% % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % \section[ConFold]{Constant Folder} Conceptually, constant folding should be parameterized with the kind of target machine to get identical behaviour during compilation time and runtime. We cheat a little bit here... ToDo: check boundaries before folding, e.g. we can fold the Float addition (i1 + i2) only if it results in a valid Float. \begin{code} {-# OPTIONS -optc-DNON_POSIX_SOURCE #-} module PrelRules ( primOpRules, builtinRules ) where #include "HsVersions.h" import CoreSyn import Id ( mkWildId, isPrimOpId_maybe, idUnfolding ) import Literal ( Literal(..), mkMachInt, mkMachWord , literalType , word2IntLit, int2WordLit , narrow8IntLit, narrow16IntLit, narrow32IntLit , narrow8WordLit, narrow16WordLit, narrow32WordLit , char2IntLit, int2CharLit , float2IntLit, int2FloatLit, double2IntLit, int2DoubleLit , float2DoubleLit, double2FloatLit ) import PrimOp ( PrimOp(..), primOpOcc, tagToEnumKey ) import TysWiredIn ( boolTy, trueDataConId, falseDataConId ) import TyCon ( tyConDataCons_maybe, isEnumerationTyCon, isNewTyCon ) import DataCon ( dataConTag, dataConTyCon, dataConWorkId, fIRST_TAG ) import CoreUtils ( cheapEqExpr, exprIsConApp_maybe ) import Type ( tyConAppTyCon, coreEqType ) import OccName ( occNameFS ) import PrelNames ( unpackCStringFoldrName, unpackCStringFoldrIdKey, hasKey, eqStringName, unpackCStringIdKey, inlineIdName ) import Maybes ( orElse ) import Name ( Name ) import Outputable import FastString import StaticFlags ( opt_SimplExcessPrecision ) import DATA_BITS ( Bits(..) ) #if __GLASGOW_HASKELL__ >= 500 import DATA_WORD ( Word ) #else import DATA_WORD ( Word64 ) #endif \end{code} \begin{code} primOpRules :: PrimOp -> Name -> [CoreRule] primOpRules op op_name = primop_rule op where rule_name = occNameFS (primOpOcc op) rule_name_case = rule_name `appendFS` FSLIT("->case") -- A useful shorthand one_rule rule_fn = [BuiltinRule { ru_name = rule_name, ru_fn = op_name, ru_try = rule_fn }] case_rule rule_fn = [BuiltinRule { ru_name = rule_name_case, ru_fn = op_name, ru_try = rule_fn }] -- ToDo: something for integer-shift ops? -- NotOp primop_rule TagToEnumOp = one_rule tagToEnumRule primop_rule DataToTagOp = one_rule dataToTagRule -- Int operations primop_rule IntAddOp = one_rule (twoLits (intOp2 (+))) primop_rule IntSubOp = one_rule (twoLits (intOp2 (-))) primop_rule IntMulOp = one_rule (twoLits (intOp2 (*))) primop_rule IntQuotOp = one_rule (twoLits (intOp2Z quot)) primop_rule IntRemOp = one_rule (twoLits (intOp2Z rem)) primop_rule IntNegOp = one_rule (oneLit negOp) -- Word operations #if __GLASGOW_HASKELL__ >= 500 primop_rule WordAddOp = one_rule (twoLits (wordOp2 (+))) primop_rule WordSubOp = one_rule (twoLits (wordOp2 (-))) primop_rule WordMulOp = one_rule (twoLits (wordOp2 (*))) #endif primop_rule WordQuotOp = one_rule (twoLits (wordOp2Z quot)) primop_rule WordRemOp = one_rule (twoLits (wordOp2Z rem)) #if __GLASGOW_HASKELL__ >= 407 primop_rule AndOp = one_rule (twoLits (wordBitOp2 (.&.))) primop_rule OrOp = one_rule (twoLits (wordBitOp2 (.|.))) primop_rule XorOp = one_rule (twoLits (wordBitOp2 xor)) #endif -- coercions primop_rule Word2IntOp = one_rule (oneLit (litCoerce word2IntLit)) primop_rule Int2WordOp = one_rule (oneLit (litCoerce int2WordLit)) primop_rule Narrow8IntOp = one_rule (oneLit (litCoerce narrow8IntLit)) primop_rule Narrow16IntOp = one_rule (oneLit (litCoerce narrow16IntLit)) primop_rule Narrow32IntOp = one_rule (oneLit (litCoerce narrow32IntLit)) primop_rule Narrow8WordOp = one_rule (oneLit (litCoerce narrow8WordLit)) primop_rule Narrow16WordOp = one_rule (oneLit (litCoerce narrow16WordLit)) primop_rule Narrow32WordOp = one_rule (oneLit (litCoerce narrow32WordLit)) primop_rule OrdOp = one_rule (oneLit (litCoerce char2IntLit)) primop_rule