% % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % \section[RnBinds]{Renaming and dependency analysis of bindings} This module does renaming and dependency analysis on value bindings in the abstract syntax. It does {\em not} do cycle-checks on class or type-synonym declarations; those cannot be done at this stage because they may be affected by renaming (which isn't fully worked out yet). \begin{code} module RnBinds ( rnTopBinds, rnLocalBindsAndThen, rnValBindsAndThen, rnValBinds, trimWith, rnMethodBinds, renameSigs, rnMatchGroup, rnGRHSs ) where #include "HsVersions.h" import {-# SOURCE #-} RnExpr( rnLExpr, rnStmts ) import HsSyn import RdrHsSyn import RnHsSyn import TcRnMonad import RnTypes ( rnHsSigType, rnLHsType, rnHsTypeFVs, rnLPat, rnPatsAndThen, patSigErr, checkPrecMatch ) import RnEnv ( bindLocatedLocalsRn, lookupLocatedBndrRn, lookupLocatedInstDeclBndr, newIPNameRn, lookupLocatedSigOccRn, bindPatSigTyVars, bindPatSigTyVarsFV, bindLocalFixities, bindSigTyVarsFV, warnUnusedLocalBinds, mapFvRn, extendTyVarEnvFVRn, ) import DynFlags ( DynFlag(..) ) import Name ( Name, nameOccName, nameSrcLoc ) import NameEnv import NameSet import PrelNames ( isUnboundName ) import RdrName ( RdrName, rdrNameOcc ) import SrcLoc ( mkSrcSpan, Located(..), unLoc ) import ListSetOps ( findDupsEq ) import BasicTypes ( RecFlag(..) ) import Digraph ( SCC(..), stronglyConnComp ) import Bag import Outputable import Maybes ( orElse, isJust ) import Util ( filterOut ) import Monad ( foldM ) \end{code} -- ToDo: Put the annotations into the monad, so that they arrive in the proper -- place and can be used when complaining. The code tree received by the function @rnBinds@ contains definitions in where-clauses which are all apparently mutually recursive, but which may not really depend upon each other. For example, in the top level program \begin{verbatim} f x = y where a = x y = x \end{verbatim} the definitions of @a@ and @y@ do not depend on each other at all. Unfortunately, the typechecker cannot always check such definitions. \footnote{Mycroft, A. 1984. Polymorphic type schemes and recursive definitions. In Proceedings of the International Symposium on Programming, Toulouse, pp. 217-39. LNCS 167. Springer Verlag.} However, the typechecker usually can check definitions in which only the strongly connected components have been collected into recursive bindings. This is precisely what the function @rnBinds@ does. ToDo: deal with case where a single monobinds binds the same variable twice. The vertag tag is a unique @Int@; the tags only need to be unique within one @MonoBinds@, so that unique-Int plumbing is done explicitly (heavy monad machinery not needed). %************************************************************************ %* * %* naming conventions * %* * %************************************************************************ \subsection[name-conventions]{Name conventions} The basic algorithm involves walking over the tree and returning a tuple containing the new tree plus its free variables. Some functions, such as those walking polymorphic bindings (HsBinds) and qualifier lists in list comprehensions (@Quals@), return the variables bound in local environments. These are then used to calculate the free variables of the expression evaluated in these environments. Conventions for variable names are as follows: \begin{itemize} \item new code is given a prime to distinguish it from the old. \item a set of variables defined in @Exp@ is written @dvExp@ \item a set of variables free in @Exp@ is written @fvExp@ \end{itemize} %************************************************************************ %* * %* analysing polymorphic bindings (HsBindGroup, HsBind) %* * %************************************************************************ \subsubsection[dep-HsBinds]{Polymorphic bindings} Non-recursive expressions are reconstructed without any changes at top level, although their component expressions may have to be altered. However, non-recursive expressions are currently not expected as \Haskell{} programs, and this code should not be executed. Monomorphic bindings contain information that is returned in a tuple (a @FlatMonoBinds@) containing: \begin{enumerate} \item a unique @Int@ that serves as the ``vertex tag'' for this binding. \item the name of a function or the names in a pattern. These are a set referred to as @dvLhs@, the defined variables of the left hand side. \item the free variables of the body. These are referred to as @fvBody@. \item the definition's actual code. This is referred to as just @code@. \end{enumerate} The function @nonRecDvFv@ returns two sets of variables. The first is the set of variables defined in the set of monomorphic bindings, while the second is the set of free variables in those bindings. The set of variables defined in a non-recursive binding is just the union of all of them, as @union@ removes duplicates. However, the free variables in each successive set of cumulative bindings is the union of those in the previous set plus those of the newest binding after the defined variables of the previous set have been removed. @rnMethodBinds@ deals only with the declarations in class and instance declarations. It expects only to see @FunMonoBind@s, and it expects the global environment to contain bindings for the binders (which are all class operations). %************************************************************************ %* * \subsubsection{ Top-level bindings} %* * %************************************************************************ @rnTopMonoBinds@ assumes that the environment already contains bindings for the binders of this particular binding. \begin{code} rnTopBinds :: HsValBinds RdrName -> RnM (HsValBinds Name, DefUses) -- The binders of the binding are in scope already; -- the top level scope resolution does that rnTopBinds binds = do { is_boot <- tcIsHsBoot ; if is_boot then rnTopBindsBoot binds else rnTopBindsSrc binds } rnTopBindsBoot :: HsValBinds RdrName -> RnM (HsValBinds Name, DefUses) -- A hs-boot file has no bindings. -- Return a single HsBindGroup with empty binds and renamed signatures rnTopBindsBoot (ValBindsIn mbinds sigs) = do { checkErr (isEmptyLHsBinds mbinds) (bindsInHsBootFile mbinds) ; sigs' <- renameSigs okHsBootSig sigs ; return (ValBindsOut [] sigs', usesOnly (hsSigsFVs sigs')) } rnTopBindsSrc :: HsValBinds RdrName -> RnM (HsValBinds Name, DefUses) rnTopBindsSrc binds@(ValBindsIn mbinds _) = do { (binds', dus) <- rnValBinds noTrim binds -- Warn about missing signatures, ; let { ValBindsOut _ sigs' = binds' ; ty_sig_vars = mkNameSet [ unLoc n | L _ (TypeSig n _) <- sigs'] ; un_sigd_bndrs = duDefs dus `minusNameSet` ty_sig_vars } ; warn_missing_sigs <- doptM Opt_WarnMissingSigs ; ifM (warn_missing_sigs) (mappM_ missingSigWarn (nameSetToList un_sigd_bndrs)) ; return (binds', dus) } \end{code} %********************************************************* %* * HsLocalBinds %* * %********************************************************* \begin{code} rnLocalBindsAndThen :: HsLocalBinds RdrName -> (HsLocalBinds Name -> RnM (result, FreeVars)) -> RnM (result, FreeVars) -- This version (a) assumes that the binding vars are not already in scope -- (b) removes the binders from the free vars of the thing inside -- The parser doesn't produce ThenBinds rnLocalBindsAndThen EmptyLocalBinds thing_inside = thing_inside EmptyLocalBinds