% % (c) The University of Glasgow, 1996-2003 Functions over HsSyn specialised to RdrName. \begin{code} module RdrHsSyn ( extractHsTyRdrTyVars, extractHsRhoRdrTyVars, extractGenericPatTyVars, mkHsOpApp, mkHsIntegral, mkHsFractional, mkHsIsString, mkHsDo, mkHsSplice, mkClassDecl, mkTyData, mkTyFamily, mkTySynonym, splitCon, mkInlineSpec, mkRecConstrOrUpdate, -- HsExp -> [HsFieldUpdate] -> P HsExp cvBindGroup, cvBindsAndSigs, cvTopDecls, findSplice, checkDecBrGroup, -- Stuff to do with Foreign declarations mkImport, parseCImport, mkExport, mkExtName, -- RdrName -> CLabelString mkGadtDecl, -- [Located RdrName] -> LHsType RdrName -> ConDecl RdrName mkSimpleConDecl, mkDeprecatedGadtRecordDecl, -- Bunch of functions in the parser monad for -- checking and constructing values checkPrecP, -- Int -> P Int checkContext, -- HsType -> P HsContext checkPred, -- HsType -> P HsPred checkTyVars, -- [LHsType RdrName] -> P () checkKindSigs, -- [LTyClDecl RdrName] -> P () checkInstType, -- HsType -> P HsType checkDerivDecl, -- LDerivDecl RdrName -> P (LDerivDecl RdrName) checkPattern, -- HsExp -> P HsPat bang_RDR, checkPatterns, -- SrcLoc -> [HsExp] -> P [HsPat] checkDo, -- [Stmt] -> P [Stmt] checkMDo, -- [Stmt] -> P [Stmt] checkValDef, -- (SrcLoc, HsExp, HsRhs, [HsDecl]) -> P HsDecl checkValSig, -- (SrcLoc, HsExp, HsRhs, [HsDecl]) -> P HsDecl parseError, parseErrorSDoc, ) where import HsSyn -- Lots of it import Class ( FunDep ) import TypeRep ( Kind ) import RdrName ( RdrName, isRdrTyVar, isRdrTc, mkUnqual, rdrNameOcc, isRdrDataCon, isUnqual, getRdrName, isQual, setRdrNameSpace, showRdrName ) import BasicTypes ( maxPrecedence, Activation, RuleMatchInfo, InlinePragma(..), InlineSpec(..), alwaysInlineSpec, neverInlineSpec ) import Lexer import TysWiredIn ( unitTyCon ) import ForeignCall import OccName ( srcDataName, varName, isDataOcc, isTcOcc, occNameString ) import PrelNames ( forall_tv_RDR ) import DynFlags import SrcLoc import OrdList ( OrdList, fromOL ) import Bag ( Bag, emptyBag, snocBag, consBag, foldrBag ) import Outputable import FastString import Maybes import Control.Applicative ((<$>)) import Text.ParserCombinators.ReadP as ReadP import Data.List ( nubBy ) import Data.Char ( isAscii, isAlphaNum, isAlpha ) #include "HsVersions.h" \end{code} %************************************************************************ %* * \subsection{A few functions over HsSyn at RdrName} %* * %************************************************************************ extractHsTyRdrNames finds the free variables of a HsType It's used when making the for-alls explicit. \begin{code} extractHsTyRdrTyVars :: LHsType RdrName -> [Located RdrName] extractHsTyRdrTyVars ty = nubBy eqLocated (extract_lty ty []) extractHsTysRdrTyVars :: [LHsType RdrName] -> [Located RdrName] extractHsTysRdrTyVars ty = nubBy eqLocated (extract_ltys ty []) extractHsRhoRdrTyVars :: LHsContext RdrName -> LHsType RdrName -> [Located RdrName] -- This one takes the context and tau-part of a -- sigma type and returns their free type variables extractHsRhoRdrTyVars ctxt ty = nubBy eqLocated $ extract_lctxt ctxt (extract_lty ty []) extract_lctxt :: Located [LHsPred RdrName] -> [Located RdrName] -> [Located RdrName] extract_lctxt ctxt acc = foldr (extract_pred . unLoc) acc (unLoc ctxt) extract_pred :: HsPred RdrName -> [Located RdrName] -> [Located RdrName] extract_pred (HsClassP _ tys) acc = extract_ltys tys acc extract_pred (HsEqualP ty1 ty2) acc = extract_lty ty1 (extract_lty ty2 acc) extract_pred (HsIParam _ ty ) acc = extract_lty ty acc extract_ltys :: [LHsType RdrName] -> [Located RdrName] -> [Located RdrName] extract_ltys tys acc = foldr extract_lty acc tys extract_lty :: LHsType RdrName -> [Located RdrName] -> [Located RdrName] extract_lty (L loc ty) acc = case ty of HsTyVar tv -> extract_tv loc tv acc HsBangTy _ ty -> extract_lty ty acc HsRecTy flds -> foldr (extract_lty . cd_fld_type) acc flds HsAppTy ty1 ty2 -> extract_lty ty1 (extract_lty ty2 acc) HsListTy ty -> extract_lty ty acc HsPArrTy ty -> extract_lty ty acc HsTupleTy _ tys -> extract_ltys tys acc HsFunTy ty1 ty2 -> extract_lty ty1 (extract_lty ty2 acc) HsPredTy p -> extract_pred p acc HsOpTy ty1 (L loc tv) ty2 -> extract_tv loc tv (extract_lty ty1 (extract_lty ty2 acc)) HsParTy ty -> extract_lty ty acc HsNumTy _ -> acc HsSpliceTy _ -> acc -- Type splices mention no type variables HsKindSig ty _ -> extract_lty ty acc HsForAllTy _ [] cx ty -> extract_lctxt cx (extract_lty ty acc) HsForAllTy _ tvs cx ty -> acc ++ (filter ((`notElem` locals) . unLoc) $ extract_lctxt cx (extract_lty ty [])) where locals = hsLTyVarNames tvs HsDocTy ty _ -> extract_lty ty acc extract_tv :: SrcSpan -> RdrName -> [Located RdrName] -> [Located RdrName] extract_tv loc tv acc | isRdrTyVar tv = L loc tv : acc | otherwise = acc extractGenericPatTyVars :: LHsBinds RdrName -> [Located RdrName] -- Get the type variables out of the type patterns in a bunch of -- possibly-generic bindings in a class declaration extractGenericPatTyVars binds = nubBy eqLocated (foldrBag get [] binds) where get (L _ (FunBind { fun_matches = MatchGroup ms _ })) acc = foldr (get_m.unLoc) acc ms get _ acc = acc get_m (Match (L _ (TypePat ty) : _) _ _) acc = extract_lty ty acc get_m _ acc = acc \end{code} %************************************************************************ %* * \subsection{Construction functions for Rdr stuff} %* * %************************************************************************ mkClassDecl builds a RdrClassDecl, filling in the names for tycon and datacon by deriving them from the name of the class. We fill in the names for the tycon and datacon corresponding to the class, by deriving them from the name of the class itself. This saves recording the names in the interface file (which would be equally good). Similarly for mkConDecl, mkClassOpSig and default-method names. *** See "THE NAMING STORY" in HsDecls **** \begin{code} mkClassDecl :: SrcSpan -> Located (LHsContext RdrName, LHsType RdrName) -> Located [Located (FunDep RdrName)] -> Located (OrdList (LHsDecl RdrName)) -> P (LTyClDecl RdrName) mkClassDecl loc (L _ (cxt, tycl_hdr)) fds where_cls = do { let (binds, sigs, ats, docs) = cvBindsAndSigs (unLoc where_cls) ; (cls, tparams) <- checkTyClHdr tycl_hdr ; tyvars <- checkTyVars tparams -- Only type vars allowed ; checkKindSigs ats ; return (L loc (ClassDecl { tcdCtxt = cxt, tcdLName = cls, tcdTyVars = tyvars, tcdFDs = unLoc fds, tcdSigs = sigs, tcdMeths = binds, tcdATs = ats, tcdDocs = docs })) } mkTyData :: SrcSpan -> NewOrData -> Bool -- True <=> data family instance -> Located (LHsContext RdrName, LHsType RdrName) -> Maybe Kind -> [LConDecl RdrName] -> Maybe [LHsType RdrName] -> P (LTyClDecl RdrName) mkTyData loc new_or_data is_family (L _ (cxt, tycl_hdr)) ksig data_cons maybe_deriv = do { (tc, tparams) <- checkTyClHdr tycl_hdr ; (tyvars, typats) <- checkTParams is_family tparams ; return (L loc (TyData { tcdND = new_or_data, tcdCtxt = cxt, tcdLName = tc, tcdTyVars = tyvars, tcdTyPats = typats, tcdCons = data_cons, tcdKindSig = ksig, tcdDerivs = maybe_deriv })) } mkTySynonym :: SrcSpan -> Bool -- True <=> type family instances -> LHsType RdrName -- LHS -> LHsType RdrName -- RHS -> P (LTyClDecl RdrName) mkTySynonym loc is_family lhs rhs = do { (tc, tparams) <- checkTyClHdr lhs ; (tyvars, typats) <- checkTParams is_family tparams ; return (L loc (TySynonym tc tyvars typats rhs)) } mkTyFamily :: SrcSpan -> FamilyFlavour -> LHsType RdrName -- LHS -> Maybe Kind -- Optional kind signature -> P (LTyClDecl RdrName) mkTyFamily loc flavour lhs ksig = do { (tc, tparams) <- checkTyClHdr lhs ; tyvars <- checkTyVars tparams ; return (L loc (TyFamily flavour tc tyvars ksig)) } \end{code} %************************************************************************ %* * \subsection[cvBinds-etc]{Converting to @HsBinds@, etc.} %* * %************************************************************************ Function definitions are restructured here. Each is assumed to be recursive initially, and non recursive definitions are discovered by the dependency analyser. \begin{code} -- | Groups together bindings for a single function cvTopDecls :: OrdList (LHsDecl RdrName) -> [LHsDecl RdrName] cvTopDecls decls = go (fromOL decls) where go :: [LHsDecl RdrName] -> [LHsDecl RdrName] go [] = [] go (L l (ValD b) : ds) = L l' (ValD b') : go ds' where (L l' b', ds') = getMonoBind (L l b) ds go (d : ds) = d : go ds -- Declaration list may only contain value bindings and signatures. cvBindGroup :: OrdList (LHsDecl RdrName) -> HsValBinds RdrName cvBindGroup binding = case cvBindsAndSigs binding of (mbs, sigs, tydecls, _) -> ASSERT( null tydecls ) ValBindsIn mbs sigs cvBindsAndSigs :: OrdList (LHsDecl RdrName) -> (Bag (LHsBind RdrName), [LSig RdrName], [LTyClDecl RdrName], [LDocDecl RdrName]) -- Input decls contain just value bindings and signatures -- and in case of class or instance declarations also -- associated type declarations. They might also contain Haddock comments. cvBindsAndSigs fb = go (fromOL fb) where