', 'nothing', or 'interactive' mode. 'One-shot' mode targets hard-code, 'batch' mode targets hard-code, 'nothing' mode targets nothing and 'interactive' mode targets byte-code. The modes are kept separate because of their different types and meanings: * In 'one-shot' mode, we're only compiling a single file and can therefore discard the new ModIface and ModDetails. This is also the reason it only targets hard-code; compiling to byte-code or nothing doesn't make sense when we discard the result. * 'Batch' mode is like 'one-shot' except that we keep the resulting ModIface and ModDetails. 'Batch' mode doesn't target byte-code since that require us to return the newly compiled byte-code. * 'Nothing' mode has exactly the same type as 'batch' mode but they're still kept separate. This is because compiling to nothing is fairly special: We don't output any interface files, we don't run the simplifier and we don't generate any code. * 'Interactive' mode is similar to 'batch' mode except that we return the compiled byte-code together with the ModIface and ModDetails. Trying to compile a hs-boot file to byte-code will result in a run-time error. This is the only thing that isn't caught by the type-system. -} type Messager = HscEnv -> (Int,Int) -> RecompileRequired -> ModSummary -> IO () genericHscCompileGetFrontendResult :: Bool -- always do basic recompilation check? -> Maybe TcGblEnv -> Maybe Messager -> HscEnv -> ModSummary -> SourceModified -> Maybe ModIface -- Old interface, if available -> (Int,Int) -- (i,n) = module i of n (for msgs) -> IO (Either ModIface (TcGblEnv, Maybe Fingerprint)) genericHscCompileGetFrontendResult always_do_basic_recompilation_check m_tc_result mHscMessage hsc_env mod_summary source_modified mb_old_iface mod_index = do let msg what = case mHscMessage of Just hscMessage -> hscMessage hsc_env mod_index what mod_summary Nothing -> return () skip iface = do msg UpToDate return $ Left iface compile mb_old_hash reason = do msg reason tc_result <- runHsc hsc_env $ genericHscFrontend mod_summary return $ Right (tc_result, mb_old_hash) stable = case source_modified of SourceUnmodifiedAndStable -> True _ -> False case m_tc_result of Just tc_result | not always_do_basic_recompilation_check -> return $ Right (tc_result, Nothing) _ -> do (recomp_reqd, mb_checked_iface) <- {-# SCC "checkOldIface" #-} checkOldIface hsc_env mod_summary source_modified mb_old_iface -- save the interface that comes back from checkOldIface. -- In one-shot mode we don't have the old iface until this -- point, when checkOldIface reads it from the disk. let mb_old_hash = fmap mi_iface_hash mb_checked_iface case mb_checked_iface of Just iface | not (recompileRequired recomp_reqd) -> -- If the module used TH splices when it was last -- compiled, then the recompilation check is not -- accurate enough (#481) and we must ignore -- it. However, if the module is stable (none of -- the modules it depends on, directly or -- indirectly, changed), then we *can* skip -- recompilation. This is why the SourceModified -- type contains SourceUnmodifiedAndStable, and -- it's pretty important: otherwise ghc --make -- would always recompile TH modules, even if -- nothing at all has changed. Stability is just -- the same check that make is doing for us in -- one-shot mode. case m_tc_result of Nothing | mi_used_th iface && not stable -> compile mb_old_hash (RecompBecause "TH") _ -> skip iface _ -> case m_tc_result of Nothing -> compile mb_old_hash recomp_reqd Just tc_result -> return $ Right (tc_result, mb_old_hash) genericHscFrontend :: ModSummary -> Hsc TcGblEnv genericHscFrontend mod_summary = getHooked hscFrontendHook genericHscFrontend' >>= ($ mod_summary) genericHscFrontend' :: ModSummary -> Hsc TcGblEnv genericHscFrontend' mod_summary = hscFileFrontEnd mod_summary -------------------------------------------------------------- -- Compilers -------------------------------------------------------------- hscCompileOneShot :: HscEnv -> ModSummary -> SourceModified -> IO HscStatus hscCompileOneShot env = lookupHook hscCompileOneShotHook hscCompileOneShot' (hsc_dflags env) env -- Compile Haskell/boot in OneShot mode. hscCompileOneShot' :: HscEnv -> ModSummary -> SourceModified -> IO HscStatus hscCompileOneShot' hsc_env mod_summary src_changed = do -- One-shot mode needs a knot-tying mutable variable for interface -- files. See TcRnTypes.TcGblEnv.tcg_type_env_var. type_env_var <- newIORef emptyNameEnv let mod = ms_mod mod_summary hsc_env' = hsc_env{ hsc_type_env_var = Just (mod, type_env_var) } msg what = oneShotMsg hsc_env' what skip = do msg UpToDate dumpIfaceStats hsc_env' return HscUpToDate compile mb_old_hash reason = runHsc hsc_env' $ do liftIO $ msg reason tc_result <- genericHscFrontend mod_summary guts0 <- hscDesugar' (ms_location mod_summary) tc_result dflags <- getDynFlags case hscTarget dflags of HscNothing -> do when (gopt Opt_WriteInterface dflags) $ liftIO $ do (iface, changed, _details) <- hscSimpleIface hsc_env tc_result mb_old_hash hscWriteIface dflags iface changed mod_summary return HscNotGeneratingCode _ -> case ms_hsc_src mod_summary of t | isHsBootOrSig t -> do (iface, changed, _) <- hscSimpleIface' tc_result mb_old_hash liftIO $ hscWriteIface dflags