% % (c) The AQUA Project, Glasgow University, 1993-1998 % \section{Common subexpression} \begin{code} {-# OPTIONS -fno-warn-tabs #-} -- The above warning supression flag is a temporary kludge. -- While working on this module you are encouraged to remove it and -- detab the module (please do the detabbing in a separate patch). See -- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces -- for details module CSE ( cseProgram ) where #include "HsVersions.h" -- Note [Keep old CSEnv rep] -- ~~~~~~~~~~~~~~~~~~~~~~~~~ -- Temporarily retain code for the old representation for CSEnv -- Keeping it only so that we can switch back if a bug shows up -- or we want to do some performance comparisions -- -- NB: when you remove this, also delete hashExpr from CoreUtils #ifdef OLD_CSENV_REP import CoreUtils ( exprIsBig, hashExpr, eqExpr ) import StaticFlags ( opt_PprStyle_Debug ) import Util ( lengthExceeds ) import UniqFM import FastString #else import TrieMap #endif import CoreSubst import Var ( Var ) import Id ( Id, idType, idInlineActivation, zapIdOccInfo ) import CoreUtils ( mkAltExpr , exprIsTrivial) import Type ( tyConAppArgs ) import CoreSyn import Outputable import BasicTypes ( isAlwaysActive ) import Data.List \end{code} Simple common sub-expression ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When we see x1 = C a b x2 = C x1 b we build up a reverse mapping: C a b -> x1 C x1 b -> x2 and apply that to the rest of the program. When we then see y1 = C a b y2 = C y1 b we replace the C a b with x1. But then we *dont* want to add x1 -> y1 to the mapping. Rather, we want the reverse, y1 -> x1 so that a subsequent binding y2 = C y1 b will get transformed to C x1 b, and then to x2. So we carry an extra var->var substitution which we apply *before* looking up in the reverse mapping. Note [Shadowing] ~~~~~~~~~~~~~~~~ We have to be careful about shadowing. For example, consider f = \x -> let y = x+x in h = \x -> x+x in ... Here we must *not* do CSE on the inner x+x! The simplifier used to guarantee no shadowing, but it doesn't any more (it proved too hard), so we clone as we go. We can simply add clones to the substitution already described. Note [Case binders 1] ~~~~~~~~~~~~~~~~~~~~~~ Consider f = \x -> case x of wild { (a:as) -> case a of wild1 { (p,q) -> ...(wild1:as)... Here, (wild1:as) is morally the same as (a:as) and hence equal to wild. But that's not quite obvious. In general we want to keep it as (wild1:as), but for CSE purpose that's a bad idea. So we add the binding (wild1 -> a) to the extra var->var mapping. Notice this is exactly backwards to what the simplifier does, which is to try to replaces uses of 'a' with uses of 'wild1' Note [Case binders 2] ~~~~~~~~~~~~~~~~~~~~~~ Consider case (h x) of y -> ...(h x)... We'd like to replace (h x) in the alternative, by y. But because of the preceding [Note: case binders 1], we only want to add the mapping scrutinee -> case binder to the reverse CSE mapping if the scrutinee is a non-trivial expression. (If the scrutinee is a simple variable we want to add the mapping case binder -> scrutinee to the substitution Note [CSE for INLINE and NOINLINE] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We are careful to do no CSE inside functions that the user has marked as INLINE or NOINLINE. In terms of Core, that means a) we do not do CSE inside an InlineRule b) we do not do CSE on the RHS of a binding b=e unless b's InlinePragma is AlwaysActive Here's why (examples from Roman Leshchinskiy). Consider yes :: Int {-# NOINLINE yes #-} yes = undefined no :: Int {-# NOINLINE no #-} no = undefined foo :: Int -> Int -> Int {-# NOINLINE foo #-} foo m n = n {-# RULES "foo/no" foo no = id #-} bar :: Int -> Int bar = foo yes We do not expect the rule to fire. But if we do CSE, then we get yes=no, and the rule does fire. Worse, whether we get yes=no or no=yes depends on the order of the definitions. In general, CSE should probably never touch things with INLINE pragmas as this could lead to surprising results. Consider {-# INLINE foo #-} foo = {-# NOINLINE bar #-} bar = -- Same rhs as foo If CSE produces foo = bar then foo will never be inlined (when it should be); but if it produces bar = foo bar will be inlined (when it should not be). Even if we remove INLINE foo, we'd still like foo to be inlined if rhs is small. This won't happen with foo = bar. Not CSE-ing inside INLINE also solves an annoying bug in CSE. Consider a worker/wrapper, in which the worker has turned into a single variable: $wf = h f = \x -> ...