-- ----------------------------------------------------------------------------- -- -- (c) The University of Glasgow 1993-2004 -- -- This is the top-level module in the native code generator. -- -- ----------------------------------------------------------------------------- \begin{code} module AsmCodeGen ( nativeCodeGen ) where #include "HsVersions.h" #include "nativeGen/NCG.h" import MachInstrs import MachRegs import MachCodeGen import PprMach import RegisterAlloc import RegAllocInfo ( jumpDests ) import NCGMonad import PositionIndependentCode import Cmm import CmmOpt ( cmmMiniInline, cmmMachOpFold ) import PprCmm ( pprStmt, pprCmms ) import MachOp import CLabel ( CLabel, mkSplitMarkerLabel, mkAsmTempLabel ) #if powerpc_TARGET_ARCH import CLabel ( mkRtsCodeLabel ) #endif import UniqFM import Unique ( Unique, getUnique ) import UniqSupply import FastTypes import List ( groupBy, sortBy ) import CLabel ( pprCLabel ) import ErrUtils ( dumpIfSet_dyn ) import DynFlags ( DynFlags, DynFlag(..), dopt ) import StaticFlags ( opt_Static, opt_PIC ) import Config ( cProjectVersion ) import Digraph import qualified Pretty import Outputable import FastString -- DEBUGGING ONLY --import OrdList #ifdef NCG_DEBUG import List ( intersperse ) #endif import Data.Int import Data.Word import Data.Bits import GHC.Exts {- The native-code generator has machine-independent and machine-dependent modules. This module ("AsmCodeGen") is the top-level machine-independent module. Before entering machine-dependent land, we do some machine-independent optimisations (defined below) on the 'CmmStmts's. We convert to the machine-specific 'Instr' datatype with 'cmmCodeGen', assuming an infinite supply of registers. We then use a machine-independent register allocator ('regAlloc') to rejoin reality. Obviously, 'regAlloc' has machine-specific helper functions (see about "RegAllocInfo" below). Finally, we order the basic blocks of the function so as to minimise the number of jumps between blocks, by utilising fallthrough wherever possible. The machine-dependent bits break down as follows: * ["MachRegs"] Everything about the target platform's machine registers (and immediate operands, and addresses, which tend to intermingle/interact with registers). * ["MachInstrs"] Includes the 'Instr' datatype (possibly should have a module of its own), plus a miscellany of other things (e.g., 'targetDoubleSize', 'smStablePtrTable', ...) * ["MachCodeGen"] is where 'Cmm' stuff turns into machine instructions. * ["PprMach"] 'pprInstr' turns an 'Instr' into text (well, really a 'Doc'). * ["RegAllocInfo"] In the register allocator, we manipulate 'MRegsState's, which are 'BitSet's, one bit per machine register. When we want to say something about a specific machine register (e.g., ``it gets clobbered by this instruction''), we set/unset its bit. Obviously, we do this 'BitSet' thing for efficiency reasons. The 'RegAllocInfo' module collects together the machine-specific info needed to do register allocation. * ["RegisterAlloc"] The (machine-independent) register allocator. -} -- ----------------------------------------------------------------------------- -- Top-level of the native codegen -- NB. We *lazilly* compile each block of code for space reasons. nativeCodeGen :: DynFlags -> [Cmm] -> UniqSupply -> IO Pretty.Doc nativeCodeGen dflags cmms us = let (res, _) = initUs us $ cgCmm (concat (map add_split cmms)) cgCmm :: [CmmTop] -> UniqSM (Cmm, Pretty.Doc, [CLabel]) cgCmm tops = lazyMapUs (cmmNativeGen dflags) tops `thenUs` \ results -> case unzip3 results of { (cmms,docs,imps) -> returnUs (Cmm cmms, my_vcat docs, concat imps) } in case res of { (ppr_cmms, insn_sdoc, imports) -> do dumpIfSet_dyn dflags Opt_D_dump_opt_cmm "Optimised Cmm" (pprCmms [ppr_cmms]) return (insn_sdoc Pretty.