ChrOp = one_rule (oneLit (litCoerce int2CharLit)) primop_rule Float2IntOp = one_rule (oneLit (litCoerce float2IntLit)) primop_rule Int2FloatOp = one_rule (oneLit (litCoerce int2FloatLit)) primop_rule Double2IntOp = one_rule (oneLit (litCoerce double2IntLit)) primop_rule Int2DoubleOp = one_rule (oneLit (litCoerce int2DoubleLit)) -- SUP: Not sure what the standard says about precision in the following 2 cases primop_rule Float2DoubleOp = one_rule (oneLit (litCoerce float2DoubleLit)) primop_rule Double2FloatOp = one_rule (oneLit (litCoerce double2FloatLit)) -- Float primop_rule FloatAddOp = one_rule (twoLits (floatOp2 (+))) primop_rule FloatSubOp = one_rule (twoLits (floatOp2 (-))) primop_rule FloatMulOp = one_rule (twoLits (floatOp2 (*))) primop_rule FloatDivOp = one_rule (twoLits (floatOp2Z (/))) primop_rule FloatNegOp = one_rule (oneLit negOp) -- Double primop_rule DoubleAddOp = one_rule (twoLits (doubleOp2 (+))) primop_rule DoubleSubOp = one_rule (twoLits (doubleOp2 (-))) primop_rule DoubleMulOp = one_rule (twoLits (doubleOp2 (*))) primop_rule DoubleDivOp = one_rule (twoLits (doubleOp2Z (/))) primop_rule DoubleNegOp = one_rule (oneLit negOp) -- Relational operators primop_rule IntEqOp = one_rule (relop (==)) ++ case_rule (litEq True) primop_rule IntNeOp = one_rule (relop (/=)) ++ case_rule (litEq False) primop_rule CharEqOp = one_rule (relop (==)) ++ case_rule (litEq True) primop_rule CharNeOp = one_rule (relop (/=)) ++ case_rule (litEq False) primop_rule IntGtOp = one_rule (relop (>)) primop_rule IntGeOp = one_rule (relop (>=)) primop_rule IntLeOp = one_rule (relop (<=)) primop_rule IntLtOp = one_rule (relop (<)) primop_rule CharGtOp = one_rule (relop (>)) primop_rule CharGeOp = one_rule (relop (>=)) primop_rule CharLeOp = one_rule (relop (<=)) primop_rule CharLtOp = one_rule (relop (<)) primop_rule FloatGtOp = one_rule (relop (>)) primop_rule FloatGeOp = one_rule (relop (>=)) primop_rule FloatLeOp = one_rule (relop (<=)) primop_rule FloatLtOp = one_rule (relop (<)) primop_rule FloatEqOp = one_rule (relop (==)) primop_rule FloatNeOp = one_rule (relop (/=)) primop_rule DoubleGtOp = one_rule (relop (>)) primop_rule DoubleGeOp = one_rule (relop (>=)) primop_rule DoubleLeOp = one_rule (relop (<=)) primop_rule DoubleLtOp = one_rule (relop (<)) primop_rule DoubleEqOp = one_rule (relop (==)) primop_rule DoubleNeOp = one_rule (relop (/=)) primop_rule WordGtOp = one_rule (relop (>)) primop_rule WordGeOp = one_rule (relop (>=)) primop_rule WordLeOp = one_rule (relop (<=)) primop_rule WordLtOp = one_rule (relop (<)) primop_rule WordEqOp = one_rule (relop (==)) primop_rule WordNeOp = one_rule (relop (/=)) primop_rule other = [] relop cmp = twoLits (cmpOp (\ord -> ord `cmp` EQ)) -- Cunning. cmpOp compares the values to give an Ordering. -- It applies its argument to that ordering value to turn -- the ordering into a boolean value. (`cmp` EQ) is just the job. \end{code} %************************************************************************ %* * \subsection{Doing the business} %* * %************************************************************************ ToDo: the reason these all return Nothing is because there used to be the possibility of an argument being a litlit. Litlits are now gone, so this could be cleaned up. \begin{code} -------------------------- litCoerce :: (Literal -> Literal) -> Literal -> Maybe CoreExpr litCoerce fn lit = Just (Lit (fn lit)) -------------------------- cmpOp :: (Ordering -> Bool) -> Literal -> Literal -> Maybe CoreExpr cmpOp cmp l1 l2 = go l1 l2 where done res | cmp res = Just trueVal | otherwise = Just falseVal -- These compares are at different types go (MachChar i1) (MachChar i2) = done (i1 `compare` i2) go (MachInt i1) (MachInt i2) = done (i1 `compare` i2) go (MachInt64 i1) (MachInt64 i2) = done (i1 `compare` i2) go (MachWord i1) (MachWord i2) = done (i1 `compare` i2) go (MachWord64 i1) (MachWord64 i2) = done (i1 `compare` i2) go (MachFloat i1) (MachFloat i2) = done (i1 `compare` i2) go (MachDouble i1) (MachDouble i2) = done (i1 `compare` i2) go l1 l2 = Nothing -------------------------- negOp (MachFloat 0.0) = Nothing -- can't represent -0.0 as a Rational negOp (MachFloat f) = Just (mkFloatVal (-f)) negOp (MachDouble 0.0) = Nothing negOp (MachDouble d) = Just (mkDoubleVal (-d)) negOp (MachInt i) = intResult (-i) negOp l = Nothing -------------------------- intOp2 op (MachInt i1) (MachInt i2) = intResult (i1 `op` i2) intOp2 op l1 l2 = Nothing -- Could find LitLit intOp2Z op (MachInt i1) (MachInt i2) | i2 /= 0 = Just (mkIntVal (i1 `op` i2)) intOp2Z op l1 l2 = Nothing -- LitLit or zero dividend -------------------------- #if __GLASGOW_HASKELL__ >= 500 wordOp2 op (MachWord w1) (MachWord w2) = wordResult (w1 `op` w2) wordOp2 op l1 l2 = Nothing -- Could find LitLit #endif wordOp2Z op (MachWord w1) (MachWord w2) | w2 /= 0 = Just (mkWordVal (w1 `op` w2)) wordOp2Z op l1 l2 = Nothing -- LitLit or zero dividend #if __GLASGOW_HASKELL__ >= 500 wordBitOp2 op l1@(MachWord w1) l2@(MachWord w2) = Just (mkWordVal (w1 `op` w2)) #else -- Integer is not an instance of Bits, so we operate on Word64 wordBitOp2 op l1@(MachWord w1) l2@(MachWord w2) = Just (mkWordVal ((fromIntegral::Word64->Integer) (fromIntegral w1 `op` fromIntegral w2))) #endif wordBitOp2 op l1 l2 = Nothing -- Could find LitLit -------------------------- floatOp2 op (MachFloat f1) (MachFloat f2) = Just (mkFloatVal (f1 `op` f2)) floatOp2 op l1 l2 = Nothing floatOp2Z op (MachFloat f1) (MachFloat f2) | f2 /= 0 = Just (mkFloatVal (f1 `op` f2)) floatOp2Z op l1 l2 = Nothing -------------------------- doubleOp2 op (MachDouble f1) (MachDouble f2) = Just (mkDoubleVal (f1 `op` f2)) doubleOp2 op l1 l2 = Nothing doubleOp2Z op (MachDouble f1) (MachDouble f2) | f2 /= 0 = Just (mkDoubleVal (f1 `op` f2)) doubleOp2Z op l1 l2 = Nothing -------------------------- -- This stuff turns -- n ==# 3# -- into -- case n of -- 3# -> True -- m -> False -- -- This is a Good Thing, because it allows case-of case things -- to happen, and case-default absorption to happen. For -- example: -- -- if (n ==# 3#) || (n ==# 4#) then e1 else e2 -- will transform to -- case n of -- 3# -> e1 -- 4# -> e1 -- m -> e2 -- (modulo the usual precautions to avoid duplicating e1) litEq :: Bool -- True <=> equality, False <=> inequality -> RuleFun litEq is_eq [Lit lit, expr] = do_lit_eq is_eq lit expr litEq is_eq [expr, Lit lit] = do_lit_eq is_eq lit expr litEq is_eq other = Nothing do_lit_eq is_eq lit expr = Just (Case expr (mkWildId (literalType lit)) boolTy [(DEFAULT, [], val_if_neq), (LitAlt lit, [], val_if_eq)]) where val_if_eq | is_eq = trueVal | otherwise = falseVal val_if_neq | is_eq = falseVal | otherwise = trueVal -- Note that we *don't* warn the user about overflow. It's not done at -- runtime either, and compilation of completely harmless things like -- ((124076834 :: Word32) + (2147483647 :: Word32)) -- would yield a warning. Instead we simply squash the value into the -- Int range, but not in a way suitable for cross-compiling... :-( intResult :: Integer -> Maybe CoreExpr intResult result = Just (mkIntVal (toInteger (fromInteger result :: Int))) #if __GLASGOW_HASKELL__ >= 500 wordResult :: Integer -> Maybe CoreExpr wordResult result = Just (mkWordVal (toInteger (fromInteger result :: Word))) #endif \end{code} %************************************************************************ %* * \subsection{Vaguely generic functions %* * %************************************************************************ \begin{code} type RuleFun = [CoreExpr] -> Maybe CoreExpr twoLits :: (Literal -> Literal -> Maybe CoreExpr) -> RuleFun