$wf... Now CSE may transform to f = \x -> ...h... But the WorkerInfo for f still says $wf, which is now dead! This won't happen now that we don't look inside INLINEs (which wrappers are). Note [CSE for case expressions] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider case f x of y { pat -> ...let y = f x in ... } Then we can CSE the inner (f x) to y. In fact 'case' is like a strict let-binding, and we can use cseRhs for dealing with the scrutinee. %************************************************************************ %* * \section{Common subexpression} %* * %************************************************************************ \begin{code} cseProgram :: CoreProgram -> CoreProgram cseProgram binds = cseBinds emptyCSEnv binds cseBinds :: CSEnv -> [CoreBind] -> [CoreBind] cseBinds _ [] = [] cseBinds env (b:bs) = (b':bs') where (env1, b') = cseBind env b bs' = cseBinds env1 bs cseBind :: CSEnv -> CoreBind -> (CSEnv, CoreBind) cseBind env (NonRec b e) = (env2, NonRec b' e') where (env1, b') = addBinder env b (env2, e') = cseRhs env1 (b',e) cseBind env (Rec pairs) = (env2, Rec (bs' `zip` es')) where (bs,es) = unzip pairs (env1, bs') = addRecBinders env bs (env2, es') = mapAccumL cseRhs env1 (bs' `zip` es) cseRhs :: CSEnv -> (OutBndr, InExpr) -> (CSEnv, OutExpr) cseRhs env (id',rhs) = case lookupCSEnv env rhs' of Just other_expr -> (env, other_expr) Nothing -> (addCSEnvItem env rhs' (Var id'), rhs') where rhs' | isAlwaysActive (idInlineActivation id') = cseExpr env rhs | otherwise = rhs -- See Note [CSE for INLINE and NOINLINE] tryForCSE :: CSEnv -> InExpr -> OutExpr tryForCSE env expr | exprIsTrivial expr' = expr' -- No point | Just smaller <- lookupCSEnv env expr' = smaller | otherwise = expr' where expr' = cseExpr env expr cseExpr :: CSEnv -> InExpr -> OutExpr cseExpr env (Type t) = Type (substTy (csEnvSubst env) t) cseExpr env (Coercion c) = Coercion (substCo (csEnvSubst env) c) cseExpr _ (Lit lit) = Lit lit cseExpr env (Var v) = lookupSubst env v cseExpr env (App f a) = App (cseExpr env f) (tryForCSE env a) cseExpr env (Tick t e) = Tick t (cseExpr env e) cseExpr env (Cast e co) = Cast (cseExpr env e) (substCo (csEnvSubst env) co) cseExpr env (Lam b e) = let (env', b') = addBinder env b in Lam b' (cseExpr env' e) cseExpr env (Let bind e) = let (env', bind') = cseBind env bind in Let bind' (cseExpr env' e) cseExpr env (Case scrut bndr ty alts) = Case scrut' bndr'' ty alts' where alts' = cseAlts env2 scrut' bndr bndr'' alts (env1, bndr') = addBinder env bndr bndr'' = zapIdOccInfo bndr' -- The swizzling from Note [Case binders 2] may -- cause a dead case binder to be alive, so we -- play safe here and bring them all to life (env2, scrut') = cseRhs env1 (bndr'', scrut) -- Note [CSE for case expressions] cseAlts :: CSEnv -> OutExpr -> InBndr -> InBndr -> [InAlt] -> [OutAlt] cseAlts env scrut' bndr bndr' alts = map cse_alt alts where (con_target, alt_env) = case scrut' of Var v' -> (v', extendCSSubst env bndr v') -- See Note [Case binders 1] -- map: bndr -> v' _ -> (bndr', extendCSEnv env scrut' (Var bndr')) -- See Note [Case binders 2] -- map: scrut' -> bndr' arg_tys = tyConAppArgs (idType bndr) cse_alt (DataAlt con, args, rhs) | not (null args) -- Don't try CSE if there are no args; it just increases the number -- of live vars. E.g. -- case x of { True -> ....True.... } -- Don't replace True by x! -- Hence the 'null args', which also deal with literals and DEFAULT = (DataAlt con, args', tryForCSE new_env rhs) where (env', args') = addBinders alt_env args new_env = extendCSEnv env' (mkAltExpr (DataAlt con) args' arg_tys) (Var con_target) cse_alt (con, args, rhs) = (con, args', tryForCSE env' rhs) where (env', args') = addBinders alt_env args \end{code} %************************************************************************ %* * \section{The CSE envt} %* * %************************************************************************ \begin{code} type InExpr = CoreExpr -- Pre-cloning type InBndr = CoreBndr type InAlt = CoreAlt type OutExpr = CoreExpr -- Post-cloning type OutBndr = CoreBndr type OutAlt = CoreAlt -- See Note [Keep old CsEnv rep] #ifdef OLD_CSENV_REP data CSEnv = CS { cs_map :: CSEMap , cs_subst :: Subst } type CSEMap = UniqFM [(OutExpr, OutExpr)] -- This is the reverse mapping -- It maps the hash-code of an expression e to list of (e,e') pairs -- This means that it's good to replace e by e' -- INVARIANT: The expr in the range has already been CSE'd emptyCSEnv :: CSEnv emptyCSEnv = CS { cs_map = emptyUFM, cs_subst = emptySubst } lookupCSEnv :: CSEnv -> OutExpr -> Maybe OutExpr lookupCSEnv (CS { cs_map = oldmap, cs_subst = sub}) expr = case lookupUFM oldmap (hashExpr expr) of Nothing -> Nothing Just pairs -> lookup_list pairs where in_scope = substInScope sub -- In this lookup we use full expression equality -- Reason: when expressions differ we generally find out quickly -- but I found that cheapEqExpr was saying (\x.x) /= (\y.y), -- and this kind of thing happened in real programs lookup_list :: [(OutExpr,OutExpr)] -> Maybe OutExpr lookup_list ((e,e'):es) | eqExpr in_scope e expr = Just e' | otherwise = lookup_list es lookup_list [] = Nothing addCSEnvItem :: CSEnv -> OutExpr -> OutExpr -> CSEnv addCSEnvItem env expr expr' | exprIsBig expr = env | otherwise = extendCSEnv env expr expr' -- We don't try to CSE big expressions, because they are expensive to compare -- (and are unlikely to be the same anyway) extendCSEnv :: CSEnv -> OutExpr -> OutExpr -> CSEnv extendCSEnv cse@(CS { cs_map = oldmap }) expr expr' = cse { cs_map = addToUFM_C combine oldmap hash [(expr, expr')] } where hash = hashExpr expr combine old new = WARN( result `lengthExceeds` 4, short_msg $$ nest 2 long_msg ) result where result = new ++ old short_msg = ptext (sLit "extendCSEnv: long list, length") <+> int (length result) long_msg | opt_PprStyle_Debug = (text "hash code" <+> text (show hash)) $$ ppr result | otherwise = empty #else ------------ NEW ---------------- data CSEnv = CS { cs_map :: CoreMap (OutExpr, OutExpr) -- Key, value , cs_subst :: Subst } emptyCSEnv :: CSEnv emptyCSEnv = CS { cs_map = emptyCoreMap, cs_subst = emptySubst } lookupCSEnv :: CSEnv -> OutExpr -> Maybe OutExpr lookupCSEnv (CS { cs_map = csmap }) expr = case lookupCoreMap csmap expr of Just (_,e) -> Just e Nothing -> Nothing addCSEnvItem :: CSEnv -> OutExpr -> OutExpr -> CSEnv addCSEnvItem = extendCSEnv -- We used to avoid trying to CSE big expressions, on the grounds -- that they are expensive to compare. But now we have CoreMaps -- we can happily insert them and laziness will mean that the -- insertions only get fully done if we look up in that part -- of the trie. No need for a size test. extendCSEnv :: CSEnv -> OutExpr -> OutExpr -> CSEnv extendCSEnv cse expr expr' = cse { cs_map = extendCoreMap (cs_map cse) expr (expr,expr') } #endif csEnvSubst :: CSEnv -> Subst csEnvSubst = cs_subst lookupSubst :: CSEnv -> Id -> OutExpr lookupSubst (CS { cs_subst = sub}) x = lookupIdSubst (text "CSE.lookupSubst") sub x extendCSSubst :: CSEnv -> Id -> Id -> CSEnv extendCSSubst cse x y = cse { cs_subst = extendIdSubst (cs_subst cse) x (Var y) } addBinder :: CSEnv -> Var -> (CSEnv, Var) addBinder cse v = (cse { cs_subst = sub' }, v') where (sub', v') = substBndr (cs_subst cse) v addBinders :: CSEnv -> [Var] -> (CSEnv, [Var]) addBinders cse vs = (cse { cs_subst = sub' }, vs') where (sub', vs') = substBndrs (cs_subst cse) vs addRecBinders :: CSEnv -> [Id] -> (CSEnv, [Id]) addRecBinders cse vs = (cse { cs_subst = sub' }, vs') where (sub', vs') = substRecBndrs (cs_subst cse) vs \end{code}