$$ dyld_stubs imports #if HAVE_SUBSECTIONS_VIA_SYMBOLS -- On recent versions of Darwin, the linker supports -- dead-stripping of code and data on a per-symbol basis. -- There's a hack to make this work in PprMach.pprNatCmmTop. Pretty.$$ Pretty.text ".subsections_via_symbols" #endif #if HAVE_GNU_NONEXEC_STACK -- On recent GNU ELF systems one can mark an object file -- as not requiring an executable stack. If all objects -- linked into a program have this note then the program -- will not use an executable stack, which is good for -- security. GHC generated code does not need an executable -- stack so add the note in: Pretty.$$ Pretty.text ".section .note.GNU-stack,\"\",@progbits" #endif #if !defined(darwin_TARGET_OS) -- And just because every other compiler does, lets stick in -- an identifier directive: .ident "GHC x.y.z" Pretty.$$ let compilerIdent = Pretty.text "GHC" Pretty.<+> Pretty.text cProjectVersion in Pretty.text ".ident" Pretty.<+> Pretty.doubleQuotes compilerIdent #endif ) } where add_split (Cmm tops) | dopt Opt_SplitObjs dflags = split_marker : tops | otherwise = tops split_marker = CmmProc [] mkSplitMarkerLabel [] [] -- Generate "symbol stubs" for all external symbols that might -- come from a dynamic library. {- dyld_stubs imps = Pretty.vcat $ map pprDyldSymbolStub $ map head $ group $ sort imps-} -- (Hack) sometimes two Labels pretty-print the same, but have -- different uniques; so we compare their text versions... dyld_stubs imps | needImportedSymbols = Pretty.vcat $ (pprGotDeclaration :) $ map (pprImportedSymbol . fst . head) $ groupBy (\(_,a) (_,b) -> a == b) $ sortBy (\(_,a) (_,b) -> compare a b) $ map doPpr $ imps | otherwise = Pretty.empty where doPpr lbl = (lbl, Pretty.render $ pprCLabel lbl astyle) astyle = mkCodeStyle AsmStyle #ifndef NCG_DEBUG my_vcat sds = Pretty.vcat sds #else my_vcat sds = Pretty.vcat ( intersperse ( Pretty.char ' ' Pretty.$$ Pretty.ptext SLIT("# ___ncg_debug_marker") Pretty.$$ Pretty.char ' ' ) sds ) #endif -- Complete native code generation phase for a single top-level chunk -- of Cmm. cmmNativeGen :: DynFlags -> CmmTop -> UniqSM (CmmTop, Pretty.Doc, [CLabel]) cmmNativeGen dflags cmm = {-# SCC "fixAssigns" #-} fixAssignsTop cmm `thenUs` \ fixed_cmm -> {-# SCC "genericOpt" #-} cmmToCmm fixed_cmm `bind` \ (cmm, imports) -> (if dopt Opt_D_dump_opt_cmm dflags -- space leak avoidance then cmm else CmmData Text []) `bind` \ ppr_cmm -> {-# SCC "genMachCode" #-} genMachCode cmm `thenUs` \ (pre_regalloc, lastMinuteImports) -> {-# SCC "regAlloc" #-} mapUs regAlloc pre_regalloc `thenUs` \ with_regs -> {-# SCC "sequenceBlocks" #-} map sequenceTop with_regs `bind` \ sequenced -> {-# SCC "x86fp_kludge" #-} map x86fp_kludge sequenced `bind` \ final_mach_code -> {-# SCC "vcat" #-} Pretty.vcat (map pprNatCmmTop final_mach_code) `bind` \ final_sdoc -> returnUs (ppr_cmm, final_sdoc Pretty.$$ Pretty.text "", lastMinuteImports ++ imports) where x86fp_kludge :: NatCmmTop -> NatCmmTop x86fp_kludge top@(CmmData _ _) = top #if i386_TARGET_ARCH x86fp_kludge top@(CmmProc info lbl params code) = CmmProc info lbl params (map bb_i386_insert_ffrees code) where bb_i386_insert_ffrees (BasicBlock id instrs) = BasicBlock id (i386_insert_ffrees instrs) #else x86fp_kludge top = top #endif -- ----------------------------------------------------------------------------- -- Sequencing the basic blocks -- Cmm BasicBlocks are self-contained entities: they always end in a -- jump, either non-local or to another basic block in the same proc. -- In this phase, we attempt to place the basic blocks in a sequence -- such that as many of the local jumps as possible turn into -- fallthroughs. sequenceTop :: NatCmmTop -> NatCmmTop sequenceTop top@(CmmData _ _) = top sequenceTop (CmmProc info lbl params blocks) = CmmProc info lbl params (makeFarBranches $ sequenceBlocks blocks) -- The algorithm is very simple (and stupid): we make a graph out