iface changed mod_summary return (case t of HsBootFile -> HscUpdateBoot HsigFile -> HscUpdateSig HsSrcFile -> panic "hscCompileOneShot Src") _ -> do guts <- hscSimplify' guts0 (iface, changed, _details, cgguts) <- hscNormalIface' guts mb_old_hash liftIO $ hscWriteIface dflags iface changed mod_summary return $ HscRecomp cgguts mod_summary -- XXX This is always False, because in one-shot mode the -- concept of stability does not exist. The driver never -- passes SourceUnmodifiedAndStable in here. stable = case src_changed of SourceUnmodifiedAndStable -> True _ -> False (recomp_reqd, mb_checked_iface) <- {-# SCC "checkOldIface" #-} checkOldIface hsc_env' mod_summary src_changed Nothing -- save the interface that comes back from checkOldIface. -- In one-shot mode we don't have the old iface until this -- point, when checkOldIface reads it from the disk. let mb_old_hash = fmap mi_iface_hash mb_checked_iface case mb_checked_iface of Just iface | not (recompileRequired recomp_reqd) -> -- If the module used TH splices when it was last compiled, -- then the recompilation check is not accurate enough (#481) -- and we must ignore it. However, if the module is stable -- (none of the modules it depends on, directly or indirectly, -- changed), then we *can* skip recompilation. This is why -- the SourceModified type contains SourceUnmodifiedAndStable, -- and it's pretty important: otherwise ghc --make would -- always recompile TH modules, even if nothing at all has -- changed. Stability is just the same check that make is -- doing for us in one-shot mode. if mi_used_th iface && not stable then compile mb_old_hash (RecompBecause "TH") else skip _ -> compile mb_old_hash recomp_reqd -------------------------------------------------------------- -- NoRecomp handlers -------------------------------------------------------------- genModDetails :: HscEnv -> ModIface -> IO ModDetails genModDetails hsc_env old_iface = do new_details <- {-# SCC "tcRnIface" #-} initIfaceCheck hsc_env (typecheckIface old_iface) dumpIfaceStats hsc_env return new_details -------------------------------------------------------------- -- Progress displayers. -------------------------------------------------------------- oneShotMsg :: HscEnv -> RecompileRequired -> IO () oneShotMsg hsc_env recomp = case recomp of UpToDate -> compilationProgressMsg (hsc_dflags hsc_env) $ "compilation IS NOT required" _ -> return () batchMsg :: Messager batchMsg hsc_env mod_index recomp mod_summary = case recomp of MustCompile -> showMsg "Compiling " "" UpToDate | verbosity (hsc_dflags hsc_env) >= 2 -> showMsg "Skipping " "" | otherwise -> return () RecompBecause reason -> showMsg "Compiling " (" [" ++ reason ++ "]") where dflags = hsc_dflags hsc_env showMsg msg reason = compilationProgressMsg dflags $ (showModuleIndex mod_index ++ msg ++ showModMsg dflags (hscTarget dflags) (recompileRequired recomp) mod_summary) ++ reason -------------------------------------------------------------- -- FrontEnds -------------------------------------------------------------- hscFileFrontEnd :: ModSummary -> Hsc TcGblEnv hscFileFrontEnd mod_summary = do hpm <- hscParse' mod_summary hsc_env <- getHscEnv tcg_env <- tcRnModule' hsc_env mod_summary False hpm return tcg_env -------------------------------------------------------------- -- Safe Haskell -------------------------------------------------------------- -- Note [Safe Haskell Trust Check] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- Safe Haskell checks that an import is trusted according to the following -- rules for an import of module M that resides in Package P: -- -- * If M is recorded as Safe and all its trust dependencies are OK -- then M is considered safe. -- * If M is recorded as Trustworthy and P is considered trusted and -- all M's trust dependencies are OK then M is considered safe. -- -- By trust dependencies we mean that the check is transitive. So if -- a module M that is Safe relies on a module N that is trustworthy, -- importing module M will first check (according to the second case) -- that N is trusted before checking M is trusted. -- -- This is a minimal description, so please refer to the user guide -- for more details. The user guide is also considered the authoritative -- source in this matter, not the comments or code. -- Note [Safe Haskell Inference] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- Safe Haskell does Safe inference on modules that don't have any specific -- safe haskell mode flag. The basic aproach to this is: -- * When deciding if we need to do a Safe language check, treat -- an unmarked module as having -XSafe mode specified. -- * For checks, don't throw errors but return them to the caller. -- * Caller checks if there are errors: -- * For modules explicitly marked -XSafe, we throw the errors. -- * For unmarked modules (inference mode), we drop the errors -- and mark the module as being Unsafe. -- -- It used to be that we only did safe inference on modules that had no Safe -- Haskell flags, but now we perform safe inference on all modules as we want -- to allow users to set the `--fwarn-safe`, `--fwarn-unsafe` and -- `--fwarn-trustworthy-safe` flags on Trustworthy and Unsafe modules so that a -- user