% % (c) The GRASP Project, Glasgow University, 1994-1998 % \section[TysWiredIn]{Wired-in knowledge about {\em non-primitive} types} This module tracks the ``state interface'' document, ``GHC prelude: types and operations.'' \begin{code} -- | This module is about types that can be defined in Haskell, but which -- must be wired into the compiler nonetheless. module TysWiredIn ( -- * All wired in things wiredInTyCons, -- * Bool boolTy, boolTyCon, boolTyCon_RDR, boolTyConName, trueDataCon, trueDataConId, true_RDR, falseDataCon, falseDataConId, false_RDR, -- * Char charTyCon, charDataCon, charTyCon_RDR, charTy, stringTy, charTyConName, -- * Double doubleTyCon, doubleDataCon, doubleTy, doubleTyConName, -- * Float floatTyCon, floatDataCon, floatTy, floatTyConName, -- * Int intTyCon, intDataCon, intTyCon_RDR, intDataCon_RDR, intTyConName, intTy, -- * Word wordTyCon, wordDataCon, wordTyConName, wordTy, -- * List listTyCon, nilDataCon, consDataCon, listTyCon_RDR, consDataCon_RDR, listTyConName, mkListTy, -- * Tuples mkTupleTy, tupleTyCon, tupleCon, unitTyCon, unitDataCon, unitDataConId, pairTyCon, unboxedSingletonTyCon, unboxedSingletonDataCon, unboxedPairTyCon, unboxedPairDataCon, -- * Unit unitTy, -- * Parallel arrays mkPArrTy, parrTyCon, parrFakeCon, isPArrTyCon, isPArrFakeCon, parrTyCon_RDR, parrTyConName ) where #include "HsVersions.h" import {-# SOURCE #-} MkId( mkDataConIds ) -- friends: import PrelNames import TysPrim -- others: import Constants ( mAX_TUPLE_SIZE ) import Module ( Module ) import RdrName import Name import DataCon ( DataCon, mkDataCon, dataConWorkId, dataConSourceArity ) import Var import TyCon ( TyCon, AlgTyConRhs(DataTyCon), tyConDataCons, mkTupleTyCon, mkAlgTyCon, tyConName, TyConParent(NoParentTyCon) ) import BasicTypes ( Arity, RecFlag(..), Boxity(..), isBoxed, StrictnessMark(..) ) import Type ( Type, mkTyConTy, mkTyConApp, mkTyVarTy, mkTyVarTys, TyThing(..) ) import Coercion ( unsafeCoercionTyCon, symCoercionTyCon, transCoercionTyCon, leftCoercionTyCon, rightCoercionTyCon, instCoercionTyCon ) import TypeRep ( mkArrowKinds, liftedTypeKind, ubxTupleKind ) import Unique ( incrUnique, mkTupleTyConUnique, mkTupleDataConUnique, mkPArrDataConUnique ) import Data.Array import FastString import Outputable alpha_tyvar :: [TyVar] alpha_tyvar = [alphaTyVar] alpha_ty :: [Type] alpha_ty = [alphaTy] \end{code} %************************************************************************ %* * \subsection{Wired in type constructors} %* * %************************************************************************ If you change which things are wired in, make sure you change their names in PrelNames, so they use wTcQual, wDataQual, etc \begin{code} wiredInTyCons :: [TyCon] -- Excludes tuples -- This list is used only to define PrelInfo.wiredInThings -- It does not need to include kind constructors, because -- all that wiredInThings does is to initialise the Name table, -- and kind constructors don't appear in source code. wiredInTyCons = [ unitTyCon -- Not treated like other tuples, because -- it's defined in GHC.Base, and there's only -- one of it. We put it in wiredInTyCons so -- that it'll pre-populate the name cache, so -- the special case in lookupOrigNameCache -- doesn't need to look out for it , boolTyCon , charTyCon , doubleTyCon , floatTyCon , intTyCon , listTyCon , parrTyCon , unsafeCoercionTyCon , symCoercionTyCon , transCoercionTyCon , leftCoercionTyCon , rightCoercionTyCon , instCoercionTyCon ] \end{code} \begin{code} mkWiredInTyConName :: BuiltInSyntax -> Module -> FastString -> Unique -> TyCon -> Name mkWiredInTyConName built_in modu fs unique tycon = mkWiredInName modu (mkTcOccFS fs) unique (ATyCon tycon) -- Relevant TyCon built_in mkWiredInDataConName :: BuiltInSyntax -> Module -> FastString -> Unique -> DataCon -> Name mkWiredInDataConName built_in modu fs unique datacon = mkWiredInName modu (mkDataOccFS fs) unique (ADataCon