% % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % \section[RnNames]{Extracting imported and top-level names in scope} \begin{code} module RnNames ( rnImports, getLocalNonValBinders, rnExports, extendGlobalRdrEnvRn, gresFromAvails, reportUnusedNames, ) where #include "HsVersions.h" import DynFlags import HsSyn import TcEnv ( isBrackStage ) import RnEnv import RnHsDoc ( rnHsDoc ) import LoadIface ( loadSrcInterface ) import TcRnMonad import PrelNames import Module import Name import NameEnv import NameSet import Avail import HscTypes import RdrName import Outputable import Maybes import SrcLoc import ErrUtils import Util import FastString import ListSetOps import Control.Monad import Data.Map ( Map ) import qualified Data.Map as Map import Data.List ( partition, (\\), find ) import qualified Data.Set as Set import System.FilePath (()) import System.IO \end{code} %************************************************************************ %* * \subsection{rnImports} %* * %************************************************************************ Note [Tracking Trust Transitively] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When we import a package as well as checking that the direct imports are safe according to the rules outlined in the Note [HscMain . Safe Haskell Trust Check] we must also check that these rules hold transitively for all dependent modules and packages. Doing this without caching any trust information would be very slow as we would need to touch all packages and interface files a module depends on. To avoid this we make use of the property that if a modules Safe Haskell mode changes, this triggers a recompilation from that module in the dependcy graph. So we can just worry mostly about direct imports. There is one trust property that can change for a package though without recompliation being triggered: package trust. So we must check that all packages a module tranitively depends on to be trusted are still trusted when we are compiling this module (as due to recompilation avoidance some modules below may not be considered trusted any more without recompilation being triggered). We handle this by augmenting the existing transitive list of packages a module M depends on with a bool for each package that says if it must be trusted when the module M is being checked for trust. This list of trust required packages for a single import is gathered in the rnImportDecl function and stored in an ImportAvails data structure. The union of these trust required packages for all imports is done by the rnImports function using the combine function which calls the plusImportAvails function that is a union operation for the ImportAvails type. This gives us in an ImportAvails structure all packages required to be trusted for the module we are currently compiling. Checking that these packages are still trusted (and that direct imports are trusted) is done in HscMain.checkSafeImports. See the note below, [Trust Own Package] for a corner case in this method and how its handled. Note [Trust Own Package] ~~~~~~~~~~~~~~~~~~~~~~~~ There is a corner case of package trust checking that the usual transitive check doesn't cover. (For how the usual check operates see the Note [Tracking Trust Transitively] below). The case is when you import a -XSafe module M and M imports a -XTrustworthy module N. If N resides in a different package than M, then the usual check works as M will record a package dependency on N's package and mark it as required to be trusted. If N resides in the same package as M though, then importing M should require its own package be trusted due to N (since M is -XSafe so doesn't create this requirement by itself). The usual check fails as a module doesn't record a package dependency of its own package. So instead we now have a bool field in a modules interface file that simply states if the module requires its own package to be trusted. This field avoids us having to load all interface files that the module depends on to see if one is trustworthy. Note [Trust Transitive Property] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ So there is an interesting design question in regards to transitive trust checking. Say I have a module B compiled with -XSafe. B is dependent on a bunch of modules and packages, some packages it requires to be trusted as its using -XTrustworthy modules from them. Now if I have a module A that doesn't use safe haskell at all and simply imports B, should A inherit all the the trust requirements from B? Should A now also require that a package p is trusted since B required it? We currently say no but saying yes also makes sense. The difference is, if a module M that doesn't use Safe Haskell imports a module N that does, should all the trusted package requirements be dropped since M didn't declare that it cares about Safe Haskell (so -XSafe is more strongly associated with the module doing the importing) or should it be done still since the author of the module N that uses Safe Haskell said they cared (so -XSafe is more strongly associated with the module that was compiled that used it). Going with yes is a simpler semantics we think and harder for the user to stuff up but it does mean that Safe Haskell will affect users who don't care about Safe Haskell as they might grab a package from Cabal which uses safe haskell (say network) and that packages imports -XTrustworthy modules from another package (say bytestring), so requires that package is trusted. The user may now get compilation errors in code that doesn't do anything with Safe Haskell simply because they are using the network package. They will have to call 'ghc-pkg trust network' to get everything working. Due to this invasive nature of going with yes we have gone with no for now. \begin{code} -- | Process Import Decls -- Do the non SOURCE ones first, so that we get a helpful warning for SOURCE -- ones that are unnecessary rnImports :: [LImportDecl RdrName] -> RnM ([LImportDecl Name], GlobalRdrEnv, ImportAvails, AnyHpcUsage) rnImports imports = do this_mod <- getModule let (source, ordinary) = partition is_source_import imports is_source_import d = ideclSource (unLoc d) stuff1 <- mapM (rnImportDecl this_mod) ordinary stuff2 <- mapM (rnImportDecl this_mod) source -- Safe Haskell: See Note [Tracking Trust Transitively] let (decls, rdr_env, imp_avails, hpc_usage) = combine (stuff1 ++ stuff2) return (decls, rdr_env, imp_avails, hpc_usage) where combine :: [(LImportDecl Name, GlobalRdrEnv, ImportAvails, AnyHpcUsage)] -> ([LImportDecl Name], GlobalRdrEnv, ImportAvails, AnyHpcUsage) combine = foldr plus ([], emptyGlobalRdrEnv, emptyImportAvails, False) plus (decl, gbl_env1, imp_avails1,hpc_usage1) (decls, gbl_env2, imp_avails2,hpc_usage2) = ( decl:decls, gbl_env1 `plusGlobalRdrEnv` gbl_env2, imp_avails1 `plusImportAvails` imp_avails2, hpc_usage1 || hpc_usage2 ) rnImportDecl :: Module -> LImportDecl RdrName -> RnM (LImportDecl Name, GlobalRdrEnv, ImportAvails, AnyHpcUsage) rnImportDecl this_mod (L loc decl@(ImportDecl { ideclName = loc_imp_mod_name, ideclPkgQual = mb_pkg , ideclSource = want_boot, ideclSafe = mod_safe , ideclQualified = qual_only, ideclImplicit = implicit , ideclAs = as_mod, ideclHiding = imp_details })) = setSrcSpan loc $ do when (isJust mb_pkg) $ do pkg_imports <- xoptM Opt_PackageImports when (not pkg_imports) $ addErr packageImportErr -- If there's an error in loadInterface, (e.g. interface -- file not found) we get lots of spurious errors from 'filterImports' let imp_mod_name = unLoc loc_imp_mod_name doc = ppr imp_mod_name <+> ptext (sLit "is