of -- the blocks where there is an edge from one block to another iff the -- first block ends by jumping to the second. Then we topologically -- sort this graph. Then traverse the list: for each block, we first -- output the block, then if it has an out edge, we move the -- destination of the out edge to the front of the list, and continue. sequenceBlocks :: [NatBasicBlock] -> [NatBasicBlock] sequenceBlocks [] = [] sequenceBlocks (entry:blocks) = seqBlocks (mkNode entry : reverse (flattenSCCs (sccBlocks blocks))) -- the first block is the entry point ==> it must remain at the start. sccBlocks :: [NatBasicBlock] -> [SCC (NatBasicBlock,Unique,[Unique])] sccBlocks blocks = stronglyConnCompR (map mkNode blocks) getOutEdges :: [Instr] -> [Unique] getOutEdges instrs = case jumpDests (last instrs) [] of [one] -> [getUnique one] _many -> [] -- we're only interested in the last instruction of -- the block, and only if it has a single destination. mkNode block@(BasicBlock id instrs) = (block, getUnique id, getOutEdges instrs) seqBlocks [] = [] seqBlocks ((block,_,[]) : rest) = block : seqBlocks rest seqBlocks ((block@(BasicBlock id instrs),_,[next]) : rest) | can_fallthrough = BasicBlock id (init instrs) : seqBlocks rest' | otherwise = block : seqBlocks rest' where (can_fallthrough, rest') = reorder next [] rest -- TODO: we should do a better job for cycles; try to maximise the -- fallthroughs within a loop. seqBlocks _ = panic "AsmCodegen:seqBlocks" reorder id accum [] = (False, reverse accum) reorder id accum (b@(block,id',out) : rest) | id == id' = (True, (block,id,out) : reverse accum ++ rest) | otherwise = reorder id (b:accum) rest -- ----------------------------------------------------------------------------- -- Making far branches -- Conditional branches on PowerPC are limited to +-32KB; if our Procs get too -- big, we have to work around this limitation. makeFarBranches :: [NatBasicBlock] -> [NatBasicBlock] #if powerpc_TARGET_ARCH makeFarBranches blocks | last blockAddresses < nearLimit = blocks | otherwise = zipWith handleBlock blockAddresses blocks where blockAddresses = scanl (+) 0 $ map blockLen blocks blockLen (BasicBlock _ instrs) = length instrs handleBlock addr (BasicBlock id instrs) = BasicBlock id (zipWith makeFar [addr..] instrs) makeFar addr (BCC ALWAYS tgt) = BCC ALWAYS tgt makeFar addr (BCC cond tgt) | abs (addr - targetAddr) >= nearLimit = BCCFAR cond tgt | otherwise = BCC cond tgt where Just targetAddr = lookupUFM blockAddressMap tgt makeFar addr other = other nearLimit = 7000 -- 8192 instructions are allowed; let's keep some -- distance, as we have a few pseudo-insns that are -- pretty-printed as multiple instructions, -- and it's just not worth the effort to calculate -- things exactly blockAddressMap = listToUFM $ zip (map blockId blocks) blockAddresses #else makeFarBranches = id #endif -- ----------------------------------------------------------------------------- -- Instruction selection -- Native code instruction selection for a chunk of stix code. For -- this part of the computation, we switch from the UniqSM monad to -- the NatM monad. The latter carries not only a Unique, but also an -- Int denoting the current C stack pointer offset in the generated -- code; this is needed for creating correct spill offsets on -- architectures which don't offer, or for which it would be -- prohibitively expensive to employ, a frame pointer register. Viz, -- x86. -- The offset is measured in bytes, and indicates the difference -- between the current (simulated) C stack-ptr and the value it was at -- the beginning of the block. For stacks which grow down, this value -- should be either zero or negative. -- Switching between the two monads whilst carrying along the same -- Unique supply breaks abstraction. Is that bad? genMachCode :: CmmTop -> UniqSM ([NatCmmTop], [CLabel]) genMachCode