go [] = (emptyBag, [], [], []) go (L l (SigD s) : ds) = (bs, L l s : ss, ts, docs) where (bs, ss, ts, docs) = go ds go (L l (ValD b) : ds) = (b' `consBag` bs, ss, ts, docs) where (b', ds') = getMonoBind (L l b) ds (bs, ss, ts, docs) = go ds' go (L l (TyClD t): ds) = (bs, ss, L l t : ts, docs) where (bs, ss, ts, docs) = go ds go (L l (DocD d) : ds) = (bs, ss, ts, (L l d) : docs) where (bs, ss, ts, docs) = go ds go (L _ d : _) = pprPanic "cvBindsAndSigs" (ppr d) ----------------------------------------------------------------------------- -- Group function bindings into equation groups getMonoBind :: LHsBind RdrName -> [LHsDecl RdrName] -> (LHsBind RdrName, [LHsDecl RdrName]) -- Suppose (b',ds') = getMonoBind b ds -- ds is a list of parsed bindings -- b is a MonoBinds that has just been read off the front -- Then b' is the result of grouping more equations from ds that -- belong with b into a single MonoBinds, and ds' is the depleted -- list of parsed bindings. -- -- All Haddock comments between equations inside the group are -- discarded. -- -- No AndMonoBinds or EmptyMonoBinds here; just single equations getMonoBind (L loc1 (FunBind { fun_id = fun_id1@(L _ f1), fun_infix = is_infix1, fun_matches = MatchGroup mtchs1 _ })) binds | has_args mtchs1 = go is_infix1 mtchs1 loc1 binds [] where go is_infix mtchs loc (L loc2 (ValD (FunBind { fun_id = L _ f2, fun_infix = is_infix2, fun_matches = MatchGroup mtchs2 _ })) : binds) _ | f1 == f2 = go (is_infix || is_infix2) (mtchs2 ++ mtchs) (combineSrcSpans loc loc2) binds [] go is_infix mtchs loc (doc_decl@(L loc2 (DocD _)) : binds) doc_decls = let doc_decls' = doc_decl : doc_decls in go is_infix mtchs (combineSrcSpans loc loc2) binds doc_decls' go is_infix mtchs loc binds doc_decls = (L loc (makeFunBind fun_id1 is_infix (reverse mtchs)), (reverse doc_decls) ++ binds) -- Reverse the final matches, to get it back in the right order -- Do the same thing with the trailing doc comments getMonoBind bind binds = (bind, binds) has_args :: [LMatch RdrName] -> Bool has_args [] = panic "RdrHsSyn:has_args" has_args ((L _ (Match args _ _)) : _) = not (null args) -- Don't group together FunBinds if they have -- no arguments. This is necessary now that variable bindings -- with no arguments are now treated as FunBinds rather -- than pattern bindings (tests/rename/should_fail/rnfail002). \end{code} \begin{code} findSplice :: [LHsDecl a] -> (HsGroup a, Maybe (SpliceDecl a, [LHsDecl a])) findSplice ds = addl emptyRdrGroup ds checkDecBrGroup :: [LHsDecl a] -> P (HsGroup a) -- Turn the body of a [d| ... |] into a HsGroup -- There should be no splices in the "..." checkDecBrGroup decls = case addl emptyRdrGroup decls of (group, Nothing) -> return group (_, Just (SpliceDecl (L loc _), _)) -> parseError loc "Declaration splices are not permitted inside declaration brackets" -- Why not? See Section 7.3 of the TH paper. addl :: HsGroup a -> [LHsDecl a] -> (HsGroup a, Maybe (SpliceDecl a, [LHsDecl a])) -- This stuff reverses the declarations (again) but it doesn't matter -- Base cases addl gp [] = (gp, Nothing) addl gp (L l d : ds) = add gp l d ds add :: HsGroup a -> SrcSpan -> HsDecl a -> [LHsDecl a] -> (HsGroup a, Maybe (SpliceDecl a, [LHsDecl a])) add gp _ (SpliceD e) ds = (gp, Just (e, ds)) -- Class declarations: pull out the fixity signatures to the top add gp@(HsGroup {hs_tyclds = ts, hs_fixds = fs}) l (TyClD d) ds | isClassDecl d = let fsigs = [ L l f | L l (FixSig f) <- tcdSigs d ] in addl (gp { hs_tyclds = L l d : ts, hs_fixds = fsigs ++ fs}) ds | otherwise = addl (gp { hs_tyclds = L l d : ts }) ds -- Signatures: fixity sigs go a different place than all others add gp@(HsGroup {hs_fixds = ts}) l (SigD (FixSig f)) ds = addl (gp {hs_fixds = L l f : ts}) ds add gp@(HsGroup {hs_valds = ts}) l (SigD d) ds = addl (gp {hs_valds = add_sig (L l d) ts}) ds -- Value declarations: use add_bind add gp@(HsGroup {hs_valds = ts}) l (ValD d) ds = addl (gp { hs_valds = add_bind (L l d) ts }) ds -- The rest are routine add gp@(HsGroup {hs_instds = ts}) l (InstD d) ds = addl (gp { hs_instds = L l d : ts }) ds add gp@(HsGroup {hs_derivds = ts}) l (DerivD d) ds = addl (gp { hs_derivds = L l d : ts }) ds add gp@(HsGroup {hs_defds = ts}) l (DefD d) ds = addl (gp { hs_defds = L l d : ts }) ds add gp@(HsGroup {hs_fords = ts}) l (ForD d) ds = addl (gp { hs_fords = L l d : ts }) ds add gp@(HsGroup {hs_warnds = ts}) l (WarningD d) ds = addl (gp { hs_warnds = L l d : ts }) ds add gp@(HsGroup {hs_annds = ts}) l (AnnD d) ds = addl (gp { hs_annds = L l d : ts }) ds add gp@(HsGroup {hs_ruleds = ts}) l (RuleD d) ds = addl (gp { hs_ruleds = L l d : ts }) ds add gp l (DocD d) ds = addl (gp { hs_docs = (L l d) : (hs_docs gp) }) ds add_bind :: LHsBind a -> HsValBinds a -> HsValBinds a add_bind b (ValBindsIn bs sigs) = ValBindsIn (bs `snocBag` b) sigs add_bind _ (ValBindsOut {}) = panic "RdrHsSyn:add_bind" add_sig :: LSig a -> HsValBinds a -> HsValBinds a add_sig s (ValBindsIn bs sigs) = ValBindsIn bs (s:sigs) add_sig _ (ValBindsOut {}) = panic "RdrHsSyn:add_sig" \end{code} %************************************************************************ %* * \subsection[PrefixToHS-utils]{Utilities for conversion} %* * %************************************************************************ \begin{code} ----------------------------------------------------------------------------- -- splitCon -- When parsing data declarations, we sometimes inadvertently parse -- a constructor application as a type (eg. in data T a b = C a b `D` E a b) -- This function splits up the type application, adds any pending -- arguments, and converts the type constructor back into a data constructor. splitCon :: LHsType RdrName -> P (Located RdrName, HsConDeclDetails RdrName) -- This gets given a "type" that should look like -- C Int Bool -- or C { x::Int, y::Bool } -- and returns the pieces splitCon ty = split ty [] where split (L _ (HsAppTy t u)) ts = split t (u : ts) split (L l (HsTyVar tc)) ts = do data_con <- tyConToDataCon l tc return (data_con, mk_rest ts) split (L l _) _ = parseError l "parse error in data/newtype declaration" mk_rest [L _ (HsRecTy flds)] = RecCon flds mk_rest ts = PrefixCon ts mkDeprecatedGadtRecordDecl :: SrcSpan -> Located RdrName -> [ConDeclField RdrName] -> LHsType RdrName -> P (LConDecl RdrName) -- This one uses the deprecated syntax -- C { x,y ::Int } :: T a b -- We give it a RecCon details right away mkDeprecatedGadtRecordDecl loc (L con_loc con) flds res_ty = do { data_con <- tyConToDataCon con_loc con ; return (L loc (ConDecl { con_old_rec = True , con_name = data_con , con_explicit = Implicit , con_qvars = [] , con_cxt = noLoc [] , con_details = RecCon flds , con_res = ResTyGADT res_ty , con_doc = Nothing })) } mkSimpleConDecl :: Located RdrName -> [LHsTyVarBndr RdrName] -> LHsContext RdrName -> HsConDeclDetails RdrName -> ConDecl RdrName mkSimpleConDecl name qvars cxt details = ConDecl { con_old_rec = False , con_name = name , con_explicit = Explicit , con_qvars = qvars , con_cxt = cxt , con_details = details , con_res = ResTyH98 , con_doc = Nothing } mkGadtDecl :: [Located RdrName] -> LHsType RdrName -- Always a HsForAllTy -> [ConDecl RdrName] -- We allow C,D :: ty -- and expand it as if it had been -- C :: ty; D :: ty -- (Just like type signatures in general.) mkGadtDecl names (L _ (HsForAllTy imp qvars cxt tau)) = [mk_gadt_con name | name <- names] where (details, res_ty) -- See Note [Sorting out the result type] = case tau of L _ (HsFunTy (L _ (HsRecTy flds)) res_ty) -> (RecCon flds, res_ty) _other -> (PrefixCon [], tau) mk_gadt_con name = ConDecl { con_old_rec = False , con_name = name , con_explicit = imp , con_qvars = qvars , con_cxt = cxt , con_details = details , con_res = ResTyGADT res_ty , con_doc = Nothing } mkGadtDecl _ other_ty = pprPanic "mkGadtDecl" (ppr other_ty) tyConToDataCon :: SrcSpan -> RdrName -> P (Located RdrName) tyConToDataCon loc tc | isTcOcc (rdrNameOcc tc) = return (L loc (setRdrNameSpace tc srcDataName)) | otherwise = parseErrorSDoc loc (msg $$ extra) where msg = text "Not a data constructor:" <+> quotes (ppr tc) extra | tc == forall_tv_RDR = text "Perhaps you intended to use -XExistentialQuantification" | otherwise = empty \end{code} Note [Sorting out the result type] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In a GADT declaration which is not a record, we put the whole constr type into the ResTyGADT for now; the renamer will unravel it once it has sorted out operator fixities. Consider for example C :: a :*: b -> a :*: b -> a :+: b Initially this type will parse as a :*: (b -> (a :*: (b -> (a :+: b)))) so it's hard to split up the arguments until we've done the precedence resolution (in the renamer) On the other hand, for a record { x,y :: Int } -> a :*: b there is no doubt. AND we need to sort records out so that we can bring x,y into scope. So: * For PrefixCon we keep all the args in the ResTyGADT * For RecCon we do not \begin{code} ---------------------------------------------------------------------------- -- Various