twoLits rule [Lit l1, Lit l2] = rule (convFloating l1) (convFloating l2) twoLits rule _ = Nothing oneLit :: (Literal -> Maybe CoreExpr) -> RuleFun oneLit rule [Lit l1] = rule (convFloating l1) oneLit rule _ = Nothing -- When excess precision is not requested, cut down the precision of the -- Rational value to that of Float/Double. We confuse host architecture -- and target architecture here, but it's convenient (and wrong :-). convFloating :: Literal -> Literal convFloating (MachFloat f) | not opt_SimplExcessPrecision = MachFloat (toRational ((fromRational f) :: Float )) convFloating (MachDouble d) | not opt_SimplExcessPrecision = MachDouble (toRational ((fromRational d) :: Double)) convFloating l = l trueVal = Var trueDataConId falseVal = Var falseDataConId mkIntVal i = Lit (mkMachInt i) mkWordVal w = Lit (mkMachWord w) mkFloatVal f = Lit (convFloating (MachFloat f)) mkDoubleVal d = Lit (convFloating (MachDouble d)) \end{code} %************************************************************************ %* * \subsection{Special rules for seq, tagToEnum, dataToTag} %* * %************************************************************************ \begin{code} tagToEnumRule [Type ty, Lit (MachInt i)] = ASSERT( isEnumerationTyCon tycon ) case filter correct_tag (tyConDataCons_maybe tycon `orElse` []) of [] -> Nothing -- Abstract type (dc:rest) -> ASSERT( null rest ) Just (Var (dataConWorkId dc)) where correct_tag dc = (dataConTag dc - fIRST_TAG) == tag tag = fromInteger i tycon = tyConAppTyCon ty tagToEnumRule other = Nothing \end{code} For dataToTag#, we can reduce if either (a) the argument is a constructor (b) the argument is a variable whose unfolding is a known constructor \begin{code} dataToTagRule [Type ty1, Var tag_to_enum `App` Type ty2 `App` tag] | tag_to_enum `hasKey` tagToEnumKey , ty1 `coreEqType` ty2 = Just tag -- dataToTag (tagToEnum x) ==> x dataToTagRule [_, val_arg] | Just (dc,_) <- exprIsConApp_maybe val_arg = ASSERT( not (isNewTyCon (dataConTyCon dc)) ) Just (mkIntVal (toInteger (dataConTag dc - fIRST_TAG))) dataToTagRule other = Nothing \end{code} %************************************************************************ %* * \subsection{Built in rules} %* * %************************************************************************ \begin{code} builtinRules :: [CoreRule] -- Rules for non-primops that can't be expressed using a RULE pragma builtinRules = [ BuiltinRule FSLIT("AppendLitString") unpackCStringFoldrName match_append_lit, BuiltinRule FSLIT("EqString") eqStringName match_eq_string, BuiltinRule FSLIT("Inline") inlineIdName match_inline ] --------------------------------------------------- -- The rule is this: -- unpackFoldrCString# "foo" c (unpackFoldrCString# "baz" c n) = unpackFoldrCString# "foobaz" c n match_append_lit [Type ty1, Lit (MachStr s1), c1, Var unpk `App` Type ty2 `App` Lit (MachStr s2) `App` c2 `App` n ] | unpk `hasKey` unpackCStringFoldrIdKey && c1 `cheapEqExpr` c2 = ASSERT( ty1 `coreEqType` ty2 ) Just (Var unpk `App` Type ty1 `App` Lit (MachStr (s1 `appendFS` s2)) `App` c1 `App` n) match_append_lit other = Nothing --------------------------------------------------- -- The rule is this: -- eqString (unpackCString# (Lit s1)) (unpackCString# (Lit s2) = s1==s2 match_eq_string [Var unpk1 `App` Lit (MachStr s1), Var unpk2 `App` Lit (MachStr s2)] | unpk1 `hasKey` unpackCStringIdKey, unpk2 `hasKey` unpackCStringIdKey = Just (if s1 == s2 then trueVal else falseVal) match_eq_string other = Nothing --------------------------------------------------- -- The rule is this: -- inline (f a b c) = a b c -- (if f has an unfolding) match_inline (e:args2) | (Var f, args1) <- collectArgs e, Just unf <- maybeUnfoldingTemplate (idUnfolding f) = Just (mkApps (mkApps unf args1) args2) match_inline other = Nothing \end{code}