cmm_top = do { initial_us <- getUs ; let initial_st = mkNatM_State initial_us 0 (new_tops, final_st) = initNat initial_st (cmmTopCodeGen cmm_top) final_us = natm_us final_st final_delta = natm_delta final_st final_imports = natm_imports final_st ; if final_delta == 0 then return (new_tops, final_imports) else pprPanic "genMachCode: nonzero final delta" (int final_delta) } -- ----------------------------------------------------------------------------- -- Fixup assignments to global registers so that they assign to -- locations within the RegTable, if appropriate. -- Note that we currently don't fixup reads here: they're done by -- the generic optimiser below, to avoid having two separate passes -- over the Cmm. fixAssignsTop :: CmmTop -> UniqSM CmmTop fixAssignsTop top@(CmmData _ _) = returnUs top fixAssignsTop (CmmProc info lbl params blocks) = mapUs fixAssignsBlock blocks `thenUs` \ blocks' -> returnUs (CmmProc info lbl params blocks') fixAssignsBlock :: CmmBasicBlock -> UniqSM CmmBasicBlock fixAssignsBlock (BasicBlock id stmts) = fixAssigns stmts `thenUs` \ stmts' -> returnUs (BasicBlock id stmts') fixAssigns :: [CmmStmt] -> UniqSM [CmmStmt] fixAssigns stmts = mapUs fixAssign stmts `thenUs` \ stmtss -> returnUs (concat stmtss) fixAssign :: CmmStmt -> UniqSM [CmmStmt] fixAssign (CmmAssign (CmmGlobal BaseReg) src) = panic "cmmStmtConFold: assignment to BaseReg"; fixAssign (CmmAssign (CmmGlobal reg) src) | Left realreg <- reg_or_addr = returnUs [CmmAssign (CmmGlobal reg) src] | Right baseRegAddr <- reg_or_addr = returnUs [CmmStore baseRegAddr src] -- Replace register leaves with appropriate StixTrees for -- the given target. GlobalRegs which map to a reg on this -- arch are left unchanged. Assigning to BaseReg is always -- illegal, so we check for that. where reg_or_addr = get_GlobalReg_reg_or_addr reg fixAssign (CmmCall target results args vols) = mapAndUnzipUs fixResult results `thenUs` \ (results',stores) -> returnUs (caller_save ++ CmmCall target results' args vols : caller_restore ++ concat stores) where -- we also save/restore any caller-saves STG registers here (caller_save, caller_restore) = callerSaveVolatileRegs vols fixResult g@(CmmGlobal reg,hint) = case get_GlobalReg_reg_or_addr reg of Left realreg -> returnUs (g, []) Right baseRegAddr -> getUniqueUs `thenUs` \ uq -> let local = CmmLocal (LocalReg uq (globalRegRep reg)) in returnUs ((local,hint), [CmmStore baseRegAddr (CmmReg local)]) fixResult other = returnUs (other,[]) fixAssign other_stmt = returnUs [other_stmt] -- ----------------------------------------------------------------------------- -- Generic Cmm optimiser {- Here we do: (a) Constant folding (b) Simple inlining: a temporary which is assigned to and then used, once, can be shorted. (c) Replacement of references to GlobalRegs which do not have machine registers by the appropriate memory load (eg. Hp ==> *(BaseReg + 34) ). (d) Position independent code and dynamic linking (i) introduce the appropriate indirections and position independent refs (ii) compile a list of imported symbols Ideas for other things we could do (ToDo): - shortcut jumps-to-jumps - eliminate dead code blocks - simple CSE: if an expr is assigned to a temp, then replace later occs of that expr with the temp, until the expr is no longer valid (can push through temp assignments, and certain assigns to mem...) -} cmmToCmm :: CmmTop -> (CmmTop, [CLabel]) cmmToCmm top@(CmmData _ _) = (top, []) cmmToCmm (CmmProc info lbl params blocks) = runCmmOpt $ do blocks' <- mapM cmmBlockConFold (cmmMiniInline blocks) return $ CmmProc info lbl params blocks' newtype CmmOptM a = CmmOptM ([CLabel] -> (# a, [CLabel] #)) instance Monad CmmOptM where return x = CmmOptM $ \imports -> (# x,imports #) (CmmOptM f) >>= g = CmmOptM $ \imports -> case f imports of (# x, imports' #) -> case g x of CmmOptM