rnLocalBindsAndThen (HsValBinds val_binds) thing_inside = rnValBindsAndThen val_binds $ \ val_binds' -> thing_inside (HsValBinds val_binds') rnLocalBindsAndThen (HsIPBinds binds) thing_inside = rnIPBinds binds `thenM` \ (binds',fv_binds) -> thing_inside (HsIPBinds binds') `thenM` \ (thing, fvs_thing) -> returnM (thing, fvs_thing `plusFV` fv_binds) ------------- rnIPBinds (IPBinds ip_binds _no_dict_binds) = do { (ip_binds', fvs_s) <- mapAndUnzipM (wrapLocFstM rnIPBind) ip_binds ; return (IPBinds ip_binds' emptyLHsBinds, plusFVs fvs_s) } rnIPBind (IPBind n expr) = newIPNameRn n `thenM` \ name -> rnLExpr expr `thenM` \ (expr',fvExpr) -> return (IPBind name expr', fvExpr) \end{code} %************************************************************************ %* * ValBinds %* * %************************************************************************ \begin{code} rnValBindsAndThen :: HsValBinds RdrName -> (HsValBinds Name -> RnM (result, FreeVars)) -> RnM (result, FreeVars) rnValBindsAndThen binds@(ValBindsIn mbinds sigs) thing_inside = -- Extract all the binders in this group, and extend the -- current scope, inventing new names for the new binders -- This also checks that the names form a set bindLocatedLocalsRn doc mbinders_w_srclocs $ \ bndrs -> -- Then install local fixity declarations -- Notice that they scope over thing_inside too bindLocalFixities [sig | L _ (FixSig sig) <- sigs ] $ -- Do the business rnValBinds (trimWith bndrs) binds `thenM` \ (binds, bind_dus) -> -- Now do the "thing inside" thing_inside binds `thenM` \ (result,result_fvs) -> -- Final error checking let all_uses = duUses bind_dus `plusFV` result_fvs -- duUses: It's important to return all the uses, not the 'real uses' -- used for warning about unused bindings. Otherwise consider: -- x = 3 -- y = let p = x in 'x' -- NB: p not used -- If we don't "see" the dependency of 'y' on 'x', we may put the -- bindings in the wrong order, and the type checker will complain -- that x isn't in scope unused_bndrs = [ b | b <- bndrs, not (b `elemNameSet` all_uses)] in warnUnusedLocalBinds unused_bndrs `thenM_` returnM (result, delListFromNameSet all_uses bndrs) where mbinders_w_srclocs = collectHsBindLocatedBinders mbinds doc = text "In the binding group for:" <+> pprWithCommas ppr (map unLoc mbinders_w_srclocs) --------------------- rnValBinds :: (FreeVars -> FreeVars) -> HsValBinds RdrName -> RnM (HsValBinds Name, DefUses) -- Assumes the binders of the binding are in scope already rnValBinds trim (ValBindsIn mbinds sigs) = do { sigs' <- rename_sigs sigs ; binds_w_dus <- mapBagM (rnBind (mkSigTvFn sigs') trim) mbinds ; let (binds', bind_dus) = depAnalBinds binds_w_dus -- We do the check-sigs after renaming the bindings, -- so that we have convenient access to the binders ; check_sigs (okBindSig (duDefs bind_dus)) sigs' ; return (ValBindsOut binds' sigs', usesOnly (hsSigsFVs sigs') `plusDU` bind_dus) } --------------------- depAnalBinds :: Bag (LHsBind Name, [Name], Uses) -> ([(RecFlag, LHsBinds Name)], DefUses) -- Dependency analysis; this is important so that -- unused-binding reporting is accurate depAnalBinds binds_w_dus = (map get_binds sccs, map get_du sccs) where sccs = stronglyConnComp edges keyd_nodes = bagToList binds_w_dus `zip` [0::Int ..] edges = [ (node, key, [key | n <- nameSetToList uses, Just key <- [lookupNameEnv key_map n] ]) | (node@(_,_,uses), key) <- keyd_nodes ] key_map :: NameEnv Int -- Which binding it comes from key_map = mkNameEnv [(bndr, key) | ((_, bndrs, _), key) <- keyd_nodes , bndr <- bndrs ] get_binds (AcyclicSCC (bind, _, _)) = (NonRecursive, unitBag bind) get_binds (CyclicSCC binds_w_dus) = (Recursive, listToBag [b | (b,d,u) <- binds_w_dus]) get_du (AcyclicSCC (_, bndrs, uses)) = (Just (mkNameSet bndrs), uses) get_du (CyclicSCC binds_w_dus) = (Just defs, uses) where defs = mkNameSet [b | (_,bs,_) <- binds_w_dus, b <- bs] uses = unionManyNameSets [u | (_,_,u) <- binds_w_dus] --------------------- -- Bind the top-level forall'd type variables in the sigs. -- E.g f :: a -> a -- f = rhs -- The 'a' scopes over the rhs -- -- NB: there'll usually be just one (for a function binding) -- but if there are many, one may shadow the rest; too bad! -- e.g x :: [a] -> [a] -- y :: [(a,a)] -> a -- (x,y) = e -- In e, 'a' will be in scope, and it'll be the one from 'y'! mkSigTvFn :: [LSig Name] -> (Name -> [Name]) -- Return a lookup function that maps an Id Name to the names -- of the type variables that should scope over its body.. mkSigTvFn sigs = \n -> lookupNameEnv env n `orElse` [] where env :: NameEnv [Name] env = mkNameEnv [ (name, map hsLTyVarName ltvs) | L _ (TypeSig (L _ name) (L _ (HsForAllTy Explicit ltvs _ _))) <- sigs] -- Note the pattern-match on "Explicit"; we only bind -- type variables from signatures with an explicit top-level for-all -- The trimming function trims the free vars we attach to a -- binding so that it stays reasonably small noTrim :: FreeVars -> FreeVars noTrim fvs = fvs -- Used at top level trimWith :: [Name] -> FreeVars -> FreeVars -- Nested bindings; trim by intersection with the names bound here trimWith bndrs = intersectNameSet (mkNameSet bndrs) --------------------- rnBind :: (Name -> [Name]) -- Signature tyvar function -> (FreeVars -> FreeVars) -- Trimming function for rhs free vars -> LHsBind RdrName -> RnM (LHsBind Name, [Name], Uses) rnBind sig_fn trim (L loc (PatBind { pat_lhs = pat, pat_rhs = grhss })) = setSrcSpan loc $ do { (pat', pat_fvs) <- rnLPat pat ; let bndrs = collectPatBinders pat' ; (grhss', fvs) <- bindSigTyVarsFV (concatMap sig_fn bndrs) $ rnGRHSs PatBindRhs grhss ; return (L loc (PatBind { pat_lhs = pat', pat_rhs = grhss', pat_rhs_ty = placeHolderType, bind_fvs = trim fvs }), bndrs, pat_fvs `plusFV` fvs) } rnBind sig_fn trim (L loc (FunBind { fun_id = name, fun_infix = inf, fun_matches = matches })) = setSrcSpan loc $ do { new_name <- lookupLocatedBndrRn name ; let plain_name = unLoc new_name ; (matches', fvs) <- bindSigTyVarsFV (sig_fn plain_name) $ rnMatchGroup (FunRhs plain_name) matches ; checkPrecMatch inf plain_name matches' ; return (L loc (FunBind { fun_id = new_name, fun_infix = inf, fun_matches = matches', bind_fvs = trim fvs, fun_co_fn = idCoercion }), [plain_name], fvs) } \end{code} @rnMethodBinds@ is used for the method bindings of a class and an instance declaration. Like @rnBinds@ but without dependency analysis. NOTA BENE: we record each {\em binder} of a method-bind group as a free variable. That's crucial when dealing with an instance decl: \begin{verbatim} instance Foo (T a) where op x = ... \end{verbatim} This might be the {\em sole} occurrence of @op@ for an imported class @Foo@, and unless @op@ occurs we won't treat the type signature of @op@ in the class decl for @Foo@ as a source of instance-decl gates. But we should! Indeed, in many ways the @op@ in an instance decl is just like an occurrence, not a binder. \begin{code} rnMethodBinds :: Name -- Class name -> [Name] -- Names for generic type variables -> LHsBinds RdrName -> RnM (LHsBinds Name, FreeVars) rnMethodBinds cls gen_tyvars binds = foldM do_one (emptyBag,emptyFVs) (bagToList binds) where do_one (binds,fvs) bind = do (bind', fvs_bind) <- rnMethodBind cls gen_tyvars bind return (bind' `unionBags` binds, fvs_bind `plusFV` fvs) rnMethodBind cls gen_tyvars (L loc (FunBind { fun_id = name, fun_infix = inf, fun_matches = MatchGroup matches _ })) = setSrcSpan loc $ lookupLocatedInstDeclBndr cls name `thenM` \ sel_name -> let plain_name = unLoc sel_name in -- We use the selector name as the binder mapFvRn (rn_match plain_name) matches `thenM` \ (new_matches, fvs) -> let new_group = MatchGroup new_matches placeHolderType in checkPrecMatch inf plain_name new_group `thenM_` returnM (unitBag (L loc (FunBind { fun_id = sel_name, fun_infix = inf, fun_matches = new_group, bind_fvs = fvs, fun_co_fn = idCoercion })), fvs `addOneFV` plain_name) -- The 'fvs' field isn't used for method binds where -- Truly gruesome; bring into scope the correct members of the generic -- type variables. See comments in RnSource.rnSourceDecl(ClassDecl) rn_match sel_name match@(L _ (Match (L _ (TypePat ty) : _) _ _)) = extendTyVarEnvFVRn gen_tvs $ rnMatch (FunRhs sel_name) match where tvs = map (rdrNameOcc.unLoc) (extractHsTyRdrTyVars ty) gen_tvs = [tv | tv <- gen_tyvars, nameOccName tv `elem` tvs] rn_match sel_name match = rnMatch (FunRhs sel_name) match -- Can't handle method pattern-bindings which bind multiple methods. rnMethodBind cls gen_tyvars mbind@(L loc (PatBind other_pat _ _ _)) = addLocErr mbind methodBindErr `thenM_` returnM (emptyBag, emptyFVs) \end{code} %************************************************************************ %* * \subsubsection[dep-Sigs]{Signatures (and user-pragmas for values)} %* * %************************************************************************ @renameSigs@ checks for: \begin{enumerate} \item more than one sig for one thing; \item signatures given for things not bound here; \item with suitably flaggery, that all top-level things have type signatures. \end{enumerate} % At the moment we don't gather free-var info from the types in signatures. We'd only need this if we wanted to report unused tyvars. \begin{code} renameSigs :: (LSig Name -> Bool) -> [LSig RdrName] -> RnM [LSig Name] -- Renames the signatures and performs error checks renameSigs ok_sig sigs = do { sigs' <- rename_sigs sigs ; check_sigs ok_sig sigs' ; return sigs' } ---------------------- rename_sigs :: [LSig RdrName] -> RnM [LSig Name] rename_sigs sigs = mappM (wrapLocM renameSig) (filter (not . isFixityLSig) sigs) -- Remove fixity sigs which have been dealt with already ---------------------- check_sigs :: (LSig Name -> Bool) -> [LSig Name] -> RnM () -- Used for class and instance decls, as well as regular bindings check_sigs ok_sig sigs -- Check for (a) duplicate signatures -- (b) signatures for things not in this group = do { mappM_ unknownSigErr (filter (not . ok_sig) sigs') ; mappM_ dupSigDeclErr (findDupsEq eqHsSig sigs') } where -- Don't complain about an unbound name again sigs' = filterOut bad_name sigs bad_name sig = case sigName sig of Just n -> isUnboundName n other -> False -- We use lookupLocatedSigOccRn in the signatures, which is a little bit unsatisfactory -- because this won't work for: -- instance Foo T where -- {-# INLINE op #-} -- Baz.op = ... -- We'll just rename the INLINE prag to refer to whatever other 'op' -- is in scope. (I'm assuming that Baz.op isn't in scope unqualified.) -- Doesn't seem worth much trouble to sort this. renameSig :: Sig RdrName -> RnM (Sig Name) -- FixitSig is renamed elsewhere. renameSig (TypeSig v ty) = lookupLocatedSigOccRn v `thenM` \ new_v -> rnHsSigType (quotes (ppr v)) ty `thenM` \ new_ty -> returnM (TypeSig new_v new_ty) renameSig (SpecInstSig ty) = rnLHsType (text "A SPECIALISE instance pragma") ty `thenM` \ new_ty -> returnM (SpecInstSig new_ty) renameSig (SpecSig v ty inl) = lookupLocatedSigOccRn v `thenM` \ new_v -> rnHsSigType (quotes (ppr v)) ty `thenM` \ new_ty -> returnM (SpecSig new_v new_ty inl) renameSig (InlineSig v s) = lookupLocatedSigOccRn v `thenM` \ new_v -> returnM (InlineSig new_v s) \end{code} ************************************************************************ * * \subsection{Match} * * ************************************************************************ \begin{code} rnMatchGroup :: HsMatchContext Name -> MatchGroup RdrName -> RnM (MatchGroup Name, FreeVars) rnMatchGroup ctxt (MatchGroup ms _) = mapFvRn (rnMatch ctxt) ms `thenM` \ (new_ms, ms_fvs) -> returnM (MatchGroup new_ms placeHolderType, ms_fvs) rnMatch :: HsMatchContext Name -> LMatch RdrName -> RnM (LMatch Name, FreeVars) rnMatch ctxt = wrapLocFstM (rnMatch' ctxt) rnMatch' ctxt match@(Match pats maybe_rhs_sig grhss) = -- Deal with the rhs type signature bindPatSigTyVarsFV rhs_sig_tys $ doptM Opt_GlasgowExts `thenM` \ opt_GlasgowExts -> (case maybe_rhs_sig of Nothing -> returnM (Nothing, emptyFVs) Just ty | opt_GlasgowExts -> rnHsTypeFVs doc_sig ty `thenM` \ (ty', ty_fvs) -> returnM (Just ty', ty_fvs) | otherwise -> addLocErr ty patSigErr `thenM_` returnM (Nothing, emptyFVs) ) `thenM` \ (maybe_rhs_sig', ty_fvs) -> -- Now the main event rnPatsAndThen ctxt pats $ \ pats' -> rnGRHSs ctxt grhss `thenM` \ (grhss', grhss_fvs) -> returnM (Match pats' maybe_rhs_sig' grhss', grhss_fvs `plusFV` ty_fvs) -- The bindPatSigTyVarsFV and rnPatsAndThen will remove the bound FVs where rhs_sig_tys = case maybe_rhs_sig of Nothing -> [] Just ty -> [ty] doc_sig = text "In a result type-signature" \end{code} %************************************************************************ %* * \subsubsection{Guarded right-hand sides (GRHSs)} %* * %************************************************************************ \begin{code} rnGRHSs :: HsMatchContext Name -> GRHSs RdrName -> RnM (GRHSs Name, FreeVars) rnGRHSs ctxt (GRHSs grhss binds) = rnLocalBindsAndThen binds $ \ binds' -> mapFvRn (rnGRHS ctxt) grhss `thenM` \ (grhss', fvGRHSs) -> returnM (GRHSs grhss' binds', fvGRHSs) rnGRHS :: HsMatchContext Name -> LGRHS RdrName -> RnM (LGRHS Name, FreeVars) rnGRHS ctxt = wrapLocFstM (rnGRHS' ctxt) rnGRHS' ctxt (GRHS guards rhs) = do { opt_GlasgowExts <- doptM Opt_GlasgowExts ; ((guards', rhs'), fvs) <- rnStmts (PatGuard ctxt) guards $ rnLExpr rhs ; checkM (opt_GlasgowExts || is_standard_guard guards') (addWarn (nonStdGuardErr guards')) ; return (GRHS guards' rhs', fvs) } where -- Standard Haskell 1.4 guards are just a single boolean -- expression, rather than a list of qualifiers as in the -- Glasgow extension is_standard_guard [] = True is_standard_guard [L _ (ExprStmt _ _ _)] = True is_standard_guard other = False \end{code} %************************************************************************ %* * \subsection{Error messages} %* * %************************************************************************ \begin{code} dupSigDeclErr sigs@(L loc sig : _) = addErrAt loc $ vcat [ptext SLIT("Duplicate") <+> what_it_is <> colon, nest 2 (vcat (map ppr_sig sigs))] where what_it_is = hsSigDoc sig ppr_sig (L loc sig) = ppr loc <> colon <+> ppr sig unknownSigErr (L loc sig) = addErrAt loc $ sep [ptext SLIT("Misplaced") <+> what_it_is <> colon, ppr sig] where what_it_is = hsSigDoc sig missingSigWarn var = addWarnAt (mkSrcSpan loc loc) $ sep [ptext SLIT("Definition but no type signature for"), quotes (ppr var)] where loc = nameSrcLoc var -- TODO: make a proper span methodBindErr mbind = hang (ptext SLIT("Pattern bindings (except simple variables) not allowed in instance declarations")) 2 (ppr mbind) bindsInHsBootFile mbinds = hang (ptext SLIT("Bindings in hs-boot files are not allowed")) 2 (ppr mbinds) nonStdGuardErr guards = hang (ptext SLIT("accepting non-standard pattern guards (-fglasgow-exts to suppress this message)")) 4 (interpp'SP guards) \end{code}