can ensure their assumptions are correct and see reasons for why a -- module is safe or unsafe. -- -- This is tricky as we must be careful when we should throw an error compared -- to just warnings. For checking safe imports we manage it as two steps. First -- we check any imports that are required to be safe, then we check all other -- imports to see if we can infer them to be safe. -- | Check that the safe imports of the module being compiled are valid. -- If not we either issue a compilation error if the module is explicitly -- using Safe Haskell, or mark the module as unsafe if we're in safe -- inference mode. hscCheckSafeImports :: TcGblEnv -> Hsc TcGblEnv hscCheckSafeImports tcg_env = do dflags <- getDynFlags tcg_env' <- checkSafeImports dflags tcg_env checkRULES dflags tcg_env' where checkRULES dflags tcg_env' = do case safeLanguageOn dflags of True -> do -- XSafe: we nuke user written RULES logWarnings $ warns dflags (tcg_rules tcg_env') return tcg_env' { tcg_rules = [] } False -- SafeInferred: user defined RULES, so not safe | safeInferOn dflags && not (null $ tcg_rules tcg_env') -> markUnsafeInfer tcg_env' $ warns dflags (tcg_rules tcg_env') -- Trustworthy OR SafeInferred: with no RULES | otherwise -> return tcg_env' warns dflags rules = listToBag $ map (warnRules dflags) rules warnRules dflags (L loc (HsRule n _ _ _ _ _ _)) = mkPlainWarnMsg dflags loc $ text "Rule \"" <> ftext (unLoc n) <> text "\" ignored" $+$ text "User defined rules are disabled under Safe Haskell" -- | Validate that safe imported modules are actually safe. For modules in the -- HomePackage (the package the module we are compiling in resides) this just -- involves checking its trust type is 'Safe' or 'Trustworthy'. For modules -- that reside in another package we also must check that the external pacakge -- is trusted. See the Note [Safe Haskell Trust Check] above for more -- information. -- -- The code for this is quite tricky as the whole algorithm is done in a few -- distinct phases in different parts of the code base. See -- RnNames.rnImportDecl for where package trust dependencies for a module are -- collected and unioned. Specifically see the Note [RnNames . Tracking Trust -- Transitively] and the Note [RnNames . Trust Own Package]. checkSafeImports :: DynFlags -> TcGblEnv -> Hsc TcGblEnv checkSafeImports dflags tcg_env = do imps <- mapM condense imports' let (safeImps, regImps) = partition (\(_,_,s) -> s) imps -- We want to use the warning state specifically for detecting if safe -- inference has failed, so store and clear any existing warnings. oldErrs <- getWarnings clearWarnings -- Check safe imports are correct safePkgs <- mapM checkSafe safeImps safeErrs <- getWarnings clearWarnings -- Check non-safe imports are correct if inferring safety -- See the Note [Safe Haskell Inference] (infErrs, infPkgs) <- case (safeInferOn dflags) of False -> return (emptyBag, []) True -> do infPkgs <- mapM checkSafe regImps infErrs <- getWarnings clearWarnings return (infErrs, infPkgs) -- restore old errors logWarnings oldErrs case (isEmptyBag safeErrs) of -- Failed safe check False -> liftIO . throwIO . mkSrcErr $ safeErrs -- Passed safe check True -> do let infPassed = isEmptyBag infErrs tcg_env' <- case (not infPassed) of True -> markUnsafeInfer tcg_env infErrs False -> return tcg_env when (packageTrustOn dflags) $ checkPkgTrust dflags pkgReqs let newTrust = pkgTrustReqs safePkgs infPkgs infPassed return tcg_env' { tcg_imports = impInfo `plusImportAvails` newTrust } where impInfo = tcg_imports tcg_env -- ImportAvails imports = imp_mods impInfo -- ImportedMods imports' = moduleEnvToList imports -- (Module, [ImportedModsVal]) pkgReqs = imp_trust_pkgs impInfo -- [PackageKey] condense :: (Module, [ImportedModsVal]) -> Hsc (Module, SrcSpan, IsSafeImport) condense (_, []) = panic "HscMain.condense: Pattern match failure!" condense (m, x:xs) = do (_,_,l,s) <- foldlM cond' x xs return (m, l, s) -- ImportedModsVal = (ModuleName, Bool, SrcSpan, IsSafeImport) cond' :: ImportedModsVal -> ImportedModsVal -> Hsc ImportedModsVal cond' v1@(m1,_,l1,s1) (_,_,_,s2) | s1 /= s2 = throwErrors $ unitBag $ mkPlainErrMsg dflags l1 (text "Module" <+> ppr m1 <+> (text $ "is imported both as a safe and unsafe import!")) | otherwise = return v1 -- easier interface to work with checkSafe (m, l, _) = fst `fmap` hscCheckSafe' dflags m l -- what pkg's to add to our trust requirements pkgTrustReqs req inf infPassed | safeInferOn dflags && safeHaskell dflags == Sf_None && infPassed = emptyImportAvails { imp_trust_pkgs = catMaybes req ++ catMaybes inf } pkgTrustReqs _ _ _ | safeHaskell dflags == Sf_Unsafe = emptyImportAvails pkgTrustReqs req _ _ = emptyImportAvails { imp_trust_pkgs = catMaybes req } -- | Check that a module is safe to import. -- -- We return True to indicate the import is safe and False otherwise -- although in the False case an exception may be thrown first. hscCheckSafe :: HscEnv -> Module -> SrcSpan -> IO Bool hscCheckSafe hsc_env m l = runHsc hsc_env $ do dflags <- getDynFlags pkgs <- snd `fmap` hscCheckSafe' dflags m l when (packageTrustOn dflags) $ checkPkgTrust dflags pkgs errs <- getWarnings return $ isEmptyBag errs -- | Return if a module is trusted and the pkgs