g' -> g' imports' addImportCmmOpt :: CLabel -> CmmOptM () addImportCmmOpt lbl = CmmOptM $ \imports -> (# (), lbl:imports #) runCmmOpt :: CmmOptM a -> (a, [CLabel]) runCmmOpt (CmmOptM f) = case f [] of (# result, imports #) -> (result, imports) cmmBlockConFold :: CmmBasicBlock -> CmmOptM CmmBasicBlock cmmBlockConFold (BasicBlock id stmts) = do stmts' <- mapM cmmStmtConFold stmts return $ BasicBlock id stmts' cmmStmtConFold stmt = case stmt of CmmAssign reg src -> do src' <- cmmExprConFold DataReference src return $ case src' of CmmReg reg' | reg == reg' -> CmmNop new_src -> CmmAssign reg new_src CmmStore addr src -> do addr' <- cmmExprConFold DataReference addr src' <- cmmExprConFold DataReference src return $ CmmStore addr' src' CmmJump addr regs -> do addr' <- cmmExprConFold JumpReference addr return $ CmmJump addr' regs CmmCall target regs args vols -> do target' <- case target of CmmForeignCall e conv -> do e' <- cmmExprConFold CallReference e return $ CmmForeignCall e' conv other -> return other args' <- mapM (\(arg, hint) -> do arg' <- cmmExprConFold DataReference arg return (arg', hint)) args return $ CmmCall target' regs args' vols CmmCondBranch test dest -> do test' <- cmmExprConFold DataReference test return $ case test' of CmmLit (CmmInt 0 _) -> CmmComment (mkFastString ("deleted: " ++ showSDoc (pprStmt stmt))) CmmLit (CmmInt n _) -> CmmBranch dest other -> CmmCondBranch test' dest CmmSwitch expr ids -> do expr' <- cmmExprConFold DataReference expr return $ CmmSwitch expr' ids other -> return other cmmExprConFold referenceKind expr = case expr of CmmLoad addr rep -> do addr' <- cmmExprConFold DataReference addr return $ CmmLoad addr' rep CmmMachOp mop args -- For MachOps, we first optimize the children, and then we try -- our hand at some constant-folding. -> do args' <- mapM (cmmExprConFold DataReference) args return $ cmmMachOpFold mop args' CmmLit (CmmLabel lbl) -> cmmMakeDynamicReference addImportCmmOpt referenceKind lbl CmmLit (CmmLabelOff lbl off) -> do dynRef <- cmmMakeDynamicReference addImportCmmOpt referenceKind lbl return $ cmmMachOpFold (MO_Add wordRep) [ dynRef, (CmmLit $ CmmInt (fromIntegral off) wordRep) ] #if powerpc_TARGET_ARCH -- On powerpc (non-PIC), it's easier to jump directly to a label than -- to use the register table, so we replace these registers -- with the corresponding labels: CmmReg (CmmGlobal GCEnter1) | not opt_PIC -> cmmExprConFold referenceKind $ CmmLit (CmmLabel (mkRtsCodeLabel SLIT( "__stg_gc_enter_1"))) CmmReg (CmmGlobal GCFun) | not opt_PIC -> cmmExprConFold referenceKind $ CmmLit (CmmLabel (mkRtsCodeLabel SLIT( "__stg_gc_fun"))) #endif CmmReg (CmmGlobal mid) -- Replace register leaves with appropriate StixTrees for -- the given target. MagicIds which map to a reg on this -- arch are left unchanged. For the rest, BaseReg is taken -- to mean the address of the reg table in MainCapability, -- and for all others we generate an indirection to its -- location in the register table. -> case get_GlobalReg_reg_or_addr mid of Left realreg -> return expr Right baseRegAddr -> case mid of BaseReg -> cmmExprConFold DataReference baseRegAddr other -> cmmExprConFold DataReference (CmmLoad baseRegAddr (globalRegRep mid)) -- eliminate zero offsets CmmRegOff reg 0 -> cmmExprConFold referenceKind (CmmReg reg) CmmRegOff (CmmGlobal mid) offset -- RegOf leaves are just a shorthand form. If the reg maps -- to a real reg, we keep the shorthand, otherwise, we just -- expand it and defer to the above code. -> case get_GlobalReg_reg_or_addr mid of Left realreg -> return expr Right baseRegAddr -> cmmExprConFold DataReference (CmmMachOp (MO_Add wordRep) [ CmmReg (CmmGlobal mid), CmmLit (CmmInt (fromIntegral offset) wordRep)]) other -> return other -- ----------------------------------------------------------------------------- -- Utils bind f x = x $! f \end{code}