datacon) -- Relevant DataCon built_in charTyConName, charDataConName, intTyConName, intDataConName :: Name charTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Char") charTyConKey charTyCon charDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "C#") charDataConKey charDataCon intTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Int") intTyConKey intTyCon intDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "I#") intDataConKey intDataCon boolTyConName, falseDataConName, trueDataConName :: Name boolTyConName = mkWiredInTyConName UserSyntax gHC_BOOL (fsLit "Bool") boolTyConKey boolTyCon falseDataConName = mkWiredInDataConName UserSyntax gHC_BOOL (fsLit "False") falseDataConKey falseDataCon trueDataConName = mkWiredInDataConName UserSyntax gHC_BOOL (fsLit "True") trueDataConKey trueDataCon listTyConName, nilDataConName, consDataConName :: Name listTyConName = mkWiredInTyConName BuiltInSyntax gHC_TYPES (fsLit "[]") listTyConKey listTyCon nilDataConName = mkWiredInDataConName BuiltInSyntax gHC_TYPES (fsLit "[]") nilDataConKey nilDataCon consDataConName = mkWiredInDataConName BuiltInSyntax gHC_TYPES (fsLit ":") consDataConKey consDataCon floatTyConName, floatDataConName, doubleTyConName, doubleDataConName :: Name floatTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Float") floatTyConKey floatTyCon floatDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "F#") floatDataConKey floatDataCon doubleTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Double") doubleTyConKey doubleTyCon doubleDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "D#") doubleDataConKey doubleDataCon parrTyConName, parrDataConName :: Name parrTyConName = mkWiredInTyConName BuiltInSyntax gHC_PARR (fsLit "[::]") parrTyConKey parrTyCon parrDataConName = mkWiredInDataConName UserSyntax gHC_PARR (fsLit "PArr") parrDataConKey parrDataCon boolTyCon_RDR, false_RDR, true_RDR, intTyCon_RDR, charTyCon_RDR, intDataCon_RDR, listTyCon_RDR, consDataCon_RDR, parrTyCon_RDR:: RdrName boolTyCon_RDR = nameRdrName boolTyConName false_RDR = nameRdrName falseDataConName true_RDR = nameRdrName trueDataConName intTyCon_RDR = nameRdrName intTyConName charTyCon_RDR = nameRdrName charTyConName intDataCon_RDR = nameRdrName intDataConName listTyCon_RDR = nameRdrName listTyConName consDataCon_RDR = nameRdrName consDataConName parrTyCon_RDR = nameRdrName parrTyConName {- tySuperKindTyCon_RDR = nameRdrName tySuperKindTyConName coSuperKindTyCon_RDR = nameRdrName coSuperKindTyConName liftedTypeKindTyCon_RDR = nameRdrName liftedTypeKindTyConName openTypeKindTyCon_RDR = nameRdrName openTypeKindTyConName unliftedTypeKindTyCon_RDR = nameRdrName unliftedTypeKindTyConName ubxTupleKindTyCon_RDR = nameRdrName ubxTupleKindTyConName argTypeKindTyCon_RDR = nameRdrName argTypeKindTyConName funKindTyCon_RDR = nameRdrName funKindTyConName -} \end{code} %************************************************************************ %* * \subsection{mkWiredInTyCon} %* * %************************************************************************ \begin{code} pcNonRecDataTyCon :: Name -> [TyVar] -> [DataCon] -> TyCon pcNonRecDataTyCon = pcTyCon False NonRecursive pcRecDataTyCon :: Name -> [TyVar] -> [DataCon] -> TyCon pcRecDataTyCon = pcTyCon False Recursive pcTyCon :: Bool -> RecFlag -> Name -> [TyVar] -> [DataCon] -> TyCon pcTyCon is_enum is_rec name tyvars cons = tycon where tycon = mkAlgTyCon name (mkArrowKinds (map tyVarKind tyvars) liftedTypeKind) tyvars [] -- No stupid theta (DataTyCon cons is_enum) NoParentTyCon is_rec True -- All the wired-in tycons have generics False -- Not in GADT syntax pcDataCon :: Name -> [TyVar] -> [Type] -> TyCon -> DataCon pcDataCon = pcDataConWithFixity False pcDataConWithFixity :: Bool -> Name -> [TyVar] -> [Type] -> TyCon -> DataCon -- The Name should be in the DataName name space; it's the name -- of the DataCon itself. -- -- The unique is the first of two free