% % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % \section[RnSource]{Main pass of renamer} \begin{code} module RnSource ( rnSrcDecls, addTcgDUs, rnTyClDecls, checkModDeprec, rnSplice, checkTH ) where #include "HsVersions.h" import {-# SOURCE #-} RnExpr( rnLExpr ) import HsSyn import RdrName ( RdrName, isRdrDataCon, elemLocalRdrEnv, globalRdrEnvElts, GlobalRdrElt(..), isLocalGRE ) import RdrHsSyn ( extractGenericPatTyVars, extractHsRhoRdrTyVars ) import RnHsSyn import RnTypes ( rnLHsType, rnLHsTypes, rnHsSigType, rnHsTypeFVs, rnContext ) import RnBinds ( rnTopBinds, rnMethodBinds, renameSigs, mkSigTvFn ) import RnEnv ( lookupLocalDataTcNames, lookupLocatedTopBndrRn, lookupLocatedOccRn, lookupOccRn, lookupTopBndrRn, newLocalsRn, bindLocatedLocalsFV, bindPatSigTyVarsFV, bindTyVarsRn, extendTyVarEnvFVRn, bindLocalNames, checkDupNames, mapFvRn ) import RnHsDoc ( rnHsDoc, rnMbLHsDoc ) import TcRnMonad import HscTypes ( FixityEnv, FixItem(..), Deprecations, Deprecs(..), DeprecTxt, plusDeprecs ) import Class ( FunDep ) import Name ( Name, nameOccName ) import NameSet import NameEnv import OccName ( occEnvElts ) import Outputable import SrcLoc ( Located(..), unLoc, noLoc ) import DynFlags ( DynFlag(..) ) import Maybes ( seqMaybe ) import Maybe ( isNothing, isJust ) import Monad ( liftM, when ) import BasicTypes ( Boxity(..) ) \end{code} @rnSourceDecl@ `renames' declarations. It simultaneously performs dependency analysis and precedence parsing. It also does the following error checks: \begin{enumerate} \item Checks that tyvars are used properly. This includes checking for undefined tyvars, and tyvars in contexts that are ambiguous. (Some of this checking has now been moved to module @TcMonoType@, since we don't have functional dependency information at this point.) \item Checks that all variable occurences are defined. \item Checks the @(..)@ etc constraints in the export list. \end{enumerate} \begin{code} rnSrcDecls :: HsGroup RdrName -> RnM (TcGblEnv, HsGroup Name) rnSrcDecls (HsGroup { hs_valds = val_decls, hs_tyclds = tycl_decls, hs_instds = inst_decls, hs_derivds = deriv_decls, hs_fixds = fix_decls, hs_depds = deprec_decls, hs_fords = foreign_decls, hs_defds = default_decls, hs_ruleds = rule_decls, hs_docs = docs }) = do { -- Deal with deprecations (returns only the extra deprecations) deprecs <- rnSrcDeprecDecls deprec_decls ; updGblEnv (\gbl -> gbl { tcg_deprecs = tcg_deprecs gbl `plusDeprecs` deprecs }) $ do { -- Deal with top-level fixity decls -- (returns the total new fixity env) rn_fix_decls <- rnSrcFixityDecls fix_decls ; fix_env <- rnSrcFixityDeclsEnv rn_fix_decls ; updGblEnv (\gbl -> gbl { tcg_fix_env = fix_env }) $ do { -- Rename other declarations traceRn (text "Start rnmono") ; (rn_val_decls, bind_dus) <- rnTopBinds val_decls ; traceRn (text "finish rnmono" <+> ppr rn_val_decls) ; -- You might think that we could build proper def/use information -- for type and class declarations, but they can be involved -- in mutual recursion across modules, and we only do the SCC -- analysis for them in the type checker. -- So we content ourselves with gathering uses only; that -- means we'll only report a declaration as unused if it isn't -- mentioned at all. Ah well. traceRn (text "Start rnTyClDecls") ; (rn_tycl_decls, src_fvs1) <- mapFvRn (wrapLocFstM rnTyClDecl) tycl_decls ; traceRn (text "finish rnTyClDecls") ; (rn_inst_decls, src_fvs2) <- mapFvRn (wrapLocFstM rnSrcInstDecl) inst_decls ; (rn_deriv_decls, src_fvs_deriv) <- mapFvRn (wrapLocFstM rnSrcDerivDecl) deriv_decls ; (rn_rule_decls, src_fvs3) <- mapFvRn (wrapLocFstM rnHsRuleDecl) rule_decls ; (rn_foreign_decls, src_fvs4) <- mapFvRn (wrapLocFstM rnHsForeignDecl) foreign_decls ; (rn_default_decls, src_fvs5) <- mapFvRn (wrapLocFstM rnDefaultDecl) default_decls ; rn_docs <- rnDocEntities docs ; let { rn_group = HsGroup { hs_valds = rn_val_decls, hs_tyclds = rn_tycl_decls, hs_instds = rn_inst_decls, hs_derivds = rn_deriv_decls, hs_fixds = rn_fix_decls, hs_depds = [], hs_fords = rn_foreign_decls, hs_defds = rn_default_decls, hs_ruleds = rn_rule_decls, hs_docs = rn_docs } ; other_fvs = plusFVs [src_fvs1, src_fvs2, src_fvs_deriv, src_fvs3, src_fvs4, src_fvs5] ; src_dus = bind_dus `plusDU` usesOnly other_fvs -- Note: src_dus will contain *uses* for locally-defined types -- and classes, but no *defs* for them. (Because rnTyClDecl -- returns only the uses.) This is a little -- surprising but it doesn't actually matter at all. } ; traceRn (text "finish rnSrc" <+> ppr rn_group) ; traceRn (text "finish Dus" <+> ppr src_dus ) ; tcg_env <- getGblEnv ; return (tcg_env `addTcgDUs` src_dus, rn_group) }}} rnTyClDecls :: [LTyClDecl RdrName] -> RnM [LTyClDecl Name] rnTyClDecls tycl_decls = do (decls', fvs) <- mapFvRn (wrapLocFstM rnTyClDecl) tycl_decls return decls' addTcgDUs :: TcGblEnv -> DefUses -> TcGblEnv addTcgDUs tcg_env dus = tcg_env { tcg_dus = tcg_dus tcg_env `plusDU` dus } \end{code} %********************************************************* %* * HsDoc stuff %* * %********************************************************* \begin{code} rnDocEntities :: [DocEntity RdrName] -> RnM [DocEntity Name] rnDocEntities ents = ifErrsM (return []) $ -- Yuk: stop if we have found errors. Otherwise -- the rnDocEntity stuff reports the errors again. mapM rnDocEntity ents rnDocEntity :: DocEntity RdrName -> RnM (DocEntity Name) rnDocEntity (DocEntity docdecl) = do rn_docdecl <- rnDocDecl docdecl return (DocEntity rn_docdecl) rnDocEntity (DeclEntity name) = do rn_name <- lookupTopBndrRn name return (DeclEntity rn_name) rnDocDecl :: DocDecl RdrName -> RnM (DocDecl Name) rnDocDecl (DocCommentNext doc) = do rn_doc <- rnHsDoc doc return (DocCommentNext rn_doc) rnDocDecl (DocCommentPrev doc) = do rn_doc <- rnHsDoc doc return (DocCommentPrev rn_doc) rnDocDecl (DocCommentNamed str doc) = do rn_doc <- rnHsDoc doc return (DocCommentNamed str rn_doc) rnDocDecl (DocGroup lev doc) = do rn_doc <- rnHsDoc doc return (DocGroup lev rn_doc) \end{code} %********************************************************* %* * Source-code fixity declarations %* * %********************************************************* \begin{code} rnSrcFixityDecls :: [LFixitySig RdrName] -> RnM [LFixitySig Name] rnSrcFixityDecls fix_decls = do fix_decls <- mapM rnFixityDecl fix_decls return (concat fix_decls) rnFixityDecl :: LFixitySig RdrName -> RnM [LFixitySig Name] rnFixityDecl (L loc (FixitySig (L nameLoc rdr_name) fixity)) = setSrcSpan nameLoc $ -- GHC extension: look up both the tycon and data con -- for con-like things -- If neither are in scope, report an error; otherwise -- add both to the fixity env do names <- lookupLocalDataTcNames rdr_name return [ L loc (FixitySig (L nameLoc name) fixity) | name <- names ] rnSrcFixityDeclsEnv :: [LFixitySig Name] -> RnM FixityEnv rnSrcFixityDeclsEnv fix_decls = getGblEnv `thenM` \ gbl_env -> foldlM rnFixityDeclEnv (tcg_fix_env gbl_env) fix_decls `thenM` \ fix_env -> traceRn (text "fixity env" <+> pprFixEnv fix_env) `thenM_` returnM fix_env rnFixityDeclEnv :: FixityEnv -> LFixitySig Name -> RnM FixityEnv rnFixityDeclEnv fix_env (L loc (FixitySig (L nameLoc name) fixity)) = case lookupNameEnv fix_env name of Just (FixItem _ _ loc') -> do addLocErr (L nameLoc name) (dupFixityDecl loc') return fix_env Nothing -> return (extendNameEnv fix_env name fix_item) where fix_item = FixItem (nameOccName name) fixity nameLoc pprFixEnv :: FixityEnv -> SDoc pprFixEnv env = pprWithCommas (\ (FixItem n f _) -> ppr f <+> ppr n) (nameEnvElts env) dupFixityDecl loc rdr_name = vcat [ptext SLIT("Multiple fixity declarations for") <+> quotes (ppr rdr_name), ptext SLIT("also at ") <+> ppr loc ] \end{code} %********************************************************* %* * Source-code deprecations declarations %* * %********************************************************* For deprecations, all we do is check that the names are in scope. It's only imported deprecations, dealt with in RnIfaces, that we gather them together. \begin{code} rnSrcDeprecDecls :: [LDeprecDecl RdrName] -> RnM Deprecations rnSrcDeprecDecls [] = returnM NoDeprecs rnSrcDeprecDecls decls = mappM (addLocM rn_deprec) decls `thenM` \ pairs_s -> returnM (DeprecSome (mkNameEnv (concat pairs_s))) where rn_deprec (Deprecation rdr_name txt) = lookupLocalDataTcNames rdr_name `thenM` \ names -> returnM [(name, (nameOccName name, txt)) | name <- names] checkModDeprec :: Maybe DeprecTxt -> Deprecations -- Check for a module deprecation; done once at top level checkModDeprec Nothing = NoDeprecs checkModDeprec (Just txt) = DeprecAll txt \end{code} %********************************************************* %* * \subsection{Source code declarations} %* * %********************************************************* \begin{code} rnDefaultDecl (DefaultDecl tys) = mapFvRn (rnHsTypeFVs doc_str) tys `thenM` \ (tys', fvs) -> returnM (DefaultDecl tys', fvs) where doc_str = text "In a `default' declaration" \end{code} %********************************************************* %* * \subsection{Foreign declarations} %* * %********************************************************* \begin{code} rnHsForeignDecl (ForeignImport name ty spec) = lookupLocatedTopBndrRn name `thenM` \ name' -> rnHsTypeFVs (fo_decl_msg name) ty `thenM` \ (ty', fvs) -> returnM (ForeignImport name' ty' spec, fvs) rnHsForeignDecl (ForeignExport name ty spec) = lookupLocatedOccRn name `thenM` \ name' -> rnHsTypeFVs (fo_decl_msg name) ty `thenM` \ (ty', fvs) -> returnM (ForeignExport name' ty' spec, fvs ) -- NB: a foreign export is an *occurrence site* for name, so -- we add it to the free-variable list. It might, for example, -- be imported from another module fo_decl_msg name = ptext SLIT("In the foreign declaration for") <+> ppr name \end{code} %********************************************************* %* * \subsection{Instance declarations} %* * %********************************************************* \begin{code} rnSrcInstDecl (InstDecl inst_ty mbinds uprags ats) -- Used for both source and interface file decls = rnHsSigType (text "an instance decl") inst_ty `thenM` \ inst_ty' -> -- Rename the associated types -- The typechecker (not the renamer) checks that all -- the declarations are for the right class let at_doc = text "In the associated types of an instance declaration" at_names = map (head . tyClDeclNames . unLoc) ats in checkDupNames at_doc at_names `thenM_` rnATInsts ats `thenM` \ (ats', at_fvs) -> -- Rename the bindings -- The typechecker (not the renamer) checks that all -- the bindings are for the right class let meth_doc = text "In the bindings in an instance declaration" meth_names = collectHsBindLocatedBinders mbinds (inst_tyvars, _, cls,_) = splitHsInstDeclTy (unLoc inst_ty') in checkDupNames meth_doc meth_names `thenM_` extendTyVarEnvForMethodBinds inst_tyvars ( -- (Slightly strangely) the forall-d tyvars scope over -- the method bindings too rnMethodBinds cls (\n->[]) -- No scoped tyvars [] mbinds ) `thenM` \ (mbinds', meth_fvs) -> -- Rename the prags and signatures. -- Note that the type variables are not in scope here, -- so that instance Eq a => Eq (T a) where -- {-# SPECIALISE instance Eq a => Eq (T [a]) #-} -- works OK. -- -- But the (unqualified) method names are in scope let binders = collectHsBindBinders mbinds' ok_sig = okInstDclSig (mkNameSet binders) in bindLocalNames binders (renameSigs ok_sig uprags) `thenM` \ uprags' -> returnM (InstDecl inst_ty' mbinds' uprags' ats', meth_fvs `plusFV` at_fvs `plusFV` hsSigsFVs uprags' `plusFV` extractHsTyNames inst_ty') -- We return the renamed associated data type declarations so -- that they can be entered into the list of type declarations -- for the binding group, but we also keep a copy in the instance. -- The latter is needed for well-formedness checks in the type -- checker (eg, to ensure that all ATs of the instance actually -- receive a declaration). -- NB: Even the copies in the instance declaration carry copies of -- the instance context after renaming. This is a bit -- strange, but should not matter (and it would be more work -- to remove the context). \end{code} Renaming of the associated types in instances. * We raise an error if we encounter a kind signature in an instance. \begin{code} rnATInsts :: [LTyClDecl RdrName] -> RnM ([LTyClDecl Name], FreeVars) rnATInsts atDecls = mapFvRn (wrapLocFstM rnATInst) atDecls where rnATInst tydecl@TyFunction {} = do addErr noKindSig rnTyClDecl tydecl rnATInst tydecl@TySynonym {} = rnTyClDecl tydecl rnATInst