% % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % %************************************************************************ Static Argument Transformation pass %************************************************************************ May be seen as removing invariants from loops: Arguments of recursive functions that do not change in recursive calls are removed from the recursion, which is done locally and only passes the arguments which effectively change. Example: map = /\ ab -> \f -> \xs -> case xs of [] -> [] (a:b) -> f a : map f b as map is recursively called with the same argument f (unmodified) we transform it to map = /\ ab -> \f -> \xs -> let map' ys = case ys of [] -> [] (a:b) -> f a : map' b in map' xs Notice that for a compiler that uses lambda lifting this is useless as map' will be transformed back to what map was. We could possibly do the same for big lambdas, but we don't as they will eventually be removed in later stages of the compiler, therefore there is no penalty in keeping them. We only apply the SAT when the number of static args is > 2. This produces few bad cases. See should_transform in saTransform. Here are the headline nofib results: Size Allocs Runtime Min +0.0% -13.7% -21.4% Max +0.1% +0.0% +5.4% Geometric Mean +0.0% -0.2% -6.9% The previous patch, to fix polymorphic floatout demand signatures, is essential to make this work well! \begin{code} {-# OPTIONS -fno-warn-tabs #-} -- The above warning supression flag is a temporary kludge. -- While working on this module you are encouraged to remove it and -- detab the module (please do the detabbing in a separate patch). See -- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces -- for details module SAT ( doStaticArgs ) where import Var import CoreSyn import CoreUtils import Type import Coercion import Id import Name import VarEnv import UniqSupply import Util import UniqFM import VarSet import Unique import UniqSet import Outputable import Data.List import FastString #include "HsVersions.h" \end{code} \begin{code} doStaticArgs :: UniqSupply -> CoreProgram -> CoreProgram doStaticArgs us binds = snd $ mapAccumL sat_bind_threaded_us us binds where sat_bind_threaded_us us bind = let (us1, us2) = splitUniqSupply us in (us1, fst $ runSAT us2 (satBind bind emptyUniqSet)) \end{code} \begin{code} -- We don't bother to SAT recursive groups since it can lead -- to massive code expansion: see Andre Santos' thesis for details. -- This means we only apply the actual SAT to Rec groups of one element, -- but we want to recurse into the others anyway to discover other binds satBind :: CoreBind -> IdSet -> SatM (CoreBind, IdSATInfo) satBind (NonRec binder expr) interesting_ids = do (expr', sat_info_expr, expr_app) <- satExpr expr interesting_ids return (NonRec binder expr', finalizeApp expr_app sat_info_expr) satBind (Rec [(binder, rhs)]) interesting_ids = do let interesting_ids' = interesting_ids `addOneToUniqSet` binder (rhs_binders, rhs_body) = collectBinders rhs (rhs_body', sat_info_rhs_body) <- satTopLevelExpr rhs_body interesting_ids' let sat_info_rhs_from_args = unitVarEnv binder (bindersToSATInfo rhs_binders) sat_info_rhs' = mergeIdSATInfo sat_info_rhs_from_args sat_info_rhs_body shadowing = binder `elementOfUniqSet` interesting_ids sat_info_rhs'' = if shadowing then sat_info_rhs' `delFromUFM` binder -- For safety else sat_info_rhs' bind' <- saTransformMaybe binder (lookupUFM sat_info_rhs' binder) rhs_binders rhs_body' return (bind', sat_info_rhs'') satBind (Rec pairs) interesting_ids = do let (binders, rhss) = unzip pairs rhss_SATed <- mapM (\e -> satTopLevelExpr e interesting_ids) rhss let (rhss', sat_info_rhss') = unzip rhss_SATed return (Rec (zipEqual "satBind" binders rhss'), mergeIdSATInfos sat_info_rhss') \end{code} \begin{code} data App = VarApp Id | TypeApp Type | CoApp Coercion data Staticness a = Static a | NotStatic type IdAppInfo = (Id, SATInfo) type SATInfo = [Staticness