uniques; -- the first is used for the datacon itself, -- the second is used for the "worker name" pcDataConWithFixity declared_infix dc_name tyvars arg_tys tycon = data_con where data_con = mkDataCon dc_name declared_infix (map (const NotMarkedStrict) arg_tys) [] -- No labelled fields tyvars [] -- No existential type variables [] -- No equality spec [] -- No theta arg_tys (mkTyConApp tycon (mkTyVarTys tyvars)) tycon [] -- No stupid theta (mkDataConIds bogus_wrap_name wrk_name data_con) modu = ASSERT( isExternalName dc_name ) nameModule dc_name wrk_occ = mkDataConWorkerOcc (nameOccName dc_name) wrk_key = incrUnique (nameUnique dc_name) wrk_name = mkWiredInName modu wrk_occ wrk_key (AnId (dataConWorkId data_con)) UserSyntax bogus_wrap_name = pprPanic "Wired-in data wrapper id" (ppr dc_name) -- Wired-in types are too simple to need wrappers \end{code} %************************************************************************ %* * \subsection[TysWiredIn-tuples]{The tuple types} %* * %************************************************************************ \begin{code} tupleTyCon :: Boxity -> Arity -> TyCon tupleTyCon boxity i | i > mAX_TUPLE_SIZE = fst (mk_tuple boxity i) -- Build one specially tupleTyCon Boxed i = fst (boxedTupleArr ! i) tupleTyCon Unboxed i = fst (unboxedTupleArr ! i) tupleCon :: Boxity -> Arity -> DataCon tupleCon boxity i | i > mAX_TUPLE_SIZE = snd (mk_tuple boxity i) -- Build one specially tupleCon Boxed i = snd (boxedTupleArr ! i) tupleCon Unboxed i = snd (unboxedTupleArr ! i) boxedTupleArr, unboxedTupleArr :: Array Int (TyCon,DataCon) boxedTupleArr = listArray (0,mAX_TUPLE_SIZE) [mk_tuple Boxed i | i <- [0..mAX_TUPLE_SIZE]] unboxedTupleArr = listArray (0,mAX_TUPLE_SIZE) [mk_tuple Unboxed i | i <- [0..mAX_TUPLE_SIZE]] mk_tuple :: Boxity -> Int -> (TyCon,DataCon) mk_tuple boxity arity = (tycon, tuple_con) where tycon = mkTupleTyCon tc_name tc_kind arity tyvars tuple_con boxity gen_info modu = mkTupleModule boxity arity tc_name = mkWiredInName modu (mkTupleOcc tcName boxity arity) tc_uniq (ATyCon tycon) BuiltInSyntax tc_kind = mkArrowKinds (map tyVarKind tyvars) res_kind res_kind | isBoxed boxity = liftedTypeKind | otherwise = ubxTupleKind tyvars | isBoxed boxity = take arity alphaTyVars | otherwise = take arity openAlphaTyVars tuple_con = pcDataCon dc_name tyvars tyvar_tys tycon tyvar_tys = mkTyVarTys tyvars dc_name = mkWiredInName modu (mkTupleOcc dataName boxity arity) dc_uniq (ADataCon tuple_con) BuiltInSyntax tc_uniq = mkTupleTyConUnique boxity arity dc_uniq = mkTupleDataConUnique boxity arity gen_info = True -- Tuples all have generics.. -- hmm: that's a *lot* of code unitTyCon :: TyCon unitTyCon = tupleTyCon Boxed 0 unitDataCon :: DataCon unitDataCon = head (tyConDataCons unitTyCon) unitDataConId :: Id unitDataConId = dataConWorkId unitDataCon pairTyCon :: TyCon pairTyCon = tupleTyCon Boxed 2 unboxedSingletonTyCon :: TyCon unboxedSingletonTyCon = tupleTyCon Unboxed 1 unboxedSingletonDataCon :: DataCon unboxedSingletonDataCon = tupleCon Unboxed 1 unboxedPairTyCon :: TyCon unboxedPairTyCon = tupleTyCon Unboxed 2 unboxedPairDataCon :: DataCon unboxedPairDataCon = tupleCon Unboxed 2 \end{code} %************************************************************************ %* * \subsection[TysWiredIn-boxed-prim]{The ``boxed primitive'' types (@Char@, @Int@, etc)} %* * %************************************************************************ \begin{code} charTy :: Type charTy = mkTyConTy charTyCon charTyCon :: TyCon charTyCon = pcNonRecDataTyCon charTyConName [] [charDataCon] charDataCon :: DataCon charDataCon = pcDataCon charDataConName [] [charPrimTy] charTyCon stringTy :: Type stringTy = mkListTy charTy -- convenience only \end{code} \begin{code} intTy :: Type intTy = mkTyConTy intTyCon intTyCon :: TyCon intTyCon = pcNonRecDataTyCon intTyConName [] [intDataCon] intDataCon :: DataCon intDataCon = pcDataCon intDataConName [] [intPrimTy] intTyCon \end{code} \begin{code} wordTy :: Type wordTy = mkTyConTy wordTyCon wordTyCon :: TyCon wordTyCon = pcNonRecDataTyCon wordTyConName [] [wordDataCon] wordDataCon :: DataCon wordDataCon = pcDataCon wordDataConName [] [wordPrimTy] wordTyCon \end{code} \begin{code} floatTy :: Type floatTy = mkTyConTy floatTyCon floatTyCon :: TyCon floatTyCon = pcNonRecDataTyCon floatTyConName [] [floatDataCon] floatDataCon :: DataCon floatDataCon = pcDataCon floatDataConName [] [floatPrimTy] floatTyCon \end{code} \begin{code} doubleTy :: Type doubleTy = mkTyConTy doubleTyCon doubleTyCon :: TyCon doubleTyCon = pcNonRecDataTyCon doubleTyConName [] [doubleDataCon] doubleDataCon :: DataCon doubleDataCon = pcDataCon doubleDataConName [] [doublePrimTy] doubleTyCon \end{code} %************************************************************************ %* * \subsection[TysWiredIn-Bool]{The @Bool@ type} %* * %************************************************************************ An ordinary enumeration type, but deeply wired in. There are no magical operations on @Bool@ (just the regular Prelude code). {\em BEGIN IDLE SPECULATION BY SIMON} This is not the only way to encode @Bool@. A more obvious coding makes @Bool@ just a boxed up version of @Bool#@, like this: \begin{verbatim} type Bool# = Int# data Bool = MkBool Bool# \end{verbatim} Unfortunately, this doesn't correspond to what the Report says @Bool@ looks like! Furthermore, we get slightly less efficient code (I think) with this coding. @gtInt@ would look like this: \begin{verbatim} gtInt :: Int -> Int -> Bool gtInt x y = case x of I# x# -> case y of I# y# -> case (gtIntPrim x# y#) of b# -> MkBool b# \end{verbatim} Notice that the result of the @gtIntPrim@ comparison has to be turned into an integer (here called @b#@), and returned in a @MkBool@ box. The @if@ expression would compile to this: \begin{verbatim} case (gtInt x y) of MkBool b# -> case b# of { 1# -> e1; 0# -> e2 } \end{verbatim} I think this code is a little less efficient than the previous code, but I'm not certain. At all events, corresponding with the Report is important. The interesting thing is that the language is expressive enough to describe more than one alternative; and that a type doesn't necessarily need to be a straightforwardly boxed version of its primitive counterpart. {\em END IDLE SPECULATION BY SIMON} \begin{code} boolTy :: Type boolTy = mkTyConTy boolTyCon boolTyCon :: TyCon boolTyCon = pcTyCon True NonRecursive boolTyConName [] [falseDataCon, trueDataCon] falseDataCon, trueDataCon :: DataCon falseDataCon = pcDataCon falseDataConName [] [] boolTyCon trueDataCon = pcDataCon trueDataConName [] [] boolTyCon falseDataConId, trueDataConId :: Id falseDataConId = dataConWorkId falseDataCon trueDataConId = dataConWorkId trueDataCon \end{code} %************************************************************************ %* * \subsection[TysWiredIn-List]{The @List@ type (incl ``build'' magic)} %* * %************************************************************************ Special syntax, deeply wired in, but otherwise an ordinary algebraic data types: \begin{verbatim} data [] a = [] | a : (List a) data () = () data (,) a b = (,,) a b ... \end{verbatim} \begin{code} mkListTy :: Type -> Type mkListTy ty = mkTyConApp listTyCon [ty] listTyCon :: TyCon listTyCon = pcRecDataTyCon listTyConName alpha_tyvar [nilDataCon, consDataCon] nilDataCon :: DataCon nilDataCon = pcDataCon nilDataConName alpha_tyvar [] listTyCon consDataCon :: DataCon consDataCon = pcDataConWithFixity True {- Declared infix -} consDataConName alpha_tyvar [alphaTy, mkTyConApp listTyCon alpha_ty] listTyCon -- Interesting: polymorphic recursion would help here. -- We can't use (mkListTy alphaTy) in the defn of consDataCon, else mkListTy -- gets the over-specific type (Type -> Type) \end{code} %************************************************************************ %* * \subsection[TysWiredIn-Tuples]{The @Tuple@ types} %* * %************************************************************************ The tuple types are definitely magic, because they form an infinite family. \begin{itemize} \item They have a special family of type constructors, of type @TyCon@ These contain the tycon arity, but don't require a Unique. \item They have a special family of constructors, of type @Id@. Again these contain their arity but don't need a Unique. \item There should be a magic way of generating the info tables and entry code for all tuples. But at the moment we just compile a Haskell source file\srcloc{lib/prelude/...} containing declarations like: \begin{verbatim} data Tuple0 = Tup0 data Tuple2 a b = Tup2 a b data Tuple3 a b c = Tup3 a b c data Tuple4 a b c d = Tup4 a b c d ... \end{verbatim} The print-names associated with the magic @Id@s for tuple constructors ``just happen'' to be the same as those generated by these declarations. \item The instance environment should have a magic way to know that each tuple type is an instances of classes @Eq@, @Ix@, @Ord@ and so on. \ToDo{Not implemented yet.} \item There should also be a way to generate the appropriate code for each of these instances, but (like the info tables and entry code) it is done by enumeration\srcloc{lib/prelude/InTup?.hs}. \end{itemize} \begin{code} mkTupleTy :: Boxity -> Int -> [Type] -> Type mkTupleTy boxity arity tys = mkTyConApp (tupleTyCon boxity arity) tys unitTy :: Type unitTy = mkTupleTy Boxed 0 [] \end{code} %************************************************************************ %* * \subsection[TysWiredIn-PArr]{The @[::]@ type} %* * %************************************************************************ Special syntax for parallel arrays needs some wired in definitions. \begin{code} -- | Construct a type representing the application of the parallel array constructor mkPArrTy :: Type -> Type mkPArrTy ty = mkTyConApp parrTyCon [ty] -- | Represents the type constructor of parallel arrays -- -- * This must match the definition in @PrelPArr@ -- -- NB: Although the constructor is given here, it will not be accessible in -- user code as it is not in the environment of any compiled module except -- @PrelPArr@. -- parrTyCon :: TyCon parrTyCon = pcNonRecDataTyCon parrTyConName alpha_tyvar [parrDataCon] parrDataCon :: DataCon parrDataCon = pcDataCon parrDataConName alpha_tyvar -- forall'ed type variables [intPrimTy, -- 1st argument: Int# mkTyConApp -- 2nd argument: Array# a arrayPrimTyCon alpha_ty] parrTyCon -- | Check whether a type constructor is the constructor for parallel arrays isPArrTyCon :: TyCon -> Bool isPArrTyCon tc = tyConName tc == parrTyConName -- | Fake array constructors -- -- * These constructors are never really used to represent array values; -- however, they are very convenient during desugaring (and, in particular, -- in the pattern matching compiler) to treat array pattern just like -- yet another constructor pattern -- parrFakeCon :: Arity -> DataCon parrFakeCon i | i > mAX_TUPLE_SIZE = mkPArrFakeCon i -- build one specially parrFakeCon i = parrFakeConArr!i -- pre-defined set of constructors -- parrFakeConArr :: Array Int DataCon parrFakeConArr = array (0, mAX_TUPLE_SIZE) [(i, mkPArrFakeCon i) | i <- [0..mAX_TUPLE_SIZE]] -- build a fake parallel array constructor for the given arity -- mkPArrFakeCon :: Int -> DataCon mkPArrFakeCon arity = data_con where data_con = pcDataCon name [tyvar] tyvarTys parrTyCon tyvar = head alphaTyVars tyvarTys = replicate arity $ mkTyVarTy tyvar nameStr = mkFastString ("MkPArr" ++ show arity) name = mkWiredInName gHC_PARR (mkDataOccFS nameStr) unique (ADataCon data_con) UserSyntax unique = mkPArrDataConUnique arity -- | Checks whether a data constructor is a fake constructor for parallel arrays isPArrFakeCon :: DataCon -> Bool isPArrFakeCon dcon = dcon == parrFakeCon (dataConSourceArity dcon) \end{code}