it depends on to be trusted. hscGetSafe :: HscEnv -> Module -> SrcSpan -> IO (Bool, [PackageKey]) hscGetSafe hsc_env m l = runHsc hsc_env $ do dflags <- getDynFlags (self, pkgs) <- hscCheckSafe' dflags m l good <- isEmptyBag `fmap` getWarnings clearWarnings -- don't want them printed... let pkgs' | Just p <- self = p:pkgs | otherwise = pkgs return (good, pkgs') -- | Is a module trusted? If not, throw or log errors depending on the type. -- Return (regardless of trusted or not) if the trust type requires the modules -- own package be trusted and a list of other packages required to be trusted -- (these later ones haven't been checked) but the own package trust has been. hscCheckSafe' :: DynFlags -> Module -> SrcSpan -> Hsc (Maybe PackageKey, [PackageKey]) hscCheckSafe' dflags m l = do (tw, pkgs) <- isModSafe m l case tw of False -> return (Nothing, pkgs) True | isHomePkg m -> return (Nothing, pkgs) | otherwise -> return (Just $ modulePackageKey m, pkgs) where isModSafe :: Module -> SrcSpan -> Hsc (Bool, [PackageKey]) isModSafe m l = do iface <- lookup' m case iface of -- can't load iface to check trust! Nothing -> throwErrors $ unitBag $ mkPlainErrMsg dflags l $ text "Can't load the interface file for" <+> ppr m <> text ", to check that it can be safely imported" -- got iface, check trust Just iface' -> let trust = getSafeMode $ mi_trust iface' trust_own_pkg = mi_trust_pkg iface' -- check module is trusted safeM = trust `elem` [Sf_Safe, Sf_Trustworthy] -- check package is trusted safeP = packageTrusted trust trust_own_pkg m -- pkg trust reqs pkgRs = map fst $ filter snd $ dep_pkgs $ mi_deps iface' -- General errors we throw but Safe errors we log errs = case (safeM, safeP) of (True, True ) -> emptyBag (True, False) -> pkgTrustErr (False, _ ) -> modTrustErr in do logWarnings errs return (trust == Sf_Trustworthy, pkgRs) where pkgTrustErr = unitBag $ mkErrMsg dflags l (pkgQual dflags) $ sep [ ppr (moduleName m) <> text ": Can't be safely imported!" , text "The package (" <> ppr (modulePackageKey m) <> text ") the module resides in isn't trusted." ] modTrustErr = unitBag $ mkErrMsg dflags l (pkgQual dflags) $ sep [ ppr (moduleName m) <> text ": Can't be safely imported!" , text "The module itself isn't safe." ] -- | Check the package a module resides in is trusted. Safe compiled -- modules are trusted without requiring that their package is trusted. For -- trustworthy modules, modules in the home package are trusted but -- otherwise we check the package trust flag. packageTrusted :: SafeHaskellMode -> Bool -> Module -> Bool packageTrusted Sf_None _ _ = False -- shouldn't hit these cases packageTrusted Sf_Unsafe _ _ = False -- prefer for completeness. packageTrusted _ _ _ | not (packageTrustOn dflags) = True packageTrusted Sf_Safe False _ = True packageTrusted _ _ m | isHomePkg m = True | otherwise = trusted $ getPackageDetails dflags (modulePackageKey m) lookup' :: Module -> Hsc (Maybe ModIface) lookup' m = do hsc_env <- getHscEnv hsc_eps <- liftIO $ hscEPS hsc_env let pkgIfaceT = eps_PIT hsc_eps homePkgT = hsc_HPT hsc_env iface = lookupIfaceByModule dflags homePkgT pkgIfaceT m #ifdef GHCI -- the 'lookupIfaceByModule' method will always fail when calling from GHCi -- as the compiler hasn't filled in the various module tables -- so we need to call 'getModuleInterface' to load from disk iface' <- case iface of Just _ -> return iface Nothing -> snd `fmap` (liftIO $ getModuleInterface hsc_env m) return iface' #else return iface #endif isHomePkg :: Module -> Bool isHomePkg m | thisPackage dflags == modulePackageKey m = True | otherwise = False -- | Check the list of packages are trusted. checkPkgTrust :: DynFlags -> [PackageKey] -> Hsc () checkPkgTrust dflags pkgs = case errors of [] -> return () _ -> (liftIO . throwIO . mkSrcErr . listToBag) errors where errors = catMaybes $ map go pkgs go pkg | trusted $ getPackageDetails dflags pkg = Nothing | otherwise = Just $ mkErrMsg dflags noSrcSpan (pkgQual dflags) $ text "The package (" <> ppr pkg <> text ") is required" <> text " to be trusted but it isn't!" -- | Set module to unsafe and (potentially) wipe trust information. -- -- Make sure to call this method to set a module to inferred unsafe, it should -- be a central and single failure method. We only wipe the trust information -- when we aren't in a specific Safe Haskell mode. -- -- While we only use this for recording that a module was inferred unsafe, we -- may call it on modules using Trustworthy or Unsafe flags so as to allow -- warning flags for safety to function correctly. See Note [Safe Haskell -- Inference]. markUnsafeInfer :: TcGblEnv -> WarningMessages -> Hsc TcGblEnv markUnsafeInfer tcg_env whyUnsafe = do dflags <- getDynFlags when (wopt Opt_WarnUnsafe dflags) (logWarnings $ unitBag $ mkPlainWarnMsg dflags (warnUnsafeOnLoc dflags) (whyUnsafe' dflags)) liftIO $ writeIORef (tcg_safeInfer tcg_env) False -- NOTE: Only wipe trust when not in an explicity safe haskell mode. Other -- times inference may be on but we are in Trustworthy mode -- so we want -- to record safe-inference failed but not wipe the trust dependencies. case safeHaskell dflags == Sf_None of True -> return $ tcg_env { tcg_imports = wiped_trust } False -> return tcg_env