directly imported") -- Check for a missing import list (Opt_WarnMissingImportList also -- checks for T(..) items but that is done in checkDodgyImport below) case imp_details of Just (False, _) -> return () -- Explicit import list _ | implicit -> return () -- Do not bleat for implicit imports | qual_only -> return () | otherwise -> whenWOptM Opt_WarnMissingImportList $ addWarn (missingImportListWarn imp_mod_name) iface <- loadSrcInterface doc imp_mod_name want_boot mb_pkg -- Compiler sanity check: if the import didn't say -- {-# SOURCE #-} we should not get a hi-boot file WARN( not want_boot && mi_boot iface, ppr imp_mod_name ) do -- Issue a user warning for a redundant {- SOURCE -} import -- NB that we arrange to read all the ordinary imports before -- any of the {- SOURCE -} imports. -- -- in --make and GHCi, the compilation manager checks for this, -- and indeed we shouldn't do it here because the existence of -- the non-boot module depends on the compilation order, which -- is not deterministic. The hs-boot test can show this up. dflags <- getDynFlags warnIf (want_boot && not (mi_boot iface) && isOneShot (ghcMode dflags)) (warnRedundantSourceImport imp_mod_name) when (mod_safe && not (safeImportsOn dflags)) $ addErrAt loc (ptext (sLit "safe import can't be used as Safe Haskell isn't on!") $+$ ptext (sLit $ "please enable Safe Haskell through either " ++ "Safe, Trustworthy or Unsafe")) let imp_mod = mi_module iface warns = mi_warns iface orph_iface = mi_orphan iface has_finsts = mi_finsts iface deps = mi_deps iface trust = getSafeMode $ mi_trust iface trust_pkg = mi_trust_pkg iface qual_mod_name = as_mod `orElse` imp_mod_name imp_spec = ImpDeclSpec { is_mod = imp_mod_name, is_qual = qual_only, is_dloc = loc, is_as = qual_mod_name } -- filter the imports according to the import declaration (new_imp_details, gres) <- filterImports iface imp_spec imp_details let gbl_env = mkGlobalRdrEnv (filterOut from_this_mod gres) from_this_mod gre = nameModule (gre_name gre) == this_mod -- If the module exports anything defined in this module, just -- ignore it. Reason: otherwise it looks as if there are two -- local definition sites for the thing, and an error gets -- reported. Easiest thing is just to filter them out up -- front. This situation only arises if a module imports -- itself, or another module that imported it. (Necessarily, -- this invoves a loop.) -- -- We do this *after* filterImports, so that if you say -- module A where -- import B( AType ) -- type AType = ... -- -- module B( AType ) where -- import {-# SOURCE #-} A( AType ) -- -- then you won't get a 'B does not export AType' message. -- Compute new transitive dependencies orphans | orph_iface = ASSERT( not (imp_mod `elem` dep_orphs deps) ) imp_mod : dep_orphs deps | otherwise = dep_orphs deps finsts | has_finsts = ASSERT( not (imp_mod `elem` dep_finsts deps) ) imp_mod : dep_finsts deps | otherwise = dep_finsts deps pkg = modulePackageId (mi_module iface) -- Does this import mean we now require our own pkg -- to be trusted? See Note [Trust Own Package] ptrust = trust == Sf_Trustworthy || trust_pkg (dependent_mods, dependent_pkgs, pkg_trust_req) | pkg == thisPackage dflags = -- Imported module is from the home package -- Take its dependent modules and add imp_mod itself -- Take its dependent packages unchanged -- -- NB: (dep_mods deps) might include a hi-boot file -- for the module being compiled, CM. Do *not* filter -- this out (as we used to), because when we've -- finished dealing with the direct imports we want to -- know if any of them depended on CM.hi-boot, in -- which case we should do the hi-boot consistency -- check. See LoadIface.loadHiBootInterface ((imp_mod_name, want_boot) : dep_mods deps, dep_pkgs deps, ptrust) | otherwise = -- Imported module is from another package -- Dump the dependent modules -- Add the package imp_mod comes from to the dependent packages ASSERT2( not (pkg `elem` (map fst $ dep_pkgs deps)) , ppr pkg <+> ppr (dep_pkgs deps) ) ([], (pkg, False) : dep_pkgs deps, False) -- True <=> import M () import_all = case imp_details of Just (is_hiding, ls) -> not is_hiding && null ls _ -> False -- should the import be safe? mod_safe' = mod_safe || (not implicit && safeDirectImpsReq dflags) || (implicit && safeImplicitImpsReq dflags) imports = ImportAvails { imp_mods = unitModuleEnv imp_mod [(qual_mod_name, import_all, loc, mod_safe')], imp_orphs = orphans, imp_finsts = finsts, imp_dep_mods = mkModDeps dependent_mods, imp_dep_pkgs = map fst $ dependent_pkgs, -- Add in the imported modules trusted package -- requirements. ONLY do this though if we import the -- module as a safe import. -- See Note [Tracking Trust Transitively] -- and Note [Trust Transitive Property] imp_trust_pkgs = if mod_safe' then map fst $ filter snd dependent_pkgs else [], -- Do we require our own pkg to be trusted? -- See Note [Trust Own Package] imp_trust_own_pkg = pkg_trust_req } -- Complain if we import a deprecated module whenWOptM Opt_WarnWarningsDeprecations ( case warns of WarnAll txt -> addWarn $ moduleWarn imp_mod_name txt _ -> return () ) let new_imp_decl = L loc (decl { ideclSafe = mod_safe' , ideclHiding = new_imp_details }) return (new_imp_decl, gbl_env, imports, mi_hpc iface) warnRedundantSourceImport :: ModuleName -> SDoc warnRedundantSourceImport mod_name = ptext (sLit "Unnecessary {-# SOURCE #-} in the import of module") <+> quotes (ppr mod_name) \end{code} %************************************************************************ %* * \subsection{importsFromLocalDecls} %* * %************************************************************************ From the top-level declarations of this module produce * the lexical environment * the ImportAvails created by its bindings. Note [Top-level Names in Template Haskell decl quotes] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider a Template Haskell declaration quotation like this: module M where f x = h [d| f = 3 |] When renaming the declarations inside [d| ...|], we treat the top level binders specially in two ways 1. We give them an Internal name, not (as usual) an External one. Otherwise the NameCache gets confused by a second allocation of M.f. (We used to invent a fake module ThFake to avoid this, but that had other problems, notably in getting the correct answer for nameIsLocalOrFrom in lookupFixity. So we now leave tcg_module unaffected.) 2. We make them *shadow* the outer bindings. If we don't do that, we'll get a complaint when extending the GlobalRdrEnv, saying that there are two bindings for 'f'. There are several tricky points: * This shadowing applies even if the binding for 'f' is in a where-clause, and hence is in the *local* RdrEnv not the *global* RdrEnv. * The *qualified* name M.f from the enclosing module must certainly still be available. So we don't nuke it entirely; we just make it seem like qualified import. * We only shadow *External* names (which come from the main module) Do not shadow *Inernal* names because in the bracket [d| class C a where f :: a f = 4 |] rnSrcDecls will first call extendGlobalRdrEnvRn with C[f] from the class decl, and *separately* extend the envt with the value binding. 