Syntactic Checks checkInstType :: LHsType RdrName -> P (LHsType RdrName) checkInstType (L l t) = case t of HsForAllTy exp tvs ctxt ty -> do dict_ty <- checkDictTy ty return (L l (HsForAllTy exp tvs ctxt dict_ty)) HsParTy ty -> checkInstType ty ty -> do dict_ty <- checkDictTy (L l ty) return (L l (HsForAllTy Implicit [] (noLoc []) dict_ty)) checkDictTy :: LHsType RdrName -> P (LHsType RdrName) checkDictTy (L spn ty) = check ty [] where check (HsTyVar t) args | not (isRdrTyVar t) = return (L spn (HsPredTy (HsClassP t args))) check (HsAppTy l r) args = check (unLoc l) (r:args) check (HsParTy t) args = check (unLoc t) args check _ _ = parseError spn "Malformed instance header" checkTParams :: Bool -- Type/data family -> [LHsType RdrName] -> P ([LHsTyVarBndr RdrName], Maybe [LHsType RdrName]) -- checkTParams checks the type parameters of a data/newtype declaration -- There are two cases: -- -- a) Vanilla data/newtype decl. In that case -- - the type parameters should all be type variables -- - they may have a kind annotation -- -- b) Family data/newtype decl. In that case -- - The type parameters may be arbitrary types -- - We find the type-varaible binders by find the -- free type vars of those types -- - We make them all kind-sig-free binders (UserTyVar) -- If there are kind sigs in the type parameters, they -- will fix the binder's kind when we kind-check the -- type parameters checkTParams is_family tparams | not is_family -- Vanilla case (a) = do { tyvars <- checkTyVars tparams ; return (tyvars, Nothing) } | otherwise -- Family case (b) = do { let tyvars = [L l (UserTyVar tv) | L l tv <- extractHsTysRdrTyVars tparams] ; return (tyvars, Just tparams) } checkTyVars :: [LHsType RdrName] -> P [LHsTyVarBndr RdrName] -- Check whether the given list of type parameters are all type variables -- (possibly with a kind signature). If the second argument is `False', -- only type variables are allowed and we raise an error on encountering a -- non-variable; otherwise, we allow non-variable arguments and return the -- entire list of parameters. checkTyVars tparms = mapM chk tparms where -- Check that the name space is correct! chk (L l (HsKindSig (L _ (HsTyVar tv)) k)) | isRdrTyVar tv = return (L l (KindedTyVar tv k)) chk (L l (HsTyVar tv)) | isRdrTyVar tv = return (L l (UserTyVar tv)) chk (L l _) = parseError l "Type found where type variable expected" checkTyClHdr :: LHsType RdrName -> P (Located RdrName, -- the head symbol (type or class name) [LHsType RdrName]) -- parameters of head symbol -- Well-formedness check and decomposition of type and class heads. -- Decomposes T ty1 .. tyn into (T, [ty1, ..., tyn]) -- Int :*: Bool into (:*:, [Int, Bool]) -- returning the pieces checkTyClHdr ty = goL ty [] where goL (L l ty) acc = go l ty acc go l (HsTyVar tc) acc | isRdrTc tc = return (L l tc, acc) go _ (HsOpTy t1 ltc@(L _ tc) t2) acc | isRdrTc tc = return (ltc, t1:t2:acc) go _ (HsParTy ty) acc = goL ty acc go _ (HsAppTy t1 t2) acc = goL t1 (t2:acc) go l _ _ = parseError l "Malformed head of type or class declaration" -- Check that associated type declarations of a class are all kind signatures. -- checkKindSigs :: [LTyClDecl RdrName] -> P () checkKindSigs = mapM_ check where check (L l tydecl) | isFamilyDecl tydecl || isSynDecl tydecl = return () | otherwise = parseError l "Type declaration in a class must be a kind signature or synonym default" checkContext :: LHsType RdrName -> P (LHsContext RdrName) checkContext (L l t) = check t where check (HsTupleTy _ ts) -- (Eq a, Ord b) shows up as a tuple type = do ctx <- mapM checkPred ts return (L l ctx) check (HsParTy ty) -- to be sure HsParTy doesn't get into the way = check (unLoc ty) check (HsTyVar t) -- Empty context shows up as a unit type () | t == getRdrName unitTyCon = return (L l []) check t = do p <- checkPred (L l t) return (L l [p]) checkPred :: LHsType RdrName -> P (LHsPred RdrName) -- Watch out.. in ...deriving( Show )... we use checkPred on -- the list of partially applied predicates in the deriving, -- so there can be zero args. checkPred (L spn (HsPredTy (HsIParam n ty))) = return (L spn (HsIParam n ty)) checkPred (L spn ty) = check spn ty [] where checkl (L l ty) args = check l ty args check _loc (HsPredTy pred@(HsEqualP _ _)) args | null args = return $ L spn pred check _loc (HsTyVar t) args | not (isRdrTyVar t) = return (L spn (HsClassP t args)) check _loc (HsAppTy l r) args = checkl l (r:args) check _loc (HsOpTy l (L loc tc) r) args = check loc (HsTyVar tc) (l:r:args) check _loc (HsParTy t) args = checkl t args check loc _ _ = parseError loc "malformed class assertion" --------------------------------------------------------------------------- -- Checking stand-alone deriving declarations checkDerivDecl :: LDerivDecl RdrName -> P (LDerivDecl RdrName) checkDerivDecl d@(L loc _) = do stDerivOn <- extension standaloneDerivingEnabled if stDerivOn then return d else parseError loc "Illegal stand-alone deriving declaration (use -XStandaloneDeriving)" --------------------------------------------------------------------------- -- Checking statements in a do-expression -- We parse do { e1 ; e2 ; } -- as [ExprStmt e1, ExprStmt e2] -- checkDo (a) checks that the last thing is an ExprStmt -- (b) returns it separately -- same comments apply for mdo as well checkDo, checkMDo :: SrcSpan -> [LStmt RdrName] -> P ([LStmt RdrName], LHsExpr RdrName) checkDo = checkDoMDo "a " "'do'" checkMDo = checkDoMDo "an " "'mdo'" checkDoMDo :: String -> String -> SrcSpan -> [LStmt RdrName] -> P ([LStmt RdrName], LHsExpr RdrName) checkDoMDo _ nm loc [] = parseError loc ("Empty " ++ nm ++ " construct") checkDoMDo pre nm _ ss = do check ss where check [] = panic "RdrHsSyn:checkDoMDo" check [L _ (ExprStmt e _ _)] = return ([], e) check [L l _] = parseError l ("The last statement in " ++ pre ++ nm ++ " construct must be an expression") check (s:ss) = do (ss',e') <- check ss return ((s:ss'),e') -- ------------------------------------------------------------------------- -- Checking Patterns. -- We parse patterns as expressions and check for valid patterns below, -- converting the expression into a pattern at the same time. checkPattern :: LHsExpr RdrName -> P (LPat RdrName) checkPattern e = checkLPat e checkPatterns :: [LHsExpr RdrName] -> P [LPat RdrName] checkPatterns es = mapM checkPattern es checkLPat :: LHsExpr RdrName -> P (LPat RdrName) checkLPat e@(L l _) = checkPat l e [] checkPat :: SrcSpan -> LHsExpr RdrName -> [LPat RdrName] -> P (LPat RdrName) checkPat loc (L l (HsVar c)) args | isRdrDataCon c = return (L loc (ConPatIn (L l c) (PrefixCon args))) checkPat loc e args -- OK to let this happen even if bang-patterns -- are not enabled, because there is no valid -- non-bang-pattern parse of (C ! e) | Just (e', args') <- splitBang e = do { args'' <- checkPatterns args' ; checkPat loc e' (args'' ++ args) } checkPat loc (L _ (HsApp f x)) args = do { x <- checkLPat x; checkPat loc f (x:args) } checkPat loc (L _ e) [] = do { pState <- getPState ; p <- checkAPat (dflags pState) loc e ; return (L loc p) } checkPat loc _ _ = patFail loc checkAPat :: DynFlags -> SrcSpan -> HsExpr RdrName -> P (Pat RdrName) checkAPat dynflags loc e = case e of EWildPat -> return (WildPat placeHolderType) HsVar x | isQual x -> parseError loc ("Qualified variable in pattern: " ++ showRdrName x) | otherwise -> return (VarPat x) HsLit l -> return (LitPat l) -- Overloaded numeric patterns (e.g. f 0 x = x) -- Negation is recorded separately, so that the literal is zero or +ve -- NB. Negative *primitive* literals are already handled by the lexer HsOverLit pos_lit -> return (mkNPat pos_lit Nothing) NegApp (L _ (HsOverLit pos_lit)) _ -> return (mkNPat pos_lit (Just noSyntaxExpr)) SectionR (L _ (HsVar bang)) e -- (! x) | bang == bang_RDR -> do { bang_on <- extension bangPatEnabled ; if bang_on then checkLPat e >>= (return . BangPat) else parseError loc "Illegal bang-pattern (use -XBangPatterns)" } ELazyPat e -> checkLPat e >>= (return . LazyPat) EAsPat n e -> checkLPat e >>= (return . AsPat n) -- view pattern is well-formed if the pattern is EViewPat expr patE -> checkLPat patE >>= (return . (\p -> ViewPat expr p placeHolderType)) ExprWithTySig e t -> do e <- checkLPat e -- Pattern signatures are parsed as sigtypes, -- but they aren't explicit forall points. Hence -- we have to remove the implicit forall here. let t' = case t of L _ (HsForAllTy Implicit _ (L _ []) ty) -> ty other -> other return (SigPatIn e t') -- n+k patterns OpApp (L nloc (HsVar n)) (L _ (HsVar plus)) _ (L _ (HsOverLit lit@(OverLit {ol_val = HsIntegral {}}))) | dopt Opt_NPlusKPatterns dynflags && (plus == plus_RDR) -> return (mkNPlusKPat (L nloc n) lit) OpApp l op _fix r -> do l <- checkLPat l r <- checkLPat r case op of L cl (HsVar c) | isDataOcc (rdrNameOcc c) -> return (ConPatIn (L cl c) (InfixCon l r)) _ -> patFail loc HsPar e -> checkLPat e >>= (return . ParPat) ExplicitList _ es -> do ps <- mapM checkLPat es return (ListPat ps placeHolderType) ExplicitPArr _ es -> do ps <- mapM checkLPat es return (PArrPat ps placeHolderType) ExplicitTuple es b | all tupArgPresent es -> do ps <- mapM checkLPat [e | Present e <- es] return (TuplePat ps b placeHolderType) | otherwise -> parseError loc "Illegal tuple section in pattern" RecordCon c _ (HsRecFields fs dd) -> do fs <- mapM checkPatField fs return (ConPatIn c (RecCon (HsRecFields fs dd))) HsQuasiQuoteE q -> return (QuasiQuotePat q) -- Generics HsType ty -> return (TypePat ty) _ -> patFail loc plus_RDR, bang_RDR :: RdrName plus_RDR = mkUnqual varName (fsLit "+") -- Hack bang_RDR = mkUnqual varName (fsLit "!") -- Hack checkPatField :: HsRecField RdrName (LHsExpr RdrName) -> P (HsRecField RdrName (LPat RdrName)) checkPatField fld = do { p <- checkLPat (hsRecFieldArg fld) ; return (fld { hsRecFieldArg = p }) } patFail :: SrcSpan -> P a patFail loc = parseError loc "Parse error in pattern" --------------------------------------------------------------------------- -- Check Equation Syntax checkValDef :: LHsExpr RdrName -> Maybe (LHsType RdrName) -> Located (GRHSs RdrName) -> P (HsBind RdrName) checkValDef lhs (Just sig) grhss -- x :: ty = rhs parses as a *pattern* binding = checkPatBind (L (combineLocs lhs sig) (ExprWithTySig lhs sig)) grhss checkValDef lhs opt_sig grhss = do { mb_fun <- isFunLhs lhs ; case mb_fun of Just (fun, is_infix, pats) -> checkFunBind (getLoc lhs) fun is_infix pats opt_sig grhss Nothing -> checkPatBind lhs grhss } checkFunBind :: SrcSpan -> Located RdrName -> Bool -> [LHsExpr RdrName] -> Maybe (LHsType RdrName) -> Located (GRHSs RdrName) -> P (HsBind RdrName) checkFunBind lhs_loc fun is_infix pats opt_sig (L rhs_span grhss) | isQual (unLoc fun) = parseErrorSDoc (getLoc fun) (ptext (sLit "Qualified name in function definition:") <+> ppr (unLoc fun)) | otherwise = do ps <- checkPatterns pats let match_span = combineSrcSpans lhs_loc rhs_span return (makeFunBind fun is_infix [L match_span (Match ps opt_sig grhss)]) -- The span of the match covers the entire equation. -- That isn't quite right, but it'll do for now. makeFunBind :: Located id -> Bool -> [LMatch id] -> HsBind id -- Like HsUtils.mkFunBind, but we need to be able to set the fixity too makeFunBind fn is_infix ms = FunBind { fun_id = fn, fun_infix = is_infix, fun_matches = mkMatchGroup ms, fun_co_fn = idHsWrapper, bind_fvs = placeHolderNames, fun_tick = Nothing } checkPatBind :: LHsExpr RdrName -> Located (GRHSs RdrName) -> P (HsBind RdrName) checkPatBind lhs (L _ grhss) = do { lhs <- checkPattern lhs ; return (PatBind lhs grhss placeHolderType placeHolderNames) } checkValSig :: LHsExpr RdrName -> LHsType RdrName -> P (Sig RdrName) checkValSig (L l (HsVar v)) ty | isUnqual v && not (isDataOcc (rdrNameOcc v)) = return (TypeSig (L l v) ty) checkValSig (L l _) _ = parseError l "Invalid type signature" \end{code} \begin{code} -- The parser left-associates, so there should -- not be any OpApps inside the e's splitBang :: LHsExpr RdrName -> Maybe (LHsExpr RdrName, [LHsExpr RdrName]) -- Splits (f ! g a b) into (f, [(! g), a, b]) splitBang (L loc (OpApp l_arg bang@(L _ (HsVar op)) _ r_arg)) | op == bang_RDR = Just (l_arg, L loc (SectionR bang arg1) : argns) where (arg1,argns) = split_bang r_arg [] split_bang (L _ (HsApp f e)) es = split_bang f (e:es) split_bang e es = (e,es) splitBang _ = Nothing isFunLhs :: LHsExpr RdrName -> P (Maybe (Located RdrName, Bool, [LHsExpr RdrName])) -- A variable binding is parsed as a FunBind. -- Just (fun, is_infix, arg_pats) if e is a function LHS -- -- The whole LHS is parsed as a single expression. -- Any infix operators on the LHS will parse left-associatively -- E.g. f !x y !z -- will parse (rather strangely) as -- (f ! x y) ! z -- It's up to isFunLhs to sort out the mess -- -- a .!. !b isFunLhs e = go e [] where go (L loc (HsVar f)) es | not (isRdrDataCon f) = return (Just (L loc f, False, es)) go (L _ (HsApp f e)) es = go f (e:es) go (L _ (HsPar e)) es@(_:_) = go e es -- For infix function defns, there should be only one infix *function* -- (though there may be infix *datacons* involved too). So we don't -- need fixity info to figure out which function is being defined. -- a `K1` b `op` c `K2` d -- must parse as -- (a `K1` b) `op` (c `K2` d) -- The renamer checks later that the precedences would yield such a parse. -- -- There is a complication to deal with bang patterns. -- -- ToDo: what about this? -- x + 1 `op` y = ... go e@(L loc (OpApp l (L loc' (HsVar op)) fix r)) es | Just (e',es') <- splitBang e = do { bang_on <- extension bangPatEnabled ; if bang_on then go