where wiped_trust = (tcg_imports tcg_env) { imp_trust_pkgs = [] } pprMod = ppr $ moduleName $ tcg_mod tcg_env whyUnsafe' df = vcat [ quotes pprMod <+> text "has been inferred as unsafe!" , text "Reason:" , nest 4 $ (vcat $ badFlags df) $+$ (vcat $ pprErrMsgBagWithLoc whyUnsafe) $+$ (vcat $ badInsts $ tcg_insts tcg_env) ] badFlags df = concat $ map (badFlag df) unsafeFlagsForInfer badFlag df (str,loc,on,_) | on df = [mkLocMessage SevOutput (loc df) $ text str <+> text "is not allowed in Safe Haskell"] | otherwise = [] badInsts insts = concat $ map badInst insts badInst ins | overlapMode (is_flag ins) /= NoOverlap = [mkLocMessage SevOutput (nameSrcSpan $ getName $ is_dfun ins) $ ppr (overlapMode $ is_flag ins) <+> text "overlap mode isn't allowed in Safe Haskell"] | otherwise = [] -- | Figure out the final correct safe haskell mode hscGetSafeMode :: TcGblEnv -> Hsc SafeHaskellMode hscGetSafeMode tcg_env = do dflags <- getDynFlags liftIO $ finalSafeMode dflags tcg_env -------------------------------------------------------------- -- Simplifiers -------------------------------------------------------------- hscSimplify :: HscEnv -> ModGuts -> IO ModGuts hscSimplify hsc_env modguts = runHsc hsc_env $ hscSimplify' modguts hscSimplify' :: ModGuts -> Hsc ModGuts hscSimplify' ds_result = do hsc_env <- getHscEnv {-# SCC "Core2Core" #-} liftIO $ core2core hsc_env ds_result -------------------------------------------------------------- -- Interface generators -------------------------------------------------------------- hscSimpleIface :: HscEnv -> TcGblEnv -> Maybe Fingerprint -> IO (ModIface, Bool, ModDetails) hscSimpleIface hsc_env tc_result mb_old_iface = runHsc hsc_env $ hscSimpleIface' tc_result mb_old_iface hscSimpleIface' :: TcGblEnv -> Maybe Fingerprint -> Hsc (ModIface, Bool, ModDetails) hscSimpleIface' tc_result mb_old_iface = do hsc_env <- getHscEnv details <- liftIO $ mkBootModDetailsTc hsc_env tc_result safe_mode <- hscGetSafeMode tc_result (new_iface, no_change) <- {-# SCC "MkFinalIface" #-} ioMsgMaybe $ mkIfaceTc hsc_env mb_old_iface safe_mode details tc_result -- And the answer is ... liftIO $ dumpIfaceStats hsc_env return (new_iface, no_change, details) hscNormalIface :: HscEnv -> ModGuts -> Maybe Fingerprint -> IO (ModIface, Bool, ModDetails, CgGuts) hscNormalIface hsc_env simpl_result mb_old_iface = runHsc hsc_env $ hscNormalIface' simpl_result mb_old_iface hscNormalIface' :: ModGuts -> Maybe Fingerprint -> Hsc (ModIface, Bool, ModDetails, CgGuts) hscNormalIface' simpl_result mb_old_iface = do hsc_env <- getHscEnv (cg_guts, details) <- {-# SCC "CoreTidy" #-} liftIO $ tidyProgram hsc_env simpl_result -- BUILD THE NEW ModIface and ModDetails -- and emit external core if necessary -- This has to happen *after* code gen so that the back-end -- info has been set. Not yet clear if it matters waiting -- until after code output (new_iface, no_change) <- {-# SCC "MkFinalIface" #-} ioMsgMaybe $ mkIface hsc_env mb_old_iface details simpl_result liftIO $ dumpIfaceStats hsc_env -- Return the prepared code. return (new_iface, no_change, details, cg_guts) -------------------------------------------------------------- -- BackEnd combinators -------------------------------------------------------------- hscWriteIface :: DynFlags -> ModIface -> Bool -> ModSummary -> IO () hscWriteIface dflags iface no_change mod_summary = do let ifaceFile = ml_hi_file (ms_location mod_summary) unless no_change $ {-# SCC "writeIface" #-} writeIfaceFile dflags ifaceFile iface whenGeneratingDynamicToo dflags $ do -- TODO: We should do a no_change check for the dynamic -- interface file too -- TODO: Should handle the dynamic hi filename properly let dynIfaceFile = replaceExtension ifaceFile (dynHiSuf dflags) dynIfaceFile' = addBootSuffix_maybe (mi_boot iface) dynIfaceFile dynDflags = dynamicTooMkDynamicDynFlags dflags writeIfaceFile dynDflags dynIfaceFile' iface -- | Compile to hard-code. hscGenHardCode :: HscEnv -> CgGuts -> ModSummary -> FilePath -> IO (FilePath, Maybe FilePath) -- ^ @Just f@ <=> _stub.c is f hscGenHardCode hsc_env cgguts mod_summary output_filename = do let CgGuts{ -- This is the last use of the ModGuts in a compilation. -- From now on, we just use the bits we need. cg_module = this_mod, cg_binds = core_binds, cg_tycons = tycons, cg_foreign = foreign_stubs0, cg_dep_pkgs = dependencies, cg_hpc_info = hpc_info } = cgguts dflags = hsc_dflags hsc_env location = ms_location mod_summary data_tycons = filter isDataTyCon tycons -- cg_tycons includes newtypes, for the benefit of External Core, -- but we don't generate any code for newtypes ------------------- -- PREPARE FOR CODE GENERATION -- Do saturation and convert to A-normal form prepd_binds <- {-# SCC "CorePrep" #-} corePrepPgm hsc_env location core_binds data_tycons ; ----------------- Convert to STG ------------------ (stg_binds, cost_centre_info) <- {-# SCC "CoreToStg" #-} myCoreToStg dflags this_mod prepd_binds let prof_init = profilingInitCode this_mod cost_centre_info foreign_stubs = foreign_stubs0 `appendStubC` prof_init ------------------ Code generation ------------------ -- The back-end is streamed: each top-level function goes -- from Stg all the way to asm before dealing with the next -- top-level function, so showPass isn't very useful here. -- Hence we have one showPass for the whole backend, the -- next showPass after this will be "Assembler". showPass dflags "CodeGen" cmms <- {-# SCC "StgCmm" #-} doCodeGen hsc_env this_mod data_tycons cost_centre_info stg_binds hpc_info ------------------ Code output ----------------------- rawcmms0 <- {-# SCC "cmmToRawCmm" #-} cmmToRawCmm dflags cmms let dump a = do dumpIfSet_dyn dflags Opt_D_dump_cmm_raw "Raw Cmm" (ppr a) return a rawcmms1 = Stream.mapM dump rawcmms0 (output_filename, (_stub_h_exists, stub_c_exists)) <- {-# SCC "codeOutput" #-} codeOutput dflags this_mod output_filename location foreign_stubs dependencies rawcmms1 return (output_filename, stub_c_exists) hscInteractive :: HscEnv -> CgGuts -> ModSummary -> IO (Maybe FilePath, CompiledByteCode, ModBreaks) #ifdef GHCI hscInteractive hsc_env cgguts mod_summary = do let dflags = hsc_dflags hsc_env let CgGuts{ -- This is the last use of the ModGuts in a compilation. -- From now on, we just use the bits we need. cg_module = this_mod, cg_binds = core_binds, cg_tycons = tycons, cg_foreign = foreign_stubs, cg_modBreaks = mod_breaks } = cgguts location = ms_location mod_summary data_tycons = filter isDataTyCon tycons -- cg_tycons includes newtypes, for the benefit of External Core, -- but we don't generate any code for newtypes ------------------- -- PREPARE FOR CODE GENERATION -- Do saturation and convert to A-normal form prepd_binds <- {-# SCC "CorePrep" #-} corePrepPgm hsc_env location core_binds data_tycons ----------------- Generate byte code ------------------ comp_bc <- byteCodeGen dflags this_mod prepd_binds data_tycons mod_breaks ------------------ Create f-x-dynamic C-side stuff --- (_istub_h_exists, istub_c_exists) <- outputForeignStubs dflags this_mod location foreign_stubs return (istub_c_exists, comp_bc, mod_breaks) #else hscInteractive _ _ = panic "GHC not compiled with interpreter" #endif ------------------------------ hscCompileCmmFile :: HscEnv -> FilePath -> FilePath -> IO () hscCompileCmmFile hsc_env filename output_filename = runHsc hsc_env $ do let dflags = hsc_dflags hsc_env cmm <- ioMsgMaybe $ parseCmmFile dflags filename liftIO $ do us <- mkSplitUniqSupply 'S' let initTopSRT = initUs_ us emptySRT dumpIfSet_dyn dflags Opt_D_dump_cmm "Parsed Cmm" (ppr cmm) (_, cmmgroup) <- cmmPipeline hsc_env initTopSRT cmm rawCmms <- cmmToRawCmm dflags (Stream.yield cmmgroup) _ <- codeOutput dflags no_mod output_filename no_loc NoStubs [] rawCmms return () where no_mod = panic "hscCmmFile: no_mod" no_loc = ModLocation{ ml_hs_file = Just filename, ml_hi_file = panic "hscCmmFile: no hi file", ml_obj_file = panic "hscCmmFile: no obj file" } -------------------- Stuff for new code gen --------------------- doCodeGen :: HscEnv -> Module -> [TyCon] -> CollectedCCs -> [StgBinding] -> HpcInfo -> IO (Stream IO CmmGroup ()) -- Note we produce a 'Stream' of CmmGroups, so that the -- backend can be run incrementally. Otherwise it generates all -- the C-- up front, which has a significant space cost. doCodeGen hsc_env this_mod data_tycons cost_centre_info stg_binds hpc_info = do let dflags = hsc_dflags hsc_env let cmm_stream :: Stream IO CmmGroup () cmm_stream = {-# SCC "StgCmm" #-} StgCmm.codeGen dflags this_mod data_tycons cost_centre_info stg_binds hpc_info -- codegen consumes a stream of CmmGroup, and produces a new -- stream of CmmGroup (not necessarily synchronised: one -- CmmGroup on input may produce many CmmGroups on output due -- to proc-point splitting). let dump1 a = do dumpIfSet_dyn dflags Opt_D_dump_cmm "Cmm produced by new codegen" (ppr a) return a ppr_stream1 = Stream.mapM dump1 cmm_stream -- We are building a single SRT for the entire module, so -- we must thread it through all the procedures as we cps-convert them. us <- mkSplitUniqSupply 'S' -- When splitting, we generate one SRT per split chunk, otherwise -- we generate one SRT for the whole module. let pipeline_stream | gopt Opt_SplitObjs dflags = {-# SCC "cmmPipeline" #-} let run_pipeline us cmmgroup = do let (topSRT', us') = initUs us emptySRT (topSRT, cmmgroup) <- cmmPipeline hsc_env topSRT' cmmgroup let srt | isEmptySRT topSRT = [] | otherwise = srtToData topSRT return (us', srt ++ cmmgroup) in do _ <- Stream.mapAccumL run_pipeline us ppr_stream1 return () | otherwise = {-# SCC "cmmPipeline" #-} let initTopSRT = initUs_ us emptySRT run_pipeline = cmmPipeline hsc_env in do topSRT <- Stream.mapAccumL run_pipeline initTopSRT ppr_stream1 Stream.yield (srtToData topSRT) let dump2 a = do dumpIfSet_dyn dflags Opt_D_dump_cmm "Output Cmm" $ ppr a return a ppr_stream2 = Stream.mapM dump2 pipeline_stream return ppr_stream2 myCoreToStg :: DynFlags -> Module -> CoreProgram -> IO ( [StgBinding] -- output program , CollectedCCs) -- cost centre info (declared and used) myCoreToStg dflags this_mod prepd_binds = do stg_binds <- {-# SCC "Core2Stg" #-} coreToStg dflags this_mod prepd_binds (stg_binds2, cost_centre_info) <- {-# SCC "Stg2Stg" #-} stg2stg dflags this_mod stg_binds return (stg_binds2, cost_centre_info) {- ********************************************************************** %* * \subsection{Compiling a