3. We find out whether we are inside a [d| ... |] by testing the TH stage. This is a slight hack, because the stage field was really meant for the type checker, and here we are not interested in the fields of Brack, hence the error thunks in thRnBrack. \begin{code} extendGlobalRdrEnvRn :: [AvailInfo] -> MiniFixityEnv -> RnM (TcGblEnv, TcLclEnv) -- Updates both the GlobalRdrEnv and the FixityEnv -- We return a new TcLclEnv only because we might have to -- delete some bindings from it; -- see Note [Top-level Names in Template Haskell decl quotes] extendGlobalRdrEnvRn avails new_fixities = do { (gbl_env, lcl_env) <- getEnvs ; stage <- getStage ; isGHCi <- getIsGHCi ; let rdr_env = tcg_rdr_env gbl_env fix_env = tcg_fix_env gbl_env -- Delete new_occs from global and local envs -- If we are in a TemplateHaskell decl bracket, -- we are going to shadow them -- See Note [Top-level Names in Template Haskell decl quotes] shadowP = isBrackStage stage new_occs = map (nameOccName . gre_name) gres rdr_env_TH = transformGREs qual_gre new_occs rdr_env rdr_env_GHCi = delListFromOccEnv rdr_env new_occs lcl_env1 = lcl_env { tcl_rdr = delLocalRdrEnvList (tcl_rdr lcl_env) new_occs } (rdr_env2, lcl_env2) | shadowP = (rdr_env_TH, lcl_env1) | isGHCi = (rdr_env_GHCi, lcl_env1) | otherwise = (rdr_env, lcl_env) rdr_env3 = foldl extendGlobalRdrEnv rdr_env2 gres fix_env' = foldl extend_fix_env fix_env gres dups = findLocalDupsRdrEnv rdr_env3 new_occs gbl_env' = gbl_env { tcg_rdr_env = rdr_env3, tcg_fix_env = fix_env' } ; traceRn (text "extendGlobalRdrEnvRn dups" <+> (ppr dups)) ; mapM_ addDupDeclErr dups ; traceRn (text "extendGlobalRdrEnvRn" <+> (ppr new_fixities $$ ppr fix_env $$ ppr fix_env')) ; return (gbl_env', lcl_env2) } where gres = gresFromAvails LocalDef avails -- If there is a fixity decl for the gre, add it to the fixity env extend_fix_env fix_env gre | Just (L _ fi) <- lookupFsEnv new_fixities (occNameFS occ) = extendNameEnv fix_env name (FixItem occ fi) | otherwise = fix_env where name = gre_name gre occ = nameOccName name qual_gre :: GlobalRdrElt -> GlobalRdrElt -- Transform top-level GREs from the module being compiled -- so that they are out of the way of new definitions in a Template -- Haskell bracket -- See Note [Top-level Names in Template Haskell decl quotes] -- Seems like 5 times as much work as it deserves! -- -- For a LocalDef we make a (fake) qualified imported GRE for a -- local GRE so that the original *qualified* name is still in scope -- but the *unqualified* one no longer is. What a hack! qual_gre gre@(GRE { gre_prov = LocalDef, gre_name = name }) | isExternalName name = gre { gre_prov = Imported [imp_spec] } | otherwise = gre -- Do not shadow Internal (ie Template Haskell) Names -- See Note [Top-level Names in Template Haskell decl quotes] where mod = ASSERT2( isExternalName name, ppr name) moduleName (nameModule name) imp_spec = ImpSpec { is_item = ImpAll, is_decl = decl_spec } decl_spec = ImpDeclSpec { is_mod = mod, is_as = mod, is_qual = True, -- Qualified only! is_dloc = srcLocSpan (nameSrcLoc name) } qual_gre gre@(GRE { gre_prov = Imported specs }) = gre { gre_prov = Imported (map qual_spec specs) } qual_spec spec@(ImpSpec { is_decl = decl_spec }) = spec { is_decl = decl_spec { is_qual = True } } \end{code} @getLocalDeclBinders@ returns the names for an @HsDecl@. It's used for source code. *** See "THE NAMING STORY" in HsDecls **** \begin{code} getLocalNonValBinders :: MiniFixityEnv -> HsGroup RdrName -> RnM ((TcGblEnv, TcLclEnv), NameSet) -- Get all the top-level binders bound the group *except* -- for value bindings, which are treated separately -- Specifically we return AvailInfo for -- type decls (incl constructors and record selectors) -- class decls (including class ops) -- associated types -- foreign imports -- (in hs-boot files) value signatures getLocalNonValBinders fixity_env (HsGroup { hs_valds = val_binds, hs_tyclds = tycl_decls, hs_instds = inst_decls, hs_fords = foreign_decls }) = do { -- Process all type/class decls *except* family instances ; tc_avails <- mapM new_tc (tyClGroupConcat tycl_decls) ; envs <- extendGlobalRdrEnvRn tc_avails fixity_env ; setEnvs envs $ do { -- Bring these things into scope first -- See Note [Looking up family names in family instances] -- Process all family instances -- to bring new data constructors into scope ; nti_avails <- concatMapM new_assoc inst_decls -- Finish off with value binders: -- foreign decls for an ordinary module -- type sigs in case of a hs-boot file only ; is_boot <- tcIsHsBoot ; let val_bndrs | is_boot = hs_boot_sig_bndrs | otherwise = for_hs_bndrs ; val_avails <- mapM new_simple val_bndrs ; let avails = nti_avails ++ val_avails new_bndrs = availsToNameSet avails `unionNameSets` availsToNameSet tc_avails ; envs <- extendGlobalRdrEnvRn avails fixity_env ; return (envs, new_bndrs) } } where for_hs_bndrs :: [Located RdrName] for_hs_bndrs = [nm | L _ (ForeignImport nm _ _ _) <- foreign_decls] -- In a hs-boot file, the value binders come from the -- *signatures*, and there should be no foreign binders hs_boot_sig_bndrs = [n | L _ (TypeSig ns _) <- val_sigs, n <- ns] ValBindsIn _ val_sigs = val_binds new_simple :: Located RdrName -> RnM AvailInfo new_simple rdr_name = do{ nm <- newTopSrcBinder rdr_name ; return (Avail nm) } new_tc tc_decl -- NOT for type/data instances = do { let bndrs = hsTyClDeclBinders (unLoc tc_decl) ; names@(main_name : _) <- mapM newTopSrcBinder bndrs ; return (AvailTC main_name names) } new_assoc :: LInstDecl RdrName -> RnM [AvailInfo] new_assoc (L _ (TyFamInstD {})) = return [] -- type instances don't bind new names new_assoc (L _ (DataFamInstD { dfid_inst = d })) = do { avail <- new_di Nothing d ; return [avail] } new_assoc (L _ (ClsInstD { cid_inst = ClsInstDecl { cid_poly_ty = inst_ty , cid_datafam_insts = adts } })) | Just (_, _, L loc cls_rdr, _) <- splitLHsInstDeclTy_maybe inst_ty = do { cls_nm <- setSrcSpan loc $ lookupGlobalOccRn cls_rdr ; mapM (new_di (Just cls_nm) . unLoc) adts } | otherwise = return [] -- Do not crash on ill-formed instances -- Eg instance !Show Int Trac #3811c new_di :: Maybe Name -> DataFamInstDecl RdrName -> RnM AvailInfo new_di mb_cls ti_decl = do { main_name <- lookupFamInstName mb_cls (dfid_tycon ti_decl) ; sub_names <- mapM newTopSrcBinder (hsDataFamInstBinders ti_decl) ; return (AvailTC (unLoc main_name) sub_names) } -- main_name is not bound here! \end{code} Note [Looking up family names in family instances] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider module M where type family T a :: * type instance M.T Int = Bool We might think that we can simply use 'lookupOccRn' when processing the type instance to look up 'M.T'. Alas, we can't! The type family declaration is in the *same* HsGroup as the type instance declaration. Hence, as we are currently collecting the binders declared in that HsGroup, these binders will not have been added to the global environment yet. Solution is simple: process the type family declarations first, extend the environment, and then process the type instances. %************************************************************************ %* * \subsection{Filtering imports} %* * %************************************************************************ @filterImports@ takes the @ExportEnv@ telling what the imported module makes available, and filters it through the import spec (if any). \begin{code} filterImports :: ModIface -> ImpDeclSpec -- The span for the entire import decl -> Maybe (Bool, [LIE RdrName]) -- Import spec; True => hiding -> RnM (Maybe (Bool, [LIE Name]), -- Import spec w/ Names [GlobalRdrElt]) -- Same again, but in GRE form filterImports iface decl_spec Nothing = return (Nothing, gresFromAvails prov (mi_exports iface)) where prov = Imported [ImpSpec { is_decl = decl_spec, is_item = ImpAll }] filterImports iface decl_spec (Just (want_hiding, import_items)) = do -- check for errors, convert RdrNames to Names items1 <- mapM lookup_lie import_items let items2 :: [(LIE Name, AvailInfo)] items2 = concat items1 -- NB the AvailInfo may have duplicates, and several items -- for the same parent; e.g N(x) and N(y) names = availsToNameSet (map snd items2) keep n = not (n `elemNameSet` names) pruned_avails = filterAvails keep all_avails hiding_prov = Imported [ImpSpec { is_decl = decl_spec, is_item = ImpAll }] gres | want_hiding = gresFromAvails hiding_prov pruned_avails | otherwise = concatMap (gresFromIE decl_spec) items2 return (Just (want_hiding, map fst items2), gres) where all_avails = mi_exports iface -- This environment is how we map names mentioned in the import -- list to the actual Name they correspond to, and the name family -- that the Name belongs to (the AvailInfo). The situation is -- complicated by associated families, which introduce a three-level -- hierachy, where class = grand parent, assoc family = parent, and -- data constructors = children. The occ_env entries for associated -- families needs to capture all this information; hence, we have the -- third component of the environment that gives the class name (= -- grand parent) in case of associated families. -- -- This env will have entries for data constructors too, -- they won't make any difference because naked entities like T -- in an import list map to TcOccs, not VarOccs. occ_env :: OccEnv (Name, -- the name AvailInfo, -- the export item providing the name Maybe Name) -- the parent of associated types occ_env = mkOccEnv_C combine [ (nameOccName n, (n, a, Nothing)) | a <- all_avails, n <- availNames a] where -- we know that (1) there are at most 2 entries for one name, (2) their -- first component is identical, (3) they are for tys/cls, and (4) one -- entry has the name in its parent position (the other doesn't) combine (name, AvailTC p1 subs1, Nothing) (_ , AvailTC p2 subs2, Nothing) = let (parent, subs) = if p1 == name then (p2, subs1) else (p1, subs2) in (name, AvailTC name subs, Just parent) combine x y = pprPanic "filterImports/combine" (ppr x $$ ppr y) lookup_name :: RdrName -> IELookupM (Name, AvailInfo, Maybe Name) lookup_name rdr | isQual rdr = failLookupWith (QualImportError rdr) | Just succ <- mb_success = return succ | otherwise = failLookupWith BadImport where mb_success = lookupOccEnv occ_env (rdrNameOcc rdr) lookup_lie :: LIE RdrName -> TcRn [(LIE Name, AvailInfo)] lookup_lie (L loc ieRdr) = do (stuff, warns) <- setSrcSpan loc $ liftM (fromMaybe ([],[])) $ run_lookup (lookup_ie ieRdr) mapM_ emit_warning warns return [ (L loc ie, avail) | (ie,avail) <- stuff ] where -- Warn when importing T(..) if T was exported abstractly emit_warning (DodgyImport n) = whenWOptM Opt_WarnDodgyImports $ addWarn (dodgyImportWarn n) emit_warning MissingImportList = whenWOptM Opt_WarnMissingImportList $ addWarn (missingImportListItem ieRdr) emit_warning BadImportW = whenWOptM Opt_WarnDodgyImports $ addWarn (lookup_err_msg BadImport) run_lookup :: IELookupM a -> TcRn (Maybe a) run_lookup m = case m of Failed err -> addErr (lookup_err_msg err) >> return Nothing Succeeded a -> return (Just a) lookup_err_msg err = case err of BadImport -> badImportItemErr iface decl_spec ieRdr all_avails IllegalImport -> illegalImportItemErr QualImportError rdr -> qualImportItemErr rdr -- For each import item, we convert its RdrNames to Names, -- and at the same time construct an AvailInfo corresponding -- to what is actually imported by this item. -- Returns Nothing on error. -- We return a list here, because in the case of an import -- item like C, if we are hiding, then C refers to *both* a -- type/class and a data constructor. Moreover, when we import -- data constructors of an associated family, we need separate -- AvailInfos for the data constructors and the family (as they have -- different parents). See the discussion at occ_env. lookup_ie :: IE RdrName -> IELookupM ([(IE Name, AvailInfo)], [IELookupWarning]) lookup_ie ie = handle_bad_import $ do case ie of IEVar n -> do (name, avail, _) <- lookup_name n return ([(IEVar name, trimAvail avail name)], []) IEThingAll tc -> do (name, avail@(AvailTC name2 subs), mb_parent) <- lookup_name tc let warns | null (drop 1 subs) = [DodgyImport tc] | not (is_qual decl_spec) = [MissingImportList] | otherwise = [] case mb_parent of -- non-associated ty/cls Nothing -> return ([(IEThingAll name, avail)], warns) -- associated ty Just parent -> return ([(IEThingAll name, AvailTC name2 (subs \\ [name])), (IEThingAll name, AvailTC parent [name])], warns) IEThingAbs tc | want_hiding -- hiding ( C ) -- Here the 'C' can be a data constructor -- *or* a type/class, or even both -> let tc_name = lookup_name tc dc_name = lookup_name (setRdrNameSpace tc srcDataName) in case catIELookupM [ tc_name, dc_name ] of [] -> failLookupWith BadImport names -> return ([mkIEThingAbs name | name <- names], []) | otherwise -> do nameAvail <- lookup_name tc return ([mkIEThingAbs nameAvail], []) IEThingWith tc ns -> do (name, AvailTC _ subnames, mb_parent) <- lookup_name tc -- Look up the children in the sub-names of the parent let mb_children = lookupChildren subnames ns children <- if any isNothing mb_children then failLookupWith BadImport else return (catMaybes mb_children) case mb_parent of -- non-associated ty/cls Nothing -> return ([(IEThingWith name children, AvailTC name (name:children))], []) -- associated ty Just parent -> return ([(IEThingWith name children, AvailTC name children), (IEThingWith name children, AvailTC parent [name])], []) _other -> failLookupWith IllegalImport -- could be IEModuleContents, IEGroup, IEDoc, IEDocNamed -- all errors. where mkIEThingAbs (n, av, Nothing ) = (IEThingAbs n, trimAvail av n) mkIEThingAbs (n, _, Just parent) = (IEThingAbs n, AvailTC parent [n]) handle_bad_import m = catchIELookup m $ \err -> case err of BadImport | want_hiding -> return ([], [BadImportW]) _ -> failLookupWith err type IELookupM = MaybeErr IELookupError data IELookupWarning = BadImportW | MissingImportList | DodgyImport RdrName -- NB. use the RdrName for reporting a "dodgy" import data IELookupError = QualImportError RdrName | BadImport | IllegalImport failLookupWith :: IELookupError -> IELookupM a failLookupWith err = Failed err catchIELookup :: IELookupM a -> (IELookupError -> IELookupM a) -> IELookupM a catchIELookup m h = case m of Succeeded r -> return r Failed err -> h err catIELookupM :: [IELookupM a] -> [a] catIELookupM ms = [ a | Succeeded a <- ms ] \end{code} %************************************************************************ %* * \subsection{Import/Export Utils} %* * %************************************************************************ \begin{code} greExportAvail :: GlobalRdrElt -> AvailInfo greExportAvail gre = case gre_par gre of ParentIs p -> AvailTC p [me] NoParent | isTyConName me -> AvailTC me [me] | otherwise -> Avail me where me = gre_name gre plusAvail :: AvailInfo -> AvailInfo -> AvailInfo plusAvail a1 a2 | debugIsOn && availName a1 /= availName a2 = pprPanic "RnEnv.plusAvail names differ" (hsep [ppr a1,ppr a2]) plusAvail a1@(Avail {}) (Avail {}) = a1 plusAvail (AvailTC _ []) a2@(AvailTC {}) = a2 plusAvail a1@(AvailTC {}) (AvailTC _ []) = a1 plusAvail (AvailTC n1 (s1:ss1)) (AvailTC n2 (s2:ss2)) = case (n1==s1, n2==s2) of -- Maintain invariant the parent is first (True,True) -> AvailTC n1 (s1 : (ss1 `unionLists` ss2)) (True,False) -> AvailTC n1 (s1 : (ss1 `unionLists` (s2:ss2))) (False,True) -> AvailTC n1 (s2 : ((s1:ss1) `unionLists` ss2)) (False,False) -> AvailTC n1 ((s1:ss1) `unionLists` (s2:ss2)) plusAvail a1 a2 = pprPanic "RnEnv.plusAvail" (hsep [ppr a1,ppr a2]) trimAvail :: AvailInfo -> Name -> AvailInfo trimAvail (Avail n) _ = Avail n trimAvail (AvailTC n ns) m = ASSERT( m `elem` ns) AvailTC n [m] -- | filters 'AvailInfo's by the given predicate filterAvails :: (Name -> Bool) -> [AvailInfo] -> [AvailInfo] filterAvails keep avails = foldr (filterAvail keep) [] avails -- | filters an 'AvailInfo' by the given predicate filterAvail :: (Name -> Bool) -> AvailInfo -> [AvailInfo] -> [AvailInfo] filterAvail keep ie rest = case ie of Avail n | keep n -> ie : rest | otherwise -> rest AvailTC tc ns -> let left = filter keep ns in if null left then rest else AvailTC tc left : rest -- | Given an import\/export spec, construct the appropriate 'GlobalRdrElt's. gresFromIE :: ImpDeclSpec -> (LIE Name, AvailInfo) -> [GlobalRdrElt] gresFromIE decl_spec (L loc ie, avail) = gresFromAvail prov_fn avail where is_explicit = case ie of IEThingAll name -> \n -> n == name _ -> \_ -> True prov_fn name = Imported [imp_spec] where imp_spec = ImpSpec { is_decl = decl_spec, is_item = item_spec } item_spec = ImpSome { is_explicit = is_explicit name, is_iloc = loc } mkChildEnv :: [GlobalRdrElt] -> NameEnv [Name] mkChildEnv gres = foldr add emptyNameEnv gres where add (GRE { gre_name = n, gre_par = ParentIs p }) env = extendNameEnv_Acc (:) singleton env p n add _ env = env findChildren :: NameEnv [Name] -> Name -> [Name] findChildren env n = lookupNameEnv env n `orElse` [] lookupChildren :: [Name] -> [RdrName] -> [Maybe Name] -- (lookupChildren all_kids rdr_items) maps each rdr_item to its -- corresponding Name all_kids, if the former exists -- The matching is done by FastString, not OccName, so that -- Cls( meth, AssocTy ) -- will correctly find AssocTy among the all_kids of Cls, even though -- the RdrName for AssocTy may have a (bogus) DataName namespace -- (Really the rdr_items should be FastStrings in the first place.) lookupChildren all_kids rdr_items = map (lookupFsEnv kid_env . occNameFS . rdrNameOcc) rdr_items where kid_env = mkFsEnv [(occNameFS (nameOccName n), n) | n <- all_kids] -- | Combines 'AvailInfo's from the same family -- 'avails' may have several items with the same availName -- E.g import Ix( Ix(..), index ) -- will give Ix(Ix,index,range) and Ix(index) -- We want to combine these; addAvail does that nubAvails :: [AvailInfo] -> [AvailInfo] nubAvails avails = nameEnvElts (foldl add emptyNameEnv avails) where add env avail = extendNameEnv_C plusAvail env (availName avail) avail \end{code} %************************************************************************ %* * \subsection{Export list processing} %* * %************************************************************************ Processing the export list. You might think that we should record things that appear in the export list as ``occurrences'' (using @addOccurrenceName@), but you'd be wrong. We do check (here) that they are in scope, but there is no need to slurp in their actual declaration (which is what @addOccurrenceName@ forces). Indeed, doing so would big trouble when compiling @PrelBase@, because it re-exports @GHC@, which includes @takeMVar#@, whose type includes @ConcBase.StateAndSynchVar#@, and so on... Note [Exports of data families] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Suppose you see (Trac #5306) module M where import X( F ) data instance F Int = FInt What does M export? AvailTC F [FInt] or AvailTC F [F,FInt]? The former is strictly right because F isn't defined in this module. But then you can never do an explicit import of M, thus import M( F( FInt ) ) because F isn't exported by M. Nor can you import FInt alone from here import M( FInt ) because we don't have syntax to support that. (It looks like an import of the type FInt.) At one point I implemented a compromise: * When constructing exports with no export list, or with module M( module M ), we add the parent to the exports as well. * But not when you see module M( f ), even if f is a class method with a parent. * Nor when you see module M( module N ), with N /= M. But the compromise seemed too much of a hack, so we backed it out. You just have to use an explicit export list: module M( F(..) ) where ... \begin{code} type ExportAccum -- The type of the accumulating parameter of -- the main worker function in rnExports = ([LIE Name], -- Export items with Names ExportOccMap, -- Tracks exported occurrence names [AvailInfo]) -- The accumulated exported stuff -- Not nub'd! emptyExportAccum :: ExportAccum emptyExportAccum = ([], emptyOccEnv, []) type ExportOccMap = OccEnv (Name, IE RdrName) -- Tracks what a particular exported OccName -- in an export list refers to, and which item -- it came from. It's illegal to export two distinct things -- that have the same occurrence name rnExports :: Bool -- False => no 'module M(..) where' header at all -> Maybe [LIE RdrName] -- Nothing => no explicit export list -> TcGblEnv -> RnM TcGblEnv -- Complains if two distinct exports have same OccName -- Warns about identical exports. -- Complains about exports items not in scope rnExports explicit_mod exports tcg_env@(TcGblEnv { tcg_mod = this_mod, tcg_rdr_env = rdr_env, tcg_imports = imports }) = unsetWOptM Opt_WarnWarningsDeprecations $ -- Do not report deprecations arising from the export -- list, to avoid bleating about re-exporting a deprecated -- thing (especially via 'module Foo' export item) do { -- If the module header is omitted altogether, then behave -- as if the user had written "module Main(main) where..." -- EXCEPT in interactive mode, when we behave as if he had -- written "module Main where ..." -- Reason: don't want to complain about 'main' not in scope -- in interactive mode ; dflags <- getDynFlags ; let real_exports | explicit_mod = exports | ghcLink dflags == LinkInMemory = Nothing | otherwise = Just [noLoc (IEVar main_RDR_Unqual)] -- ToDo: the 'noLoc' here is unhelpful if 'main' -- turns out to be out of scope ; (rn_exports, avails) <- exports_from_avail real_exports rdr_env imports this_mod ; let final_avails = nubAvails avails -- Combine families ; traceRn (text "rnExports: Exports:" <+> ppr final_avails) ; return (tcg_env { tcg_exports = final_avails, tcg_rn_exports = case tcg_rn_exports tcg_env of Nothing -> Nothing Just _ -> rn_exports, tcg_dus = tcg_dus tcg_env `plusDU` usesOnly (availsToNameSet final_avails) }) } exports_from_avail :: Maybe [LIE RdrName] -- Nothing => no explicit export list -> GlobalRdrEnv -> ImportAvails -> Module -> RnM (Maybe [LIE Name], [AvailInfo]) exports_from_avail Nothing rdr_env _imports _this_mod = -- The same as (module M) where M is the current module name, -- so that's how we handle it. let avails = [ greExportAvail gre | gre <- globalRdrEnvElts rdr_env , isLocalGRE gre ] in return (Nothing, avails) exports_from_avail (Just rdr_items) rdr_env imports this_mod = do (ie_names, _, exports) <- foldlM do_litem emptyExportAccum rdr_items return (Just ie_names, exports) where do_litem :: ExportAccum -> LIE RdrName -> RnM ExportAccum do_litem acc lie = setSrcSpan (getLoc lie) (exports_from_item acc lie) kids_env :: NameEnv [Name] -- Maps a parent to its in-scope children kids_env = mkChildEnv (globalRdrEnvElts rdr_env) imported_modules = [ qual_name | xs <- moduleEnvElts $ imp_mods imports, (qual_name, _, _, _) <- xs ] exports_from_item :: ExportAccum -> LIE RdrName -> RnM ExportAccum exports_from_item acc@(ie_names, occs, exports) (L loc (IEModuleContents mod)) | let earlier_mods = [ mod | (L _ (IEModuleContents mod)) <- ie_names ] , mod `elem` earlier_mods -- Duplicate export of M = do { warn_dup_exports <- woptM Opt_WarnDuplicateExports ; warnIf warn_dup_exports (dupModuleExport mod) ; return acc } | otherwise = do { implicit_prelude <- xoptM Opt_ImplicitPrelude ; warnDodgyExports <- woptM Opt_WarnDodgyExports ; let { exportValid = (mod `elem` imported_modules) || (moduleName this_mod == mod) ; gres = filter (isModuleExported implicit_prelude mod) (globalRdrEnvElts rdr_env) ; new_exports = map greExportAvail gres ; names = map gre_name gres } ; checkErr exportValid (moduleNotImported mod) ; warnIf (warnDodgyExports && exportValid && null names) (nullModuleExport mod) ; addUsedRdrNames (concat [ [mkRdrQual mod occ, mkRdrUnqual occ] | occ <- map nameOccName names ]) -- The qualified and unqualified version of all of -- these names are, in effect, used by this export ; occs' <- check_occs (IEModuleContents mod) occs names -- This check_occs not only finds conflicts -- between this item and others, but also -- internally within this item. That is, if -- 'M.x' is in scope in several ways, we'll have -- several members of mod_avails with the same -- OccName. ; traceRn (vcat [ text "export mod" <+> ppr mod , ppr new_exports ]) ; return (L loc (IEModuleContents mod) : ie_names, occs', new_exports ++ exports) } exports_from_item acc@(lie_names, occs, exports) (L loc ie) | isDoc ie = do new_ie <- lookup_doc_ie ie return (L loc new_ie : lie_names, occs, exports) | otherwise = do (new_ie, avail) <- lookup_ie ie if isUnboundName (ieName new_ie) then return acc -- Avoid error cascade else do occs' <- check_occs ie occs (availNames avail) return (L loc new_ie : lie_names, occs', avail : exports) ------------- lookup_ie :: IE RdrName -> RnM (IE Name, AvailInfo) lookup_ie (IEVar rdr) = do gre <- lookupGreRn rdr return (IEVar (gre_name gre), greExportAvail gre) lookup_ie (IEThingAbs rdr) = do gre <- lookupGreRn rdr let name = gre_name gre avail = greExportAvail gre return (IEThingAbs name, avail) lookup_ie ie@(IEThingAll rdr) = do name <- lookupGlobalOccRn rdr let kids = findChildren kids_env name addUsedKids rdr kids warnDodgyExports <- woptM Opt_WarnDodgyExports when (null kids) $ if isTyConName name then when warnDodgyExports $ addWarn (dodgyExportWarn name) else -- This occurs when you export T(..), but -- only import T abstractly, or T is a synonym. addErr (exportItemErr ie) return (IEThingAll name, AvailTC name (name:kids)) lookup_ie ie@(IEThingWith rdr sub_rdrs) = do name <- lookupGlobalOccRn rdr if isUnboundName name then return (IEThingWith name [], AvailTC name [name]) else do let mb_names = lookupChildren (findChildren kids_env name) sub_rdrs if any isNothing mb_names then do addErr (exportItemErr ie) return (IEThingWith name [], AvailTC name [name]) else do let names = catMaybes mb_names addUsedKids rdr names return (IEThingWith name names, AvailTC name (name:names)) lookup_ie _ = panic "lookup_ie" -- Other cases covered earlier ------------- lookup_doc_ie :: IE RdrName -> RnM (IE Name) lookup_doc_ie (IEGroup lev doc) = do rn_doc <- rnHsDoc doc return (IEGroup lev rn_doc) lookup_doc_ie (IEDoc doc) = do rn_doc <- rnHsDoc doc return (IEDoc rn_doc) lookup_doc_ie (IEDocNamed str) = return (IEDocNamed str) lookup_doc_ie _ = panic "lookup_doc_ie" -- Other cases covered earlier -- In an export item M.T(A,B,C), we want to treat the uses of -- A,B,C as if they were M.A, M.B, M.C addUsedKids parent_rdr kid_names = addUsedRdrNames $ map (mk_kid_rdr . nameOccName) kid_names where mk_kid_rdr = case isQual_maybe parent_rdr of Nothing -> mkRdrUnqual Just (modName, _) -> mkRdrQual modName isDoc :: IE RdrName -> Bool isDoc (IEDoc _) = True isDoc (IEDocNamed _) = True isDoc (IEGroup _ _) = True isDoc _ = False ------------------------------- isModuleExported :: Bool -> ModuleName -> GlobalRdrElt -> Bool -- True if the thing is in scope *both* unqualified, *and* with qualifier M isModuleExported implicit_prelude mod (GRE { gre_name = name, gre_prov = prov }) | implicit_prelude && isBuiltInSyntax name = False -- Optimisation: filter out names for built-in syntax -- They just clutter up the environment (esp tuples), and the parser -- will generate Exact RdrNames for them, so the cluttered -- envt is no use. To avoid doing this filter all the time, -- we use -XNoImplicitPrelude as a clue that the filter is -- worth while. Really, it's only useful for GHC.Base and GHC.Tuple. -- -- It's worth doing because it makes the environment smaller for -- every module that imports the Prelude | otherwise = case prov of LocalDef | Just name_mod <- nameModule_maybe name -> moduleName name_mod == mod | otherwise -> False Imported is -> any unQualSpecOK is && any (qualSpecOK mod) is ------------------------------- check_occs :: IE RdrName -> ExportOccMap -> [Name] -> RnM ExportOccMap check_occs ie occs names -- 'names' are the entities specifed by 'ie' = foldlM check occs names where check occs name = case lookupOccEnv occs name_occ of Nothing -> return (extendOccEnv occs name_occ (name, ie)) Just (name', ie') | name == name' -- Duplicate export -- But we don't want to warn if the same thing is exported -- by two different module exports. See ticket #4478. -> do unless (dupExport_ok name ie ie') $ do warn_dup_exports <- woptM Opt_WarnDuplicateExports warnIf warn_dup_exports (dupExportWarn name_occ ie ie') return occs | otherwise -- Same occ name but different names: an error -> do { global_env <- getGlobalRdrEnv ; addErr (exportClashErr global_env name' name ie' ie) ; return occs } where name_occ = nameOccName name dupExport_ok :: Name -> IE RdrName -> IE RdrName -> Bool -- The Name is exported by both IEs. Is that ok? -- "No" iff the name is mentioned explicitly in both IEs -- or one of the IEs mentions the name *alone* -- "Yes" otherwise -- -- Examples of "no": module M( f, f ) -- module M( fmap, Functor(..) ) -- module M( module Data.List, head ) -- -- Example of "yes" -- module M( module A, module B ) where -- import A( f ) -- import B( f ) -- -- Example of "yes" (Trac #2436) -- module M( C(..), T(..) ) where -- class C a where { data T a } -- instace C Int where { data T Int = TInt } -- -- Example of "yes" (Trac #2436) -- module Foo ( T ) where -- data family T a -- module Bar ( T(..), module Foo ) where -- import Foo -- data instance T Int = TInt dupExport_ok n ie1 ie2 = not ( single ie1 || single ie2 || (explicit_in ie1 && explicit_in ie2) ) where explicit_in (IEModuleContents _) = False -- module M explicit_in (IEThingAll r) = nameOccName n == rdrNameOcc r -- T(..) explicit_in _ = True single (IEVar {}) = True single (IEThingAbs {}) = True single _ = False \end{code} %********************************************************* %* * \subsection{Unused names} %* * %********************************************************* \begin{code} reportUnusedNames :: Maybe [LIE RdrName] -- Export list -> TcGblEnv -> RnM () reportUnusedNames _export_decls gbl_env = do { traceRn ((text "RUN") <+> (ppr (tcg_dus gbl_env))) ; warnUnusedImportDecls gbl_env ; warnUnusedTopBinds unused_locals } where used_names :: NameSet used_names = findUses (tcg_dus gbl_env) emptyNameSet -- NB: currently, if f x = g, we only treat 'g' as used if 'f' is used -- Hence findUses -- Collect the defined names from the in-scope environment defined_names :: [GlobalRdrElt] defined_names = globalRdrEnvElts (tcg_rdr_env gbl_env) -- Note that defined_and_used, defined_but_not_used -- are both [GRE]; that's why we need defined_and_used -- rather than just used_names _defined_and_used, defined_but_not_used :: [GlobalRdrElt] (_defined_and_used, defined_but_not_used) = partition (gre_is_used used_names) defined_names kids_env = mkChildEnv defined_names -- This is done in mkExports too; duplicated work gre_is_used :: NameSet -> GlobalRdrElt -> Bool gre_is_used used_names (GRE {gre_name = name}) = name `elemNameSet` used_names || any (`elemNameSet` used_names) (findChildren kids_env name) -- A use of C implies a use of T, -- if C was brought into scope by T(..) or T(C) -- Filter out the ones that are -- (a) defined in this module, and -- (b) not defined by a 'deriving' clause -- The latter have an Internal Name, so we can filter them out easily unused_locals :: [GlobalRdrElt] unused_locals = filter is_unused_local defined_but_not_used is_unused_local :: GlobalRdrElt -> Bool is_unused_local gre = isLocalGRE gre && isExternalName (gre_name gre) \end{code} %********************************************************* %* * \subsection{Unused imports} %* * %********************************************************* This code finds which import declarations are unused. The specification and implementation notes are here: http://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/UnusedImports \begin{code} type ImportDeclUsage = ( LImportDecl Name -- The import declaration , [AvailInfo] -- What *is* used (normalised) , [Name] ) -- What is imported but *not* used \end{code} \begin{code} warnUnusedImportDecls :: TcGblEnv -> RnM () warnUnusedImportDecls gbl_env = do { uses <- readMutVar (tcg_used_rdrnames gbl_env) ; let imports = filter explicit_import (tcg_rn_imports gbl_env) rdr_env = tcg_rdr_env gbl_env ; let usage :: [ImportDeclUsage] usage = findImportUsage imports rdr_env (Set.elems uses) ; traceRn (vcat [ ptext (sLit "Uses:") <+> ppr (Set.elems uses) , ptext (sLit "Import usage") <+> ppr usage]) ; whenWOptM Opt_WarnUnusedImports $ mapM_ warnUnusedImport usage ; whenGOptM Opt_D_dump_minimal_imports $ printMinimalImports usage } where explicit_import (L _ decl) = not (ideclImplicit decl) -- Filter out the implicit Prelude import -- which we do not want to bleat about \end{code} Note [The ImportMap] ~~~~~~~~~~~~~~~~~~~~ The ImportMap is a short-lived intermediate data struture records, for each import declaration, what stuff brought into scope by that declaration is actually used in the module. The SrcLoc is the location of the END of a particular 'import' declaration. Why *END*? Because we don't want to get confused by the implicit Prelude import. Consider (Trac #7476) the module import Foo( foo ) main = print foo There is an implicit 'import Prelude(print)', and it gets a SrcSpan of line 1:1 (just the point, not a span). If we use the *START* of the SrcSpan to identify the import decl, we'll confuse the implicit import Prelude with the explicit 'import Foo'. So we use the END. It's just a cheap hack; we could equally well use the Span too. The AvailInfos are the things imported from that decl (just a list, not normalised). \begin{code} type ImportMap = Map SrcLoc [AvailInfo] -- See [The ImportMap] findImportUsage :: [LImportDecl Name] -> GlobalRdrEnv -> [RdrName] -> [ImportDeclUsage] findImportUsage imports rdr_env rdrs = map unused_decl imports where import_usage :: ImportMap import_usage = foldr (extendImportMap rdr_env) Map.empty rdrs unused_decl decl@(L loc (ImportDecl { ideclHiding = imps })) = (decl, nubAvails used_avails, nameSetToList unused_imps) where used_avails = Map.lookup (srcSpanEnd loc) import_usage `orElse` [] -- srcSpanEnd: see Note [The ImportMap] used_names = availsToNameSet used_avails used_parents = mkNameSet [n | AvailTC n _ <- used_avails] unused_imps -- Not trivial; see eg Trac #7454 = case imps of Just (False, imp_ies) -> foldr (add_unused . unLoc) emptyNameSet imp_ies _other -> emptyNameSet -- No explicit import list => no unused-name list add_unused :: IE Name -> NameSet -> NameSet add_unused (IEVar n) acc = add_unused_name n acc add_unused (IEThingAbs n) acc = add_unused_name n acc add_unused (IEThingAll n) acc = add_unused_all n acc add_unused (IEThingWith p ns) acc = add_unused_with p ns acc add_unused _ acc = acc add_unused_name n acc | n `elemNameSet` used_names = acc | otherwise = acc `addOneToNameSet` n add_unused_all n acc | n `elemNameSet` used_names = acc | n `elemNameSet` used_parents = acc | otherwise = acc `addOneToNameSet` n add_unused_with p ns acc | all (`elemNameSet` acc1) ns = add_unused_name p acc1 | otherwise = acc1 where acc1 = foldr add_unused_name acc ns -- If you use 'signum' from Num, then the user may well have -- imported Num(signum). We don't want to complain that -- Num is not itself mentioned. Hence the two cases in add_unused_with. extendImportMap :: GlobalRdrEnv -> RdrName -> ImportMap -> ImportMap -- For a used RdrName, find all the import decls that brought -- it into scope; choose one of them (bestImport), and record -- the RdrName in that import decl's entry in the ImportMap extendImportMap rdr_env rdr imp_map | [gre] <- lookupGRE_RdrName rdr rdr_env , Imported imps <- gre_prov gre = add_imp gre (bestImport imps) imp_map | otherwise = imp_map where add_imp :: GlobalRdrElt -> ImportSpec -> ImportMap -> ImportMap add_imp gre (ImpSpec { is_decl = imp_decl_spec }) imp_map = Map.insertWith add decl_loc [avail] imp_map where add _ avails = avail : avails -- add is really just a specialised (++) decl_loc = srcSpanEnd (is_dloc imp_decl_spec) -- For srcSpanEnd see Note [The ImportMap] avail = greExportAvail gre bestImport :: [ImportSpec] -> ImportSpec bestImport iss = case partition isImpAll iss of ([], imp_somes) -> textuallyFirst imp_somes (imp_alls, _) -> textuallyFirst imp_alls textuallyFirst :: [ImportSpec] -> ImportSpec textuallyFirst iss = case sortWith (is_dloc . is_decl) iss of [] -> pprPanic "textuallyFirst" (ppr iss) (is:_) -> is isImpAll :: ImportSpec -> Bool isImpAll (ImpSpec { is_item = ImpAll }) = True isImpAll _other = False \end{code} \begin{code} warnUnusedImport :: ImportDeclUsage -> RnM () warnUnusedImport (L loc decl, used, unused) | Just (False,[]) <- ideclHiding decl = return () -- Do not warn for 'import M()' | null used = addWarnAt loc msg1 -- Nothing used; drop entire decl | null unused = return () -- Everything imported is used; nop | otherwise = addWarnAt loc msg2 -- Some imports are unused where msg1 = vcat [pp_herald <+> quotes pp_mod <+> pp_not_used, nest 2 (ptext (sLit "except perhaps to import instances from") <+> quotes pp_mod), ptext (sLit "To import instances alone, use:") <+> ptext (sLit "import") <+> pp_mod <> parens empty ] msg2 = sep [pp_herald <+> quotes (pprWithCommas ppr unused), text "from module" <+> quotes pp_mod <+> pp_not_used] pp_herald = text "The" <+> pp_qual <+> text "import of" pp_qual | ideclQualified decl = text "qualified" | otherwise = empty pp_mod = ppr (unLoc (ideclName decl)) pp_not_used = text "is redundant" \end{code} To print the minimal imports we walk over the user-supplied import decls, and simply trim their import lists. NB that * We do *not* change the 'qualified' or 'as' parts! * We do not disard a decl altogether; we might need instances from it. Instead we just trim to an empty import list \begin{code} printMinimalImports :: [ImportDeclUsage] -> RnM () printMinimalImports imports_w_usage = do { imports' <- mapM mk_minimal imports_w_usage ; this_mod <- getModule ; dflags <- getDynFlags ; liftIO $ do { h <- openFile (mkFilename dflags this_mod) WriteMode ; printForUser dflags h neverQualify (vcat (map ppr imports')) } -- The neverQualify is important. We are printing Names -- but they are in the context of an 'import' decl, and -- we never qualify things inside there -- E.g. import Blag( f, b ) -- not import Blag( Blag.f, Blag.g )! } where mkFilename dflags this_mod | Just d <- dumpDir dflags = d basefn | otherwise = basefn where basefn = moduleNameString (moduleName this_mod) ++ ".imports" mk_minimal (L l decl, used, unused) | null unused , Just (False, _) <- ideclHiding decl = return (L l decl) | otherwise = do { let ImportDecl { ideclName = L _ mod_name , ideclSource = is_boot , ideclPkgQual = mb_pkg } = decl ; iface <- loadSrcInterface doc mod_name is_boot mb_pkg ; let lies = map (L l) (concatMap (to_ie iface) used) ; return (L l (decl { ideclHiding = Just (False, lies) })) } where doc = text "Compute minimal imports for" <+> ppr decl to_ie :: ModIface -> AvailInfo -> [IE Name] -- The main trick here is that if we're importing all the constructors -- we want to say "T(..)", but if we're importing only a subset we want -- to say "T(A,B,C)". So we have to find out what the module exports. to_ie _ (Avail n) = [IEVar n] to_ie _ (AvailTC n [m]) | n==m = [IEThingAbs n] to_ie iface (AvailTC n ns) = case [xs | AvailTC x xs <- mi_exports iface , x == n , x `elem` xs -- Note [Partial export] ] of [xs] | all_used xs -> [IEThingAll n] | otherwise -> [IEThingWith n (filter (/= n) ns)] _other -> map IEVar ns where all_used avail_occs = all (`elem` ns) avail_occs \end{code} Note [Partial export] ~~~~~~~~~~~~~~~~~~~~~ Suppose we have module A( op ) where class C a where op :: a -> a module B where import A f = ..op... Then the minimal import for module B is import A( op ) not import A( C( op ) ) which we would usually generate if C was exported from B. Hence the (x `elem` xs) test when deciding what to generate. %************************************************************************ %* * \subsection{Errors} %* * %************************************************************************ \begin{code} qualImportItemErr :: RdrName -> SDoc qualImportItemErr rdr = hang (ptext (sLit "Illegal qualified name in import item:")) 2 (ppr rdr) badImportItemErrStd :: ModIface -> ImpDeclSpec -> IE RdrName -> SDoc badImportItemErrStd iface decl_spec ie = sep [ptext (sLit "Module"), quotes (ppr (is_mod decl_spec)), source_import, ptext (sLit "does not export"), quotes (ppr ie)] where source_import | mi_boot iface = ptext (sLit "(hi-boot interface)") | otherwise = empty badImportItemErrDataCon :: OccName -> ModIface -> ImpDeclSpec -> IE RdrName -> SDoc badImportItemErrDataCon dataType iface decl_spec ie = vcat [ ptext (sLit "In module") <+> quotes (ppr (is_mod decl_spec)) <+> source_import <> colon , nest 2 $ quotes datacon <+> ptext (sLit "is a data constructor of") <+> quotes (ppr dataType) , ptext (sLit "To import it use") , nest 2 $ quotes (ptext (sLit "import")) <+> ppr (is_mod decl_spec) <> parens_sp (ppr dataType <> parens_sp datacon) , ptext (sLit "or") , nest 2 $ quotes (ptext (sLit "import")) <+> ppr (is_mod decl_spec) <> parens_sp (ppr dataType <> ptext (sLit "(..)")) ] where datacon_occ = rdrNameOcc $ ieName ie datacon = parenSymOcc datacon_occ (ppr datacon_occ) source_import | mi_boot iface = ptext (sLit "(hi-boot interface)") | otherwise = empty parens_sp d = parens (space <> d <> space) -- T( f,g ) badImportItemErr :: ModIface -> ImpDeclSpec -> IE RdrName -> [AvailInfo] -> SDoc badImportItemErr iface decl_spec ie avails = case find checkIfDataCon avails of Just con -> badImportItemErrDataCon (availOccName con) iface decl_spec ie Nothing -> badImportItemErrStd iface decl_spec ie where checkIfDataCon (AvailTC _ ns) = case find (\n -> importedFS == nameOccNameFS n) ns of Just n -> isDataConName n Nothing -> False checkIfDataCon _ = False availOccName = nameOccName . availName nameOccNameFS = occNameFS . nameOccName importedFS = occNameFS . rdrNameOcc $ ieName ie illegalImportItemErr :: SDoc illegalImportItemErr = ptext (sLit "Illegal import item") dodgyImportWarn :: RdrName -> SDoc dodgyImportWarn item = dodgyMsg (ptext (sLit "import")) item dodgyExportWarn :: Name -> SDoc dodgyExportWarn item = dodgyMsg (ptext (sLit "export")) item dodgyMsg :: (OutputableBndr n, HasOccName n) => SDoc -> n -> SDoc dodgyMsg kind tc = sep [ ptext (sLit "The") <+> kind <+> ptext (sLit "item") <+> quotes (ppr (IEThingAll tc)) <+> ptext (sLit "suggests that"), quotes (ppr tc) <+> ptext (sLit "has (in-scope) constructors or class methods,"), ptext (sLit "but it has none") ] exportItemErr :: IE RdrName -> SDoc exportItemErr export_item = sep [ ptext (sLit "The export item") <+> quotes (ppr export_item), ptext (sLit "attempts to export constructors or class methods that are not visible here") ] exportClashErr :: GlobalRdrEnv -> Name -> Name -> IE RdrName -> IE RdrName -> MsgDoc exportClashErr global_env name1 name2 ie1 ie2 = vcat [ ptext (sLit "Conflicting exports for") <+> quotes (ppr occ) <> colon , ppr_export ie1' name1' , ppr_export ie2' name2' ] where occ = nameOccName name1 ppr_export ie name = nest 3 (hang (quotes (ppr ie) <+> ptext (sLit "exports") <+> quotes (ppr name)) 2 (pprNameProvenance (get_gre name))) -- get_gre finds a GRE for the Name, so that we can show its provenance get_gre name = case lookupGRE_Name global_env name of (gre:_) -> gre [] -> pprPanic "exportClashErr" (ppr name) get_loc name = greSrcSpan (get_gre name) (name1', ie1', name2', ie2') = if get_loc name1 < get_loc name2 then (name1, ie1, name2, ie2) else (name2, ie2, name1, ie1) -- the SrcSpan that pprNameProvenance prints out depends on whether -- the Name is defined locally or not: for a local definition the -- definition site is used, otherwise the location of the import -- declaration. We want to sort the export locations in -- exportClashErr by this SrcSpan, we need to extract it: greSrcSpan :: GlobalRdrElt -> SrcSpan greSrcSpan gre | Imported (is:_) <- gre_prov gre = is_dloc (is_decl is) | otherwise = name_span where name_span = nameSrcSpan (gre_name gre) addDupDeclErr :: [Name] -> TcRn () addDupDeclErr [] = panic "addDupDeclErr: empty list" addDupDeclErr names@(name : _) = addErrAt (getSrcSpan (last sorted_names)) $ -- Report the error at the later location vcat [ptext (sLit "Multiple declarations of") <+> quotes (ppr (nameOccName name)), -- NB. print the OccName, not the Name, because the -- latter might not be in scope in the RdrEnv and so will -- be printed qualified. ptext (sLit "Declared at:") <+> vcat (map (ppr . nameSrcLoc) sorted_names)] where sorted_names = sortWith nameSrcLoc names dupExportWarn :: OccName -> IE RdrName -> IE RdrName -> SDoc dupExportWarn occ_name ie1 ie2 = hsep [quotes (ppr occ_name), ptext (sLit "is exported by"), quotes (ppr ie1), ptext (sLit "and"), quotes (ppr ie2)] dupModuleExport :: ModuleName -> SDoc dupModuleExport mod = hsep [ptext (sLit "Duplicate"), quotes (ptext (sLit "Module") <+> ppr mod), ptext (sLit "in export list")] moduleNotImported :: ModuleName -> SDoc moduleNotImported mod = ptext (sLit "The export item `module") <+> ppr mod <> ptext (sLit "' is not imported") nullModuleExport :: ModuleName -> SDoc nullModuleExport mod = ptext (sLit "The export item `module") <+> ppr mod <> ptext (sLit "' exports nothing") missingImportListWarn :: ModuleName -> SDoc missingImportListWarn mod = ptext (sLit "The module") <+> quotes (ppr mod) <+> ptext (sLit "does not have an explicit import list") missingImportListItem :: IE RdrName -> SDoc missingImportListItem ie = ptext (sLit "The import item") <+> quotes (ppr ie) <+> ptext (sLit "does not have an explicit import list") moduleWarn :: ModuleName -> WarningTxt -> SDoc moduleWarn mod (WarningTxt txt) = sep [ ptext (sLit "Module") <+> quotes (ppr mod) <> ptext (sLit ":"), nest 2 (vcat (map ppr txt)) ] moduleWarn mod (DeprecatedTxt txt) = sep [ ptext (sLit "Module") <+> quotes (ppr mod) <+> ptext (sLit "is deprecated:"), nest 2 (vcat (map ppr txt)) ] packageImportErr :: SDoc packageImportErr = ptext (sLit "Package-qualified imports are not enabled; use PackageImports") \end{code}