e' (es' ++ es) else return (Just (L loc' op, True, (l:r:es))) } -- No bangs; behave just like the next case | not (isRdrDataCon op) -- We have found the function! = return (Just (L loc' op, True, (l:r:es))) | otherwise -- Infix data con; keep going = do { mb_l <- go l es ; case mb_l of Just (op', True, j : k : es') -> return (Just (op', True, j : op_app : es')) where op_app = L loc (OpApp k (L loc' (HsVar op)) fix r) _ -> return Nothing } go _ _ = return Nothing --------------------------------------------------------------------------- -- Miscellaneous utilities checkPrecP :: Located Int -> P Int checkPrecP (L l i) | 0 <= i && i <= maxPrecedence = return i | otherwise = parseError l "Precedence out of range" mkRecConstrOrUpdate :: LHsExpr RdrName -> SrcSpan -> ([HsRecField RdrName (LHsExpr RdrName)], Bool) -> P (HsExpr RdrName) mkRecConstrOrUpdate (L l (HsVar c)) _ (fs,dd) | isRdrDataCon c = return (RecordCon (L l c) noPostTcExpr (mk_rec_fields fs dd)) mkRecConstrOrUpdate exp loc (fs,dd) | null fs = parseError loc "Empty record update" | otherwise = return (RecordUpd exp (mk_rec_fields fs dd) [] [] []) mk_rec_fields :: [HsRecField id arg] -> Bool -> HsRecFields id arg mk_rec_fields fs False = HsRecFields { rec_flds = fs, rec_dotdot = Nothing } mk_rec_fields fs True = HsRecFields { rec_flds = fs, rec_dotdot = Just (length fs) } mkInlineSpec :: Maybe Activation -> RuleMatchInfo -> Bool -> InlineSpec -- The Maybe is becuase the user can omit the activation spec (and usually does) mkInlineSpec Nothing match_info True = alwaysInlineSpec match_info -- INLINE mkInlineSpec Nothing match_info False = neverInlineSpec match_info -- NOINLINE mkInlineSpec (Just act) match_info inl = Inline (InlinePragma act match_info) inl ----------------------------------------------------------------------------- -- utilities for foreign declarations -- construct a foreign import declaration -- mkImport :: CCallConv -> Safety -> (Located FastString, Located RdrName, LHsType RdrName) -> P (HsDecl RdrName) mkImport cconv safety (L loc entity, v, ty) | cconv == PrimCallConv = do let funcTarget = CFunction (StaticTarget entity) importSpec = CImport PrimCallConv safety nilFS funcTarget return (ForD (ForeignImport v ty importSpec)) | otherwise = do case parseCImport cconv safety (mkExtName (unLoc v)) (unpackFS entity) of Nothing -> parseError loc "Malformed entity string" Just importSpec -> return (ForD (ForeignImport v ty importSpec)) -- the string "foo" is ambigous: either a header or a C identifier. The -- C identifier case comes first in the alternatives below, so we pick -- that one. parseCImport :: CCallConv -> Safety -> FastString -> String -> Maybe ForeignImport parseCImport cconv safety nm str = listToMaybe $ map fst $ filter (null.snd) $ readP_to_S parse str where parse = choice [ string "dynamic" >> return (mk nilFS (CFunction DynamicTarget)), string "wrapper" >> return (mk nilFS CWrapper), optional (string "static" >> skipSpaces) >> (mk nilFS <$> cimp nm) +++ (do h <- munch1 hdr_char; skipSpaces; mk (mkFastString h) <$> cimp nm) ] mk = CImport cconv safety hdr_char c = isAscii c && (isAlphaNum c || c `elem` "._") id_char c = isAlphaNum c || c == '_' cimp nm = (ReadP.char '&' >> skipSpaces >> CLabel <$> cid) +++ ((CFunction . StaticTarget) <$> cid) where cid = return nm +++ (do c <- satisfy (\c -> isAlpha c || c == '_') cs <- many (satisfy id_char) return (mkFastString (c:cs))) -- construct a foreign export declaration -- mkExport :: CCallConv -> (Located FastString, Located RdrName, LHsType RdrName) -> P (HsDecl RdrName) mkExport cconv (L _ entity, v, ty) = return $ ForD (ForeignExport v ty (CExport (CExportStatic entity' cconv))) where entity' | nullFS entity = mkExtName (unLoc v) | otherwise = entity -- Supplying the ext_name in a foreign decl is optional; if it -- isn't there, the Haskell name is assumed. Note that no transformation -- of the Haskell name is then performed, so if you foreign export (++), -- it's external name will be "++". Too bad; it's important because we don't -- want z-encoding (e.g. names with z's in them shouldn't be doubled) -- mkExtName :: RdrName -> CLabelString mkExtName rdrNm = mkFastString (occNameString (rdrNameOcc rdrNm)) \end{code} ----------------------------------------------------------------------------- -- Misc utils \begin{code} parseError :: SrcSpan -> String -> P a parseError span s = parseErrorSDoc span (text s) parseErrorSDoc :: SrcSpan -> SDoc -> P a parseErrorSDoc span s = failSpanMsgP span s \end{code}