tydecl@TyData {} = do checkM (not . isKindSigDecl $ tydecl) $ addErr noKindSig rnTyClDecl tydecl rnATInst _ = panic "RnSource.rnATInsts: not a type declaration" noKindSig = text "Instances cannot have kind signatures" \end{code} For the method bindings in class and instance decls, we extend the type variable environment iff -fglasgow-exts \begin{code} extendTyVarEnvForMethodBinds tyvars thing_inside = doptM Opt_GlasgowExts `thenM` \ opt_GlasgowExts -> if opt_GlasgowExts then extendTyVarEnvFVRn (map hsLTyVarName tyvars) thing_inside else thing_inside \end{code} %********************************************************* %* * \subsection{Stand-alone deriving declarations} %* * %********************************************************* \begin{code} rnSrcDerivDecl :: DerivDecl RdrName -> RnM (DerivDecl Name, FreeVars) rnSrcDerivDecl (DerivDecl ty n) = do ty' <- rnLHsType (text "a deriving decl") ty n' <- lookupLocatedOccRn n let fvs = extractHsTyNames ty' `addOneFV` unLoc n' return (DerivDecl ty' n', fvs) \end{code} %********************************************************* %* * \subsection{Rules} %* * %********************************************************* \begin{code} rnHsRuleDecl (HsRule rule_name act vars lhs fv_lhs rhs fv_rhs) = bindPatSigTyVarsFV (collectRuleBndrSigTys vars) $ bindLocatedLocalsFV doc (map get_var vars) $ \ ids -> mapFvRn rn_var (vars `zip` ids) `thenM` \ (vars', fv_vars) -> rnLExpr lhs `thenM` \ (lhs', fv_lhs') -> rnLExpr rhs `thenM` \ (rhs', fv_rhs') -> checkValidRule rule_name ids lhs' fv_lhs' `thenM_` returnM (HsRule rule_name act vars' lhs' fv_lhs' rhs' fv_rhs', fv_vars `plusFV` fv_lhs' `plusFV` fv_rhs') where doc = text "In the transformation rule" <+> ftext rule_name get_var (RuleBndr v) = v get_var (RuleBndrSig v _) = v rn_var (RuleBndr (L loc v), id) = returnM (RuleBndr (L loc id), emptyFVs) rn_var (RuleBndrSig (L loc v) t, id) = rnHsTypeFVs doc t `thenM` \ (t', fvs) -> returnM (RuleBndrSig (L loc id) t', fvs) badRuleVar name var = sep [ptext SLIT("Rule") <+> doubleQuotes (ftext name) <> colon, ptext SLIT("Forall'd variable") <+> quotes (ppr var) <+> ptext SLIT("does not appear on left hand side")] \end{code} Note [Rule LHS validity checking] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Check the shape of a transformation rule LHS. Currently we only allow LHSs of the form @(f e1 .. en)@, where @f@ is not one of the @forall@'d variables. We used restrict the form of the 'ei' to prevent you writing rules with LHSs with a complicated desugaring (and hence unlikely to match); (e.g. a case expression is not allowed: too elaborate.) But there are legitimate non-trivial args ei, like sections and lambdas. So it seems simmpler not to check at all, and that is why check_e is commented out. \begin{code} checkValidRule rule_name ids lhs' fv_lhs' = do { -- Check for the form of the LHS case (validRuleLhs ids lhs') of Nothing -> return () Just bad -> failWithTc (badRuleLhsErr rule_name lhs' bad) -- Check that LHS vars are all bound ; let bad_vars = [var | var <- ids, not (var `elemNameSet` fv_lhs')] ; mappM (addErr . badRuleVar rule_name) bad_vars } validRuleLhs :: [Name] -> LHsExpr Name -> Maybe (HsExpr Name) -- Nothing => OK -- Just e => Not ok, and e is the offending expression validRuleLhs foralls lhs = checkl lhs where checkl (L loc e) = check e check (OpApp e1 op _ e2) = checkl op `seqMaybe` checkl_e e1 `seqMaybe` checkl_e e2 check (HsApp e1 e2) = checkl e1 `seqMaybe` checkl_e e2 check (HsVar v) | v `notElem` foralls = Nothing check other = Just other -- Failure -- Check an argument checkl_e (L loc e) = Nothing -- Was (check_e e); see Note [Rule LHS validity checking] {- Commented out; see Note [Rule LHS validity checking] above check_e (HsVar v) = Nothing check_e (HsPar e) = checkl_e e check_e (HsLit e) = Nothing check_e (HsOverLit e) = Nothing check_e (OpApp e1 op _ e2) = checkl_e e1 `seqMaybe` checkl_e op `seqMaybe` checkl_e e2 check_e (HsApp e1 e2) = checkl_e e1 `seqMaybe` checkl_e e2 check_e (NegApp e _) = checkl_e e check_e (ExplicitList _ es) = checkl_es es check_e (ExplicitTuple es _) = checkl_es es check_e other = Just other -- Fails checkl_es es = foldr (seqMaybe . checkl_e) Nothing es -} badRuleLhsErr name lhs bad_e = sep [ptext SLIT("Rule") <+> ftext name <> colon, nest 4 (vcat [ptext SLIT("Illegal expression:") <+> ppr bad_e, ptext SLIT("in left-hand side:") <+> ppr lhs])] $$ ptext SLIT("LHS must be of form (f e1 .. en) where f is not forall'd") \end{code} %********************************************************* %* * \subsection{Type, class and iface sig declarations} %* * %********************************************************* @rnTyDecl@ uses the `global name function' to create a new type declaration in which local names have been replaced by their original names, reporting any unknown names. Renaming type variables is a pain. Because they now contain uniques, it is necessary to pass in an association list which maps a parsed tyvar to its @Name@ representation. In some cases (type signatures of values), it is even necessary to go over the type first in order to get the set of tyvars used by it, make an assoc list, and then go over it again to rename the tyvars! However, we can also do some scoping checks at the same time. \begin{code} rnTyClDecl (ForeignType {tcdLName = name, tcdFoType = fo_type, tcdExtName = ext_name}) = lookupLocatedTopBndrRn name `thenM` \ name' -> returnM (ForeignType {tcdLName = name', tcdFoType = fo_type, tcdExtName = ext_name}, emptyFVs) rnTyClDecl (tydecl@TyData {tcdND = new_or_data, tcdCtxt = context, tcdLName = tycon, tcdTyVars = tyvars, tcdTyPats = typatsMaybe, tcdCons = condecls, tcdKindSig = sig, tcdDerivs = derivs}) | isKindSigDecl tydecl -- kind signature of indexed type = rnTySig tydecl bindTyVarsRn | is_vanilla -- Normal Haskell data type decl = ASSERT( isNothing sig ) -- In normal H98 form, kind signature on the -- data type is syntactically illegal bindTyVarsRn data_doc tyvars $ \ tyvars' -> do { tycon' <- if isIdxTyDecl tydecl then lookupLocatedOccRn tycon -- may be imported family else lookupLocatedTopBndrRn tycon ; context' <- rnContext data_doc context ; typats' <- rnTyPats data_doc typatsMaybe ; (derivs', deriv_fvs) <- rn_derivs derivs ; checkDupNames data_doc con_names ; condecls' <- rnConDecls (unLoc tycon') condecls ; returnM (TyData {tcdND = new_or_data, tcdCtxt = context', tcdLName = tycon', tcdTyVars = tyvars', tcdTyPats = typats', tcdKindSig = Nothing, tcdCons = condecls', tcdDerivs = derivs'}, delFVs (map hsLTyVarName tyvars') $ extractHsCtxtTyNames context' `plusFV` plusFVs (map conDeclFVs condecls') `plusFV` deriv_fvs `plusFV` (if isIdxTyDecl tydecl then unitFV (unLoc tycon') -- type instance => use else emptyFVs)) } | otherwise -- GADT = ASSERT( none typatsMaybe ) -- GADTs cannot have type patterns for now do { tycon' <- if isIdxTyDecl tydecl then lookupLocatedOccRn tycon -- may be imported family else lookupLocatedTopBndrRn tycon ; checkTc (null (unLoc context)) (badGadtStupidTheta tycon) ; tyvars' <- bindTyVarsRn data_doc tyvars (\ tyvars' -> return tyvars') -- For GADTs, the type variables in the declaration -- do not scope over the constructor signatures -- data T a where { T1 :: forall b. b-> b } ; (derivs', deriv_fvs) <- rn_derivs derivs ; checkDupNames data_doc con_names ; condecls' <- rnConDecls (unLoc tycon') condecls ; returnM (TyData {tcdND = new_or_data, tcdCtxt = noLoc [], tcdLName = tycon', tcdTyVars = tyvars', tcdTyPats = Nothing, tcdKindSig = sig, tcdCons = condecls', tcdDerivs = derivs'}, plusFVs (map conDeclFVs condecls') `plusFV` deriv_fvs `plusFV` (if isIdxTyDecl tydecl then unitFV (unLoc tycon') -- type instance => use else emptyFVs)) } where is_vanilla = case condecls of -- Yuk [] -> True L _ (ConDecl { con_res = ResTyH98 }) : _ -> True other -> False none Nothing = True none (Just []) = True none _ = False data_doc = text "In the data type declaration for" <+> quotes (ppr tycon) con_names = map con_names_helper condecls con_names_helper (L _ c) = con_name c rn_derivs Nothing = returnM (Nothing, emptyFVs) rn_derivs (Just ds) = rnLHsTypes data_doc ds `thenM` \ ds' -> returnM (Just ds', extractHsTyNames_s ds') rnTyClDecl (tydecl@TyFunction {}) = rnTySig tydecl bindTyVarsRn rnTyClDecl tydecl@(TySynonym {tcdLName = name, tcdTyVars = tyvars, tcdTyPats = typatsMaybe, tcdSynRhs = ty}) = bindTyVarsRn syn_doc tyvars $ \ tyvars' -> do { name' <- if isIdxTyDecl tydecl then lookupLocatedOccRn name -- may be imported family else lookupLocatedTopBndrRn name ; typats' <- rnTyPats syn_doc typatsMaybe ; (ty', fvs) <- rnHsTypeFVs syn_doc ty ; returnM (TySynonym {tcdLName = name', tcdTyVars = tyvars', tcdTyPats = typats', tcdSynRhs = ty'}, delFVs (map hsLTyVarName tyvars') $ fvs `plusFV` (if isIdxTyDecl tydecl then unitFV (unLoc name') -- type instance => use else emptyFVs)) } where syn_doc = text "In the declaration for type synonym" <+> quotes (ppr name) rnTyClDecl (ClassDecl {tcdCtxt = context, tcdLName = cname, tcdTyVars = tyvars, tcdFDs = fds, tcdSigs = sigs, tcdMeths = mbinds, tcdATs = ats, tcdDocs = docs}) = do { cname' <- lookupLocatedTopBndrRn cname -- Tyvars scope over superclass context and method signatures ; (tyvars', context', fds', ats', ats_fvs, sigs') <- bindTyVarsRn cls_doc tyvars $ \ tyvars' -> do { context' <- rnContext cls_doc context ; fds' <- rnFds cls_doc fds ; (ats', ats_fvs) <- rnATs ats ; sigs' <- renameSigs okClsDclSig sigs ; return (tyvars', context', fds', ats', ats_fvs, sigs') } -- Check for duplicates among the associated types ; let at_rdr_names_w_locs = [tcdLName ty | L _ ty <- ats] ; checkDupNames at_doc at_rdr_names_w_locs -- Check the signatures -- First process the class op sigs (op_sigs), then the fixity sigs (non_op_sigs). ; let sig_rdr_names_w_locs = [op | L _ (TypeSig op _) <- sigs] ; checkDupNames sig_doc sig_rdr_names_w_locs -- Typechecker is responsible for checking that we only -- give default-method bindings for things in this class. -- The renamer *could* check this for class decls, but can't -- for instance decls. -- The newLocals call is tiresome: given a generic class decl -- class C a where -- op :: a -> a -- op {| x+y |} (Inl a) = ... -- op {| x+y |} (Inr b) = ... -- op {| a*b |} (a*b) = ... -- we want to name both "x" tyvars with the same unique, so that they are -- easy to group together in the typechecker. ; (mbinds', meth_fvs) <- extendTyVarEnvForMethodBinds tyvars' $ do { name_env <- getLocalRdrEnv ; let meth_rdr_names_w_locs = collectHsBindLocatedBinders mbinds gen_rdr_tyvars_w_locs = [ tv | tv <- extractGenericPatTyVars mbinds, not (unLoc tv `elemLocalRdrEnv` name_env) ] ; checkDupNames meth_doc meth_rdr_names_w_locs ; gen_tyvars <- newLocalsRn gen_rdr_tyvars_w_locs ; rnMethodBinds (unLoc cname') (mkSigTvFn sigs') gen_tyvars mbinds } -- Sigh. Check the Haddock docs after the methods, to avoid duplicate errors -- Example: class { op :: a->a; op2 x = x } -- Don't want a duplicate complait about op2 ; docs' <- bindLocalNames (map hsLTyVarName tyvars') $ rnDocEntities docs ; return (ClassDecl { tcdCtxt = context', tcdLName = cname', tcdTyVars = tyvars', tcdFDs = fds', tcdSigs = sigs', tcdMeths = mbinds', tcdATs = ats', tcdDocs = docs'}, delFVs (map hsLTyVarName tyvars') $ extractHsCtxtTyNames context' `plusFV` plusFVs (map extractFunDepNames (map unLoc fds')) `plusFV` hsSigsFVs sigs' `plusFV` meth_fvs `plusFV` ats_fvs) } where meth_doc = text "In the default-methods for class" <+> ppr cname cls_doc = text "In the declaration for class" <+> ppr cname sig_doc = text "In the signatures for class" <+> ppr cname at_doc = text "In the associated types for class" <+> ppr cname badGadtStupidTheta tycon = vcat [ptext SLIT("No context is allowed on a GADT-style data declaration"), ptext SLIT("(You can put a context on each contructor, though.)")] \end{code} %********************************************************* %* * \subsection{Support code for type/data declarations} %* * %********************************************************* \begin{code} -- Although, we are processing type patterns here, all type variables will -- already be in scope (they are the same as in the 'tcdTyVars' field of the -- type declaration to which these patterns belong) -- rnTyPats :: SDoc -> Maybe [LHsType RdrName] -> RnM (Maybe [LHsType Name]) rnTyPats _ Nothing = return Nothing rnTyPats doc (Just typats) = liftM Just $ rnLHsTypes doc typats rnConDecls :: Name -> [LConDecl RdrName] -> RnM [LConDecl Name] rnConDecls tycon condecls = mappM (wrapLocM rnConDecl) condecls rnConDecl :: ConDecl RdrName -> RnM (ConDecl Name) rnConDecl (ConDecl name expl tvs cxt details res_ty mb_doc) = do { addLocM checkConName name ; new_name <- lookupLocatedTopBndrRn name ; name_env <- getLocalRdrEnv -- For H98 syntax, the tvs are the existential ones -- For GADT syntax, the tvs are all the quantified tyvars -- Hence the 'filter' in the ResTyH98 case only ; let not_in_scope = not . (`elemLocalRdrEnv` name_env) . unLoc arg_tys = hsConArgs details implicit_tvs = case res_ty of ResTyH98 -> filter not_in_scope $ get_rdr_tvs arg_tys ResTyGADT ty -> get_rdr_tvs (ty : arg_tys) tvs' = case expl of Explicit -> tvs Implicit -> userHsTyVarBndrs implicit_tvs ; mb_doc' <- rnMbLHsDoc mb_doc ; bindTyVarsRn doc tvs' $ \new_tyvars -> do { new_context <- rnContext doc cxt ; new_details <- rnConDetails doc details ; (new_details', new_res_ty) <- rnConResult doc new_details res_ty ; return (ConDecl new_name expl new_tyvars new_context new_details' new_res_ty mb_doc') }} where doc = text "In the definition of data constructor" <+> quotes (ppr name) get_rdr_tvs tys = extractHsRhoRdrTyVars cxt (noLoc (HsTupleTy Boxed tys)) rnConResult _ details ResTyH98 = return (details, ResTyH98) rnConResult doc details (ResTyGADT ty) = do ty' <- rnHsSigType doc ty let (arg_tys, res_ty) = splitHsFunType ty' -- We can split it up, now the renamer has dealt with fixities case details of PrefixCon _xs -> ASSERT( null _xs ) return (PrefixCon arg_tys, ResTyGADT res_ty) RecCon fields -> return (details, ResTyGADT ty') InfixCon {} -> panic "rnConResult" rnConDetails doc (PrefixCon tys) = mappM (rnLHsType doc) tys `thenM` \ new_tys -> returnM (PrefixCon new_tys) rnConDetails doc (InfixCon ty1 ty2) = rnLHsType doc ty1 `thenM` \ new_ty1 -> rnLHsType doc ty2 `thenM` \ new_ty2 -> returnM (InfixCon new_ty1 new_ty2) rnConDetails doc (RecCon fields) = checkDupNames doc field_names `thenM_` mappM (rnField doc) fields `thenM` \ new_fields -> returnM (RecCon new_fields) where field_names = [ name | HsRecField name _ _ <- fields ] -- Document comments are renamed to Nothing here rnField doc (HsRecField name ty haddock_doc) = lookupLocatedTopBndrRn name `thenM` \ new_name -> rnLHsType doc ty `thenM` \ new_ty -> rnMbLHsDoc haddock_doc `thenM` \ new_haddock_doc -> returnM (HsRecField new_name new_ty new_haddock_doc) -- Rename kind signatures (signatures of indexed data types/newtypes and -- signatures of type functions) -- -- * This function is parametrised by the routine handling the index -- variables. On the toplevel, these are defining occurences, whereas they -- are usage occurences for associated types. -- rnTySig :: TyClDecl RdrName -> (SDoc -> [LHsTyVarBndr RdrName] -> ([LHsTyVarBndr Name] -> RnM (TyClDecl Name, FreeVars)) -> RnM (TyClDecl Name, FreeVars)) -> RnM (TyClDecl Name, FreeVars) rnTySig (tydecl@TyData {tcdCtxt = context, tcdLName = tycon, tcdTyVars = tyvars, tcdTyPats = mb_typats, tcdCons = condecls, tcdKindSig = sig, tcdDerivs = derivs}) bindIdxVars = ASSERT( null condecls ) -- won't have constructors ASSERT( isNothing mb_typats ) -- won't have type patterns ASSERT( isNothing derivs ) -- won't have deriving ASSERT( isJust sig ) -- will have kind signature do { bindIdxVars (ksig_doc tycon) tyvars $ \tyvars' -> do { ; tycon' <- lookupLocatedTopBndrRn tycon ; context' <- rnContext (ksig_doc tycon) context ; returnM (TyData {tcdND = tcdND tydecl, tcdCtxt = context', tcdLName = tycon', tcdTyVars = tyvars', tcdTyPats = Nothing, tcdKindSig = sig, tcdCons = [], tcdDerivs = Nothing}, delFVs (map hsLTyVarName tyvars') $ extractHsCtxtTyNames context') } } where rnTySig (tydecl@TyFunction {tcdLName = tycon, tcdTyVars = tyvars, tcdKind = sig}) bindIdxVars = do { checkM (not . null $ tyvars) $ addErr needOneIdx -- #indexes >= 1 ; bindIdxVars (ksig_doc tycon) tyvars $ \tyvars' -> do { ; tycon' <- lookupLocatedTopBndrRn tycon ; returnM (TyFunction {tcdLName = tycon', tcdTyVars = tyvars', tcdIso = tcdIso tydecl, tcdKind = sig}, emptyFVs) } } ksig_doc tycon = text "In the kind signature for" <+> quotes (ppr tycon) needOneIdx = text "Kind signature requires at least one type index" -- Rename