% % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % \section[ConFold]{Constant Folder} Conceptually, constant folding should be parameterized with the kind of target machine to get identical behaviour during compilation time and runtime. We cheat a little bit here... ToDo: check boundaries before folding, e.g. we can fold the Float addition (i1 + i2) only if it results in a valid Float. \begin{code} {-# OPTIONS -optc-DNON_POSIX_SOURCE #-} module PrelRules ( primOpRules, builtinRules ) where #include "HsVersions.h" import CoreSyn import MkCore ( mkWildCase ) import Id ( idUnfolding ) import Literal ( Literal(..), mkMachInt, mkMachWord , literalType , word2IntLit, int2WordLit , narrow8IntLit, narrow16IntLit, narrow32IntLit , narrow8WordLit, narrow16WordLit, narrow32WordLit , char2IntLit, int2CharLit , float2IntLit, int2FloatLit, double2IntLit, int2DoubleLit , float2DoubleLit, double2FloatLit, litFitsInChar ) import PrimOp ( PrimOp(..), tagToEnumKey ) import TysWiredIn ( boolTy, trueDataConId, falseDataConId ) import TyCon ( tyConDataCons_maybe, isEnumerationTyCon, isNewTyCon ) import DataCon ( dataConTag, dataConTyCon, dataConWorkId, fIRST_TAG ) import CoreUtils ( cheapEqExpr, exprIsConApp_maybe ) import Type ( tyConAppTyCon, coreEqType ) import OccName ( occNameFS ) import PrelNames ( unpackCStringFoldrName, unpackCStringFoldrIdKey, hasKey, eqStringName, unpackCStringIdKey, inlineIdName ) import Maybes ( orElse ) import Name ( Name, nameOccName ) import Outputable import FastString import StaticFlags ( opt_SimplExcessPrecision ) import Data.Bits as Bits import Data.Word ( Word ) \end{code} Note [Constant folding] ~~~~~~~~~~~~~~~~~~~~~~~ primOpRules generates the rewrite rules for each primop These rules do what is often called "constant folding" E.g. the rules for +# might say 4 +# 5 = 9 Well, of course you'd need a lot of rules if you did it like that, so we use a BuiltinRule instead, so that we can match in any two literal values. So the rule is really more like (Lit 4) +# (Lit y) = Lit (x+#y) where the (+#) on the rhs is done at compile time That is why these rules are built in here. Other rules which don't need to be built in are in GHC.Base. For example: x +# 0 = x \begin{code} primOpRules :: PrimOp -> Name -> [CoreRule] primOpRules op op_name = primop_rule op where -- A useful shorthand one_lit = oneLit op_name two_lits = twoLits op_name relop cmp = two_lits (cmpOp (\ord -> ord `cmp` EQ)) -- Cunning. cmpOp compares the values to give an Ordering. -- It applies its argument to that ordering value to turn -- the ordering into a boolean value. (`cmp` EQ) is just the job. -- ToDo: something for integer-shift ops? -- NotOp primop_rule TagToEnumOp = mkBasicRule op_name 2 tagToEnumRule primop_rule DataToTagOp = mkBasicRule op_name 2 dataToTagRule -- Int operations primop_rule IntAddOp = two_lits (intOp2 (+)) primop_rule IntSubOp = two_lits (intOp2 (-)) primop_rule IntMulOp = two_lits (intOp2 (*)) primop_rule IntQuotOp = two_lits (intOp2Z quot) primop_rule IntRemOp = two_lits (intOp2Z rem) primop_rule IntNegOp = one_lit negOp primop_rule ISllOp = two_lits (intShiftOp2 Bits.shiftL) primop_rule ISraOp = two_lits (intShiftOp2 Bits.shiftR) primop_rule ISrlOp = two_lits (intShiftOp2 shiftRightLogical) -- Word operations primop_rule WordAddOp = two_lits (wordOp2 (+)) primop_rule WordSubOp = two_lits (wordOp2 (-)) primop_rule WordMulOp = two_lits (wordOp2 (*)) primop_rule WordQuotOp = two_lits (wordOp2Z quot) primop_rule WordRemOp = two_lits (wordOp2Z rem) primop_rule AndOp = two_lits (wordBitOp2 (.&.)) primop_rule OrOp = two_lits (wordBitOp2 (.|.)) primop_rule XorOp = two_lits (wordBitOp2 xor) primop_rule SllOp = two_lits (wordShiftOp2 Bits.shiftL) primop_rule SrlOp = two_lits (wordShiftOp2 shiftRightLogical) -- coercions primop_rule Word2IntOp = one_lit (litCoerce word2IntLit) primop_rule Int2WordOp = one_lit (litCoerce int2WordLit) primop_rule Narrow8IntOp = one_lit (litCoerce narrow8IntLit) primop_rule Narrow16IntOp = one_lit (litCoerce narrow16IntLit) primop_rule Narrow32IntOp = one_lit (litCoerce narrow32IntLit) primop_rule Narrow8WordOp = one_lit (litCoerce narrow8WordLit) primop_rule Narrow16WordOp = one_lit (litCoerce narrow16WordLit) primop_rule Narrow32WordOp = one_lit (litCoerce narrow32WordLit) primop_rule OrdOp = one_lit (litCoerce char2IntLit) primop_rule ChrOp = one_lit (predLitCoerce litFitsInChar int2CharLit) primop_rule Float2IntOp = one_lit (litCoerce float2IntLit) primop_rule Int2FloatOp = one_lit (litCoerce int2FloatLit) primop_rule Double2IntOp = one_lit (litCoerce double2IntLit) primop_rule Int2DoubleOp = one_lit (litCoerce int2DoubleLit) -- SUP: Not sure what the standard says about precision in the following 2 cases primop_rule Float2DoubleOp = one_lit (litCoerce float2DoubleLit) primop_rule Double2FloatOp = one_lit (litCoerce double2FloatLit) -- Float primop_rule FloatAddOp = two_lits (floatOp2 (+)) primop_rule FloatSubOp = two_lits (floatOp2 (-)) primop_rule FloatMulOp = two_lits (floatOp2 (*)) primop_rule FloatDivOp = two_lits (floatOp2Z (/)) primop_rule FloatNegOp = one_lit negOp -- Double primop_rule DoubleAddOp = two_lits (doubleOp2 (+)) primop_rule DoubleSubOp = two_lits (doubleOp2 (-)) primop_rule DoubleMulOp = two_lits (doubleOp2 (*)) primop_rule DoubleDivOp = two_lits (doubleOp2Z (/)) primop_rule DoubleNegOp = one_lit negOp -- Relational operators primop_rule IntEqOp = relop (==) ++ litEq op_name True primop_rule IntNeOp = relop (/=) ++ litEq op_name False primop_rule CharEqOp = relop (==) ++ litEq op_name True primop_rule CharNeOp = relop (/=) ++ litEq op_name False primop_rule IntGtOp = relop (>) primop_rule IntGeOp = relop (>=) primop_rule IntLeOp = relop (<=) primop_rule IntLtOp = relop (<) primop_rule CharGtOp = relop (>) primop_rule CharGeOp = relop (>=) primop_rule CharLeOp = relop (<=) primop_rule CharLtOp = relop (<) primop_rule FloatGtOp = relop (>) primop_rule FloatGeOp = relop (>=) primop_rule FloatLeOp = relop (<=) primop_rule FloatLtOp = relop (<) primop_rule FloatEqOp = relop (==) primop_rule FloatNeOp = relop (/=) primop_rule DoubleGtOp = relop (>) primop_rule DoubleGeOp = relop (>=) primop_rule DoubleLeOp = relop (<=) primop_rule DoubleLtOp = relop (<) primop_rule DoubleEqOp = relop (==) primop_rule DoubleNeOp = relop (/=) primop_rule WordGtOp = relop (>) primop_rule WordGeOp = relop (>=) primop_rule WordLeOp = relop (<=) primop_rule WordLtOp = relop (<) primop_rule WordEqOp = relop (==) primop_rule WordNeOp = relop (/=) primop_rule _ = [] \end{code} %************************************************************************ %* * \subsection{Doing the business} %* * %************************************************************************ ToDo: the reason these all return Nothing is because there used to be the possibility of an argument being a litlit. Litlits are now gone, so this could be cleaned up. \begin{code} -------------------------- litCoerce :: (Literal -> Literal) -> Literal -> Maybe CoreExpr litCoerce fn lit = Just (Lit (fn lit)) predLitCoerce :: (Literal -> Bool) -> (Literal -> Literal) -> Literal -> Maybe CoreExpr predLitCoerce p fn lit | p lit = Just (Lit (fn lit)) | otherwise = Nothing -------------------------- cmpOp :: (Ordering -> Bool) -> Literal -> Literal -> Maybe CoreExpr cmpOp cmp l1 l2 = go l1 l2 where done res | cmp res = Just trueVal | otherwise = Just falseVal -- These compares are at different types go (MachChar i1) (MachChar i2) = done (i1 `compare` i2) go (MachInt i1) (MachInt i2) = done (i1 `compare` i2) go (MachInt64 i1) (MachInt64 i2) = done (i1 `compare` i2) go (MachWord i1) (MachWord i2) = done (i1 `compare` i2) go (MachWord64 i1) (MachWord64 i2) = done (i1 `compare` i2) go (MachFloat i1) (MachFloat i2) = done (i1 `compare` i2) go (MachDouble i1) (MachDouble i2) = done (i1 `compare` i2) go _ _ = Nothing -------------------------- negOp :: Literal -> Maybe CoreExpr -- Negate negOp (MachFloat 0.0) = Nothing -- can't represent -0.0 as a Rational negOp (MachFloat f) = Just (mkFloatVal (-f)) negOp (MachDouble 0.0) = Nothing negOp (MachDouble d) = Just (mkDoubleVal (-d)) negOp (MachInt i) = intResult (-i) negOp _ = Nothing -------------------------- intOp2 :: (Integer->Integer->Integer) -> Literal -> Literal -> Maybe CoreExpr intOp2 op (MachInt i1) (MachInt i2) = intResult (i1 `op` i2) intOp2 _ _ _ = Nothing -- Could find LitLit intOp2Z :: (Integer->Integer->Integer) -> Literal -> Literal -> Maybe CoreExpr -- Like intOp2, but Nothing if i2=0 intOp2Z op (MachInt i1) (MachInt i2) | i2 /= 0 = intResult (i1 `op` i2) intOp2Z _ _ _ = Nothing -- LitLit or zero dividend intShiftOp2 :: (Integer->Int->Integer) -> Literal -> Literal -> Maybe CoreExpr -- Shifts take an Int; hence second arg of op is Int intShiftOp2 op (MachInt i1) (MachInt i2) = intResult (i1 `op` fromInteger i2) intShiftOp2 _ _ _ = Nothing shiftRightLogical :: Integer -> Int -> Integer -- Shift right, putting zeros in rather than sign-propagating as Bits.shiftR would do -- Do this by converting to Word and back. Obviously this won't work for big -- values, but its ok as we use it here shiftRightLogical x n = fromIntegral (fromInteger x `shiftR` n :: Word) -------------------------- wordOp2 :: (Integer->Integer->Integer) -> Literal -> Literal -> Maybe CoreExpr wordOp2 op (MachWord w1) (MachWord w2) = wordResult (w1 `op` w2) wordOp2 _ _ _ = Nothing -- Could find LitLit wordOp2Z :: (Integer->Integer->Integer) -> Literal -> Literal -> Maybe CoreExpr wordOp2Z op (MachWord w1) (MachWord w2) | w2 /= 0 = wordResult (w1 `op` w2) wordOp2Z _ _ _ = Nothing -- LitLit or zero dividend wordBitOp2 :: (Integer->Integer->Integer) -> Literal -> Literal -> Maybe CoreExpr wordBitOp2 op (MachWord w1) (MachWord w2) = wordResult (w1 `op` w2) wordBitOp2 _ _ _ = Nothing -- Could find LitLit wordShiftOp2 :: (Integer->Int->Integer) -> Literal -> Literal -> Maybe CoreExpr -- Shifts take an Int; hence second arg of op is Int wordShiftOp2 op (MachWord x) (MachInt n) = wordResult (x `op` fromInteger n) -- Do the shift at type Integer wordShiftOp2 _ _ _ = Nothing -------------------------- floatOp2 :: (Rational -> Rational -> Rational) -> Literal -> Literal -> Maybe (Expr CoreBndr) floatOp2 op (MachFloat f1) (MachFloat f2) = Just (mkFloatVal (f1 `op` f2)) floatOp2 _ _ _ = Nothing floatOp2Z :: (Rational -> Rational -> Rational) -> Literal -> Literal -> Maybe (Expr CoreBndr) floatOp2Z op (MachFloat f1) (MachFloat f2) | f2 /= 0 = Just (mkFloatVal (f1 `op` f2)) floatOp2Z _ _ _ = Nothing -------------------------- doubleOp2 :: (Rational -> Rational -> Rational) -> Literal -> Literal -> Maybe (Expr CoreBndr) doubleOp2 op (MachDouble f1) (MachDouble f2) = Just (mkDoubleVal (f1 `op` f2)) doubleOp2 _ _ _ = Nothing doubleOp2Z :: (Rational -> Rational -> Rational) -> Literal -> Literal -> Maybe (Expr CoreBndr) doubleOp2Z op (MachDouble f1) (MachDouble f2) | f2 /= 0 = Just (mkDoubleVal (f1 `op` f2)) doubleOp2Z _ _ _ = Nothing -------------------------- -- This stuff turns -- n ==# 3# -- into -- case n of -- 3# -> True -- m -> False -- -- This is a Good Thing, because it allows case-of case things -- to happen, and case-default absorption to happen. For -- example: -- -- if (n ==# 3#) || (n ==# 4#) then e1 else e2 -- will transform to -- case n of -- 3# -> e1 -- 4# -> e1 -- m -> e2 -- (modulo the usual precautions to avoid duplicating e1) litEq :: Name -> Bool -- True <=> equality, False <=> inequality -> [CoreRule] litEq op_name is_eq = [BuiltinRule { ru_name = occNameFS (nameOccName op_name) `appendFS` (fsLit "->case"), ru_fn = op_name, ru_nargs = 2, ru_try = rule_fn }] where rule_fn [Lit lit, expr] = do_lit_eq lit expr rule_fn [expr, Lit lit] = do_lit_eq lit expr rule_fn _ = Nothing do_lit_eq lit expr = Just (mkWildCase expr (literalType lit) boolTy [(DEFAULT, [], val_if_neq), (LitAlt lit, [], val_if_eq)]) val_if_eq | is_eq = trueVal | otherwise = falseVal val_if_neq | is_eq = falseVal | otherwise = trueVal -- Note that we *don't* warn the user about overflow. It's not done at -- runtime either, and compilation of completely harmless things like -- ((124076834 :: Word32) + (2147483647 :: Word32)) -- would yield a warning. Instead we simply squash the value into the -- Int range, but not in a way suitable for cross-compiling... :-( intResult :: Integer -> Maybe CoreExpr intResult result = Just (mkIntVal (toInteger (fromInteger result :: Int))) wordResult :: Integer -> Maybe CoreExpr wordResult result = Just (mkWordVal (toInteger (fromInteger result :: Word))) \end{code} %************************************************************************ %* * \subsection{Vaguely generic functions %* * %************************************************************************ \begin{code} mkBasicRule :: Name -> Int -> ([CoreExpr] -> Maybe CoreExpr) -> [CoreRule] -- Gives the Rule the same name as the primop itself mkBasicRule op_name n_args rule_fn = [BuiltinRule { ru_name = occNameFS (nameOccName op_name), ru_fn = op_name, ru_nargs = n_args, ru_try = rule_fn }] oneLit :: Name -> (Literal -> Maybe CoreExpr) -> [CoreRule] oneLit op_name test = mkBasicRule op_name 1 rule_fn where rule_fn [Lit l1] = test (convFloating l1) rule_fn _ = Nothing twoLits :: Name -> (Literal -> Literal -> Maybe CoreExpr) -> [CoreRule] twoLits op_name test = mkBasicRule op_name 2 rule_fn where rule_fn [Lit l1, Lit l2] = test (convFloating l1) (convFloating l2) rule_fn _ = Nothing -- When excess precision is not requested, cut down the precision of the -- Rational value to that of Float/Double. We confuse host architecture -- and target architecture here, but it's convenient (and wrong :-). convFloating :: Literal -> Literal convFloating (MachFloat f) | not opt_SimplExcessPrecision = MachFloat (toRational ((fromRational f) :: Float )) convFloating (MachDouble d) | not opt_SimplExcessPrecision = MachDouble (toRational ((fromRational d) :: Double)) convFloating l = l trueVal, falseVal :: Expr CoreBndr trueVal = Var trueDataConId falseVal = Var falseDataConId mkIntVal :: Integer -> Expr CoreBndr mkIntVal i = Lit (mkMachInt i) mkWordVal :: Integer -> Expr CoreBndr mkWordVal w = Lit (mkMachWord w) mkFloatVal :: Rational -> Expr CoreBndr mkFloatVal f = Lit (convFloating (MachFloat f)) mkDoubleVal :: Rational -> Expr CoreBndr mkDoubleVal d = Lit (convFloating (MachDouble d)) \end{code} %************************************************************************ %* * \subsection{Special rules for seq, tagToEnum, dataToTag} %* * %************************************************************************ \begin{code} tagToEnumRule :: [Expr CoreBndr] -> Maybe (Expr CoreBndr) tagToEnumRule [Type ty, Lit (MachInt i)] = ASSERT( isEnumerationTyCon tycon ) case filter correct_tag (tyConDataCons_maybe tycon `orElse` []) of [] -> Nothing -- Abstract type (dc:rest) -> ASSERT( null rest ) Just (Var (dataConWorkId dc)) where correct_tag dc = (dataConTag dc - fIRST_TAG) == tag tag = fromInteger i tycon = tyConAppTyCon ty tagToEnumRule _ = Nothing \end{code} For dataToTag#, we can reduce if either (a) the argument is a constructor (b) the argument is a variable whose unfolding is a known constructor \begin{code} dataToTagRule :: [Expr CoreBndr] -> Maybe (Arg CoreBndr) dataToTagRule [Type ty1, Var tag_to_enum `App` Type ty2 `App` tag] | tag_to_enum `hasKey` tagToEnumKey , ty1 `coreEqType` ty2 = Just tag -- dataToTag (tagToEnum x) ==> x dataToTagRule [_, val_arg] | Just (dc,_) <- exprIsConApp_maybe val_arg = ASSERT( not (isNewTyCon (dataConTyCon dc)) ) Just (mkIntVal (toInteger (dataConTag dc - fIRST_TAG))) dataToTagRule _ = Nothing \end{code} %************************************************************************ %* * \subsection{Built in rules} %* * %************************************************************************ Note [Scoping for Builtin rules] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When compiling a (base-package) module that defines one of the functions mentioned in the RHS of a built-in rule, there's a danger that we'll see f = ...(eq String x).... ....and lower down... eqString = ... Then a rewrite would give f = ...(eqString x)... ....and lower down... eqString = ... and lo, eqString is not in scope. This only really matters when we get to code generation. With -O we do a GlomBinds step that does a new SCC analysis on the whole set of bindings, which sorts out the dependency. Without -O we don't do any rule rewriting so again we are fine. (This whole thing doesn't show up for non-built-in rules because their dependencies are explicit.) \begin{code} builtinRules :: [CoreRule] -- Rules for non-primops that can't be expressed using a RULE pragma builtinRules = [ BuiltinRule { ru_name = fsLit "AppendLitString", ru_fn = unpackCStringFoldrName, ru_nargs = 4, ru_try = match_append_lit }, BuiltinRule { ru_name = fsLit "EqString", ru_fn = eqStringName, ru_nargs = 2, ru_try = match_eq_string }, BuiltinRule { ru_name = fsLit "Inline", ru_fn = inlineIdName, ru_nargs = 2, ru_try = match_inline } ] --------------------------------------------------- -- The rule is this: -- unpackFoldrCString# "foo" c (unpackFoldrCString# "baz" c n) = unpackFoldrCString# "foobaz" c n match_append_lit :: [Expr CoreBndr] -> Maybe (Expr CoreBndr) match_append_lit [Type ty1, Lit (MachStr s1), c1, Var unpk `App` Type ty2 `App` Lit (MachStr s2) `App` c2 `App` n ] | unpk `hasKey` unpackCStringFoldrIdKey && c1 `cheapEqExpr` c2 = ASSERT( ty1 `coreEqType` ty2 ) Just (Var unpk `App` Type ty1 `App` Lit (MachStr (s1 `appendFS` s2)) `App` c1 `App` n) match_append_lit _ = Nothing --------------------------------------------------- -- The rule is this: -- eqString (unpackCString# (Lit s1)) (unpackCString# (Lit s2) = s1==s2 match_eq_string :: [Expr CoreBndr] -> Maybe (Expr CoreBndr) match_eq_string [Var unpk1 `App` Lit (MachStr s1), Var unpk2 `App` Lit (MachStr s2)] | unpk1 `hasKey` unpackCStringIdKey, unpk2 `hasKey` unpackCStringIdKey = Just (if s1 == s2 then trueVal else falseVal) match_eq_string _ = Nothing --------------------------------------------------- -- The rule is this: -- inline f_ty (f a b c) = a b c -- (if f has an unfolding) -- -- It's important to allow the argument to 'inline' to have args itself -- (a) because its more forgiving to allow the programmer to write -- inline f a b c -- or inline (f a b c) -- (b) because a polymorphic f wll get a type argument that the -- programmer can't avoid -- -- Also, don't forget about 'inline's type argument! match_inline :: [Expr CoreBndr] -> Maybe (Expr CoreBndr) match_inline (Type _ : e : _) | (Var f, args1) <- collectArgs e, Just unf <- maybeUnfoldingTemplate (idUnfolding f) = Just (mkApps unf args1) match_inline _ = Nothing \end{code}