do-statement} %* * %********************************************************************* -} {- When the UnlinkedBCOExpr is linked you get an HValue of type *IO [HValue]* When you run it you get a list of HValues that should be the same length as the list of names; add them to the ClosureEnv. A naked expression returns a singleton Name [it]. The stmt is lifted into the IO monad as explained in Note [Interactively-bound Ids in GHCi] in HscTypes -} #ifdef GHCI -- | Compile a stmt all the way to an HValue, but don't run it -- -- We return Nothing to indicate an empty statement (or comment only), not a -- parse error. hscStmt :: HscEnv -> String -> IO (Maybe ([Id], IO [HValue], FixityEnv)) hscStmt hsc_env stmt = hscStmtWithLocation hsc_env stmt "" 1 -- | Compile a stmt all the way to an HValue, but don't run it -- -- We return Nothing to indicate an empty statement (or comment only), not a -- parse error. hscStmtWithLocation :: HscEnv -> String -- ^ The statement -> String -- ^ The source -> Int -- ^ Starting line -> IO (Maybe ([Id], IO [HValue], FixityEnv)) hscStmtWithLocation hsc_env0 stmt source linenumber = runInteractiveHsc hsc_env0 $ do maybe_stmt <- hscParseStmtWithLocation source linenumber stmt case maybe_stmt of Nothing -> return Nothing Just parsed_stmt -> do -- Rename and typecheck it hsc_env <- getHscEnv (ids, tc_expr, fix_env) <- ioMsgMaybe $ tcRnStmt hsc_env parsed_stmt -- Desugar it ds_expr <- ioMsgMaybe $ deSugarExpr hsc_env tc_expr liftIO (lintInteractiveExpr "desugar expression" hsc_env ds_expr) handleWarnings -- Then code-gen, and link it -- It's important NOT to have package 'interactive' as thisPackageKey -- for linking, else we try to link 'main' and can't find it. -- Whereas the linker already knows to ignore 'interactive' let src_span = srcLocSpan interactiveSrcLoc hval <- liftIO $ hscCompileCoreExpr hsc_env src_span ds_expr let hval_io = unsafeCoerce# hval :: IO [HValue] return $ Just (ids, hval_io, fix_env) -- | Compile a decls hscDecls :: HscEnv -> String -- ^ The statement -> IO ([TyThing], InteractiveContext) hscDecls hsc_env str = hscDeclsWithLocation hsc_env str "" 1 -- | Compile a decls hscDeclsWithLocation :: HscEnv -> String -- ^ The statement -> String -- ^ The source -> Int -- ^ Starting line -> IO ([TyThing], InteractiveContext) hscDeclsWithLocation hsc_env0 str source linenumber = runInteractiveHsc hsc_env0 $ do L _ (HsModule{ hsmodDecls = decls }) <- hscParseThingWithLocation source linenumber parseModule str {- Rename and typecheck it -} hsc_env <- getHscEnv tc_gblenv <- ioMsgMaybe $ tcRnDeclsi hsc_env decls {- Grab the new instances -} -- We grab the whole environment because of the overlapping that may have -- been done. See the notes at the definition of InteractiveContext -- (ic_instances) for more details. let defaults = tcg_default tc_gblenv {- Desugar it -} -- We use a basically null location for iNTERACTIVE let iNTERACTIVELoc = ModLocation{ ml_hs_file = Nothing, ml_hi_file = panic "hsDeclsWithLocation:ml_hi_file", ml_obj_file = panic "hsDeclsWithLocation:ml_hi_file"} ds_result <- hscDesugar' iNTERACTIVELoc tc_gblenv {- Simplify -} simpl_mg <- liftIO $ hscSimplify hsc_env ds_result {- Tidy -} (tidy_cg, mod_details) <- liftIO $ tidyProgram hsc_env simpl_mg let dflags = hsc_dflags hsc_env !CgGuts{ cg_module = this_mod, cg_binds = core_binds, cg_tycons = tycons, cg_modBreaks = mod_breaks } = tidy_cg !ModDetails { md_insts = cls_insts , md_fam_insts = fam_insts } = mod_details -- Get the *tidied* cls_insts and fam_insts data_tycons = filter isDataTyCon tycons {- Prepare For Code Generation -} -- Do saturation and convert to A-normal form prepd_binds <- {-# SCC "CorePrep" #-} liftIO $ corePrepPgm hsc_env iNTERACTIVELoc core_binds data_tycons {- Generate byte code -} cbc <- liftIO $ byteCodeGen dflags this_mod prepd_binds data_tycons mod_breaks let src_span = srcLocSpan interactiveSrcLoc liftIO $ linkDecls hsc_env src_span cbc let tcs = filterOut isImplicitTyCon (mg_tcs simpl_mg) ext_ids = [ id | id <- bindersOfBinds core_binds , isExternalName (idName id) , not (isDFunId id || isImplicitId id) ] -- We only need to keep around the external bindings -- (as decided by TidyPgm), since those are the only ones -- that might be referenced elsewhere. -- The DFunIds are in 'cls_insts' (see Note [ic_tythings] in HscTypes -- Implicit Ids are implicit in tcs tythings = map AnId ext_ids ++ map ATyCon tcs let icontext = hsc_IC hsc_env ictxt = extendInteractiveContext icontext ext_ids tcs cls_insts fam_insts defaults return (tythings, ictxt) hscImport :: HscEnv -> String -> IO (ImportDecl RdrName) hscImport hsc_env str = runInteractiveHsc hsc_env $ do (L _ (HsModule{hsmodImports=is})) <- hscParseThing parseModule str case is of [L _ i] -> return i _ -> liftIO $ throwOneError $ mkPlainErrMsg (hsc_dflags hsc_env) noSrcSpan $ ptext (sLit "parse error in import declaration") -- | Typecheck an expression (but don't run it) -- Returns its most general type hscTcExpr :: HscEnv -> String -- ^ The expression -> IO Type hscTcExpr hsc_env0 expr = runInteractiveHsc hsc_env0 $ do hsc_env <- getHscEnv maybe_stmt <- hscParseStmt expr case maybe_stmt of Just (L _ (BodyStmt expr _ _ _)) -> ioMsgMaybe $ tcRnExpr hsc_env expr _ -> throwErrors $ unitBag $ mkPlainErrMsg (hsc_dflags hsc_env) noSrcSpan (text "not an expression:" <+> quotes (text expr)) -- | Find the kind of a type -- Currently this does *not* generalise the kinds of the type hscKcType :: HscEnv -> Bool -- ^ Normalise the type -> String -- ^ The type as a string -> IO (Type, Kind) -- ^ Resulting type (possibly normalised) and kind hscKcType hsc_env0 normalise str = runInteractiveHsc hsc_env0 $ do hsc_env <- getHscEnv ty <- hscParseType str ioMsgMaybe $ tcRnType hsc_env normalise ty hscParseStmt :: String -> Hsc (Maybe (GhciLStmt RdrName)) hscParseStmt = hscParseThing parseStmt hscParseStmtWithLocation :: String -> Int -> String -> Hsc (Maybe (GhciLStmt RdrName)) hscParseStmtWithLocation source linenumber stmt = hscParseThingWithLocation source linenumber parseStmt stmt hscParseType :: String -> Hsc (LHsType RdrName) hscParseType = hscParseThing parseType #endif hscParseIdentifier :: HscEnv -> String -> IO (Located RdrName) hscParseIdentifier hsc_env str = runInteractiveHsc hsc_env $ hscParseThing parseIdentifier str hscParseThing :: (Outputable thing) => Lexer.P thing -> String -> Hsc thing hscParseThing = hscParseThingWithLocation "" 1 hscParseThingWithLocation :: (Outputable thing) => String -> Int -> Lexer.P thing -> String -> Hsc thing hscParseThingWithLocation source linenumber parser str = {-# SCC "Parser" #-} do dflags <- getDynFlags liftIO $ showPass dflags "Parser" let buf = stringToStringBuffer str loc = mkRealSrcLoc (fsLit source) linenumber 1 case unP parser (mkPState dflags buf loc) of PFailed span err -> do let msg = mkPlainErrMsg dflags span err throwErrors $ unitBag msg POk pst thing -> do logWarningsReportErrors (getMessages pst) liftIO $ dumpIfSet_dyn dflags Opt_D_dump_parsed "Parser" (ppr thing) return thing hscCompileCore :: HscEnv -> Bool -> SafeHaskellMode -> ModSummary -> CoreProgram -> FilePath -> IO () hscCompileCore hsc_env simplify safe_mode mod_summary binds output_filename = runHsc hsc_env $ do guts <- maybe_simplify (mkModGuts (ms_mod mod_summary) safe_mode binds) (iface, changed, _details, cgguts) <- hscNormalIface' guts Nothing liftIO $ hscWriteIface (hsc_dflags hsc_env) iface changed mod_summary _ <- liftIO $ hscGenHardCode hsc_env cgguts mod_summary output_filename return () where maybe_simplify mod_guts | simplify = hscSimplify' mod_guts | otherwise = return mod_guts -- Makes a "vanilla" ModGuts. mkModGuts :: Module -> SafeHaskellMode -> CoreProgram -> ModGuts mkModGuts mod safe binds = ModGuts { mg_module = mod, mg_boot = False, mg_exports = [], mg_deps = noDependencies, mg_dir_imps = emptyModuleEnv, mg_used_names = emptyNameSet, mg_used_th = False, mg_rdr_env = emptyGlobalRdrEnv, mg_fix_env = emptyFixityEnv, mg_tcs = [], mg_insts = [], mg_fam_insts = [], mg_patsyns = [], mg_rules = [], mg_vect_decls = [], mg_binds = binds, mg_foreign = NoStubs, mg_warns = NoWarnings, mg_anns = [], mg_hpc_info = emptyHpcInfo False, mg_modBreaks = emptyModBreaks, mg_vect_info = noVectInfo, mg_inst_env = emptyInstEnv, mg_fam_inst_env = emptyFamInstEnv, mg_safe_haskell = safe, mg_trust_pkg = False, mg_dependent_files = [] } {- ********************************************************************** %* * Desugar, simplify, convert to bytecode, and link an expression %* * %********************************************************************* -} #ifdef GHCI hscCompileCoreExpr :: HscEnv -> SrcSpan -> CoreExpr -> IO HValue hscCompileCoreExpr hsc_env = lookupHook hscCompileCoreExprHook hscCompileCoreExpr' (hsc_dflags hsc_env) hsc_env hscCompileCoreExpr' :: HscEnv -> SrcSpan -> CoreExpr -> IO HValue hscCompileCoreExpr' hsc_env srcspan ds_expr | rtsIsProfiled = throwIO (InstallationError "You can't call hscCompileCoreExpr in a profiled compiler") -- Otherwise you get a seg-fault when you run it | otherwise = do { let dflags = hsc_dflags hsc_env {- Simplify it -} ; simpl_expr <- simplifyExpr dflags ds_expr {- Tidy it (temporary, until coreSat does cloning) -} ; let tidy_expr = tidyExpr emptyTidyEnv simpl_expr {- Prepare for codegen -} ; prepd_expr <- corePrepExpr dflags hsc_env tidy_expr {- Lint if necessary -} ; lintInteractiveExpr "hscCompileExpr" hsc_env prepd_expr {- Convert to BCOs -} ; bcos <- coreExprToBCOs dflags (icInteractiveModule (hsc_IC hsc_env)) prepd_expr {- link it -} ; hval <- linkExpr hsc_env srcspan bcos ; return hval } #endif {- ********************************************************************** %* * Statistics on reading interfaces %* * %********************************************************************* -} dumpIfaceStats :: HscEnv -> IO () dumpIfaceStats hsc_env = do eps <- readIORef (hsc_EPS hsc_env) dumpIfSet dflags (dump_if_trace || dump_rn_stats) "Interface statistics" (ifaceStats eps) where dflags = hsc_dflags hsc_env dump_rn_stats = dopt Opt_D_dump_rn_stats dflags dump_if_trace = dopt Opt_D_dump_if_trace dflags {- ********************************************************************** %* * Progress Messages: Module i of n %* * %********************************************************************* -} showModuleIndex :: (Int, Int) -> String showModuleIndex (i,n) = "[" ++ padded ++ " of " ++ n_str ++ "] " where n_str = show n i_str = show i padded = replicate (length n_str - length i_str) ' ' ++ i_str