associated type declarations (in classes) -- -- * This can be kind signatures and (default) type function equations. -- rnATs :: [LTyClDecl RdrName] -> RnM ([LTyClDecl Name], FreeVars) rnATs ats = mapFvRn (wrapLocFstM rn_at) ats where rn_at (tydecl@TyData {}) = rnTySig tydecl lookupIdxVars rn_at (tydecl@TyFunction {}) = rnTySig tydecl lookupIdxVars rn_at (tydecl@TySynonym {}) = do checkM (isNothing (tcdTyPats tydecl)) $ addErr noPatterns rnTyClDecl tydecl rn_at _ = panic "RnSource.rnATs: invalid TyClDecl" lookupIdxVars _ tyvars cont = do { checkForDups tyvars; ; tyvars' <- mappM lookupIdxVar tyvars ; cont tyvars' } -- Type index variables must be class parameters, which are the only -- type variables in scope at this point. lookupIdxVar (L l tyvar) = do name' <- lookupOccRn (hsTyVarName tyvar) return $ L l (replaceTyVarName tyvar name') -- Type variable may only occur once. -- checkForDups [] = return () checkForDups (L loc tv:ltvs) = do { setSrcSpan loc $ when (hsTyVarName tv `ltvElem` ltvs) $ addErr (repeatedTyVar tv) ; checkForDups ltvs } rdrName `ltvElem` [] = False rdrName `ltvElem` (L _ tv:ltvs) | rdrName == hsTyVarName tv = True | otherwise = rdrName `ltvElem` ltvs noPatterns = text "Default definition for an associated synonym cannot have" <+> text "type pattern" repeatedTyVar tv = ptext SLIT("Illegal repeated type variable") <+> quotes (ppr tv) -- This data decl will parse OK -- data T = a Int -- treating "a" as the constructor. -- It is really hard to make the parser spot this malformation. -- So the renamer has to check that the constructor is legal -- -- We can get an operator as the constructor, even in the prefix form: -- data T = :% Int Int -- from interface files, which always print in prefix form checkConName name = checkErr (isRdrDataCon name) (badDataCon name) badDataCon name = hsep [ptext SLIT("Illegal data constructor name"), quotes (ppr name)] \end{code} %********************************************************* %* * \subsection{Support code to rename types} %* * %********************************************************* \begin{code} rnFds :: SDoc -> [Located (FunDep RdrName)] -> RnM [Located (FunDep Name)] rnFds doc fds = mappM (wrapLocM rn_fds) fds where rn_fds (tys1, tys2) = rnHsTyVars doc tys1 `thenM` \ tys1' -> rnHsTyVars doc tys2 `thenM` \ tys2' -> returnM (tys1', tys2') rnHsTyVars doc tvs = mappM (rnHsTyvar doc) tvs rnHsTyvar doc tyvar = lookupOccRn tyvar \end{code} %********************************************************* %* * Splices %* * %********************************************************* Note [Splices] ~~~~~~~~~~~~~~ Consider f = ... h = ...$(thing "f")... The splice can expand into literally anything, so when we do dependency analysis we must assume that it might mention 'f'. So we simply treat all locally-defined names as mentioned by any splice. This is terribly brutal, but I don't see what else to do. For example, it'll mean that every locally-defined thing will appear to be used, so no unused-binding warnings. But if we miss the dependency, then we might typecheck 'h' before 'f', and that will crash the type checker because 'f' isn't in scope. Currently, I'm not treating a splice as also mentioning every import, which is a bit inconsistent -- but there are a lot of them. We might thereby get some bogus unused-import warnings, but we won't crash the type checker. Not very satisfactory really. \begin{code} rnSplice :: HsSplice RdrName -> RnM (HsSplice Name, FreeVars) rnSplice (HsSplice n expr) = do { checkTH expr "splice" ; loc <- getSrcSpanM ; [n'] <- newLocalsRn [L loc n] ; (expr', fvs) <- rnLExpr expr -- Ugh! See Note [Splices] above ; lcl_rdr <- getLocalRdrEnv ; gbl_rdr <- getGlobalRdrEnv ; let gbl_names = mkNameSet [gre_name gre | gre <- globalRdrEnvElts gbl_rdr, isLocalGRE gre] lcl_names = mkNameSet (occEnvElts lcl_rdr) ; return (HsSplice n' expr', fvs `plusFV` lcl_names `plusFV` gbl_names) } #ifdef GHCI checkTH e what = returnM () -- OK #else checkTH e what -- Raise an error in a stage-1 compiler = addErr (vcat [ptext SLIT("Template Haskell") <+> text what <+> ptext SLIT("illegal in a stage-1 compiler"), nest 2 (ppr e)]) #endif \end{code}