App] type IdSATInfo = IdEnv SATInfo emptyIdSATInfo :: IdSATInfo emptyIdSATInfo = emptyUFM {- pprIdSATInfo id_sat_info = vcat (map pprIdAndSATInfo (Map.toList id_sat_info)) where pprIdAndSATInfo (v, sat_info) = hang (ppr v <> colon) 4 (pprSATInfo sat_info) -} pprSATInfo :: SATInfo -> SDoc pprSATInfo staticness = hcat $ map pprStaticness staticness pprStaticness :: Staticness App -> SDoc pprStaticness (Static (VarApp _)) = ptext (sLit "SV") pprStaticness (Static (TypeApp _)) = ptext (sLit "ST") pprStaticness (Static (CoApp _)) = ptext (sLit "SC") pprStaticness NotStatic = ptext (sLit "NS") mergeSATInfo :: SATInfo -> SATInfo -> SATInfo mergeSATInfo [] _ = [] mergeSATInfo _ [] = [] mergeSATInfo (NotStatic:statics) (_:apps) = NotStatic : mergeSATInfo statics apps mergeSATInfo (_:statics) (NotStatic:apps) = NotStatic : mergeSATInfo statics apps mergeSATInfo ((Static (VarApp v)):statics) ((Static (VarApp v')):apps) = (if v == v' then Static (VarApp v) else NotStatic) : mergeSATInfo statics apps mergeSATInfo ((Static (TypeApp t)):statics) ((Static (TypeApp t')):apps) = (if t `eqType` t' then Static (TypeApp t) else NotStatic) : mergeSATInfo statics apps mergeSATInfo ((Static (CoApp c)):statics) ((Static (CoApp c')):apps) = (if c `coreEqCoercion` c' then Static (CoApp c) else NotStatic) : mergeSATInfo statics apps mergeSATInfo l r = pprPanic "mergeSATInfo" $ ptext (sLit "Left:") <> pprSATInfo l <> ptext (sLit ", ") <> ptext (sLit "Right:") <> pprSATInfo r mergeIdSATInfo :: IdSATInfo -> IdSATInfo -> IdSATInfo mergeIdSATInfo = plusUFM_C mergeSATInfo mergeIdSATInfos :: [IdSATInfo] -> IdSATInfo mergeIdSATInfos = foldl' mergeIdSATInfo emptyIdSATInfo bindersToSATInfo :: [Id] -> SATInfo bindersToSATInfo vs = map (Static . binderToApp) vs where binderToApp v | isId v = VarApp v | isTyVar v = TypeApp $ mkTyVarTy v | otherwise = CoApp $ mkCoVarCo v finalizeApp :: Maybe IdAppInfo -> IdSATInfo -> IdSATInfo finalizeApp Nothing id_sat_info = id_sat_info finalizeApp (Just (v, sat_info')) id_sat_info = let sat_info'' = case lookupUFM id_sat_info v of Nothing -> sat_info' Just sat_info -> mergeSATInfo sat_info sat_info' in extendVarEnv id_sat_info v sat_info'' \end{code} \begin{code} satTopLevelExpr :: CoreExpr -> IdSet -> SatM (CoreExpr, IdSATInfo) satTopLevelExpr expr interesting_ids = do (expr', sat_info_expr, expr_app) <- satExpr expr interesting_ids return (expr', finalizeApp expr_app sat_info_expr) satExpr :: CoreExpr -> IdSet -> SatM (CoreExpr, IdSATInfo, Maybe IdAppInfo) satExpr var@(Var v) interesting_ids = do let app_info = if v `elementOfUniqSet` interesting_ids then Just (v, []) else Nothing return (var, emptyIdSATInfo, app_info) satExpr lit@(Lit _) _ = do return (lit, emptyIdSATInfo, Nothing) satExpr (Lam binders body) interesting_ids = do (body', sat_info, this_app) <- satExpr body interesting_ids return (Lam binders body', finalizeApp this_app sat_info, Nothing) satExpr (App fn arg) interesting_ids = do (fn', sat_info_fn, fn_app) <- satExpr fn interesting_ids let satRemainder = boring fn' sat_info_fn case fn_app of Nothing -> satRemainder Nothing Just (fn_id, fn_app_info) -> -- TODO: remove this use of append somehow (use a data structure with O(1) append but a left-to-right kind of interface) let satRemainderWithStaticness arg_staticness = satRemainder $ Just (fn_id, fn_app_info ++ [arg_staticness]) in case arg of Type t -> satRemainderWithStaticness $ Static (TypeApp t) Coercion c -> satRemainderWithStaticness $ Static (CoApp c) Var v -> satRemainderWithStaticness $ Static (VarApp v) _ -> satRemainderWithStaticness $ NotStatic where boring :: CoreExpr -> IdSATInfo -> Maybe IdAppInfo -> SatM (CoreExpr, IdSATInfo, Maybe IdAppInfo) boring fn' sat_info_fn app_info = do (arg', sat_info_arg, arg_app) <- satExpr arg interesting_ids let sat_info_arg' = finalizeApp arg_app sat_info_arg sat_info = mergeIdSATInfo sat_info_fn sat_info_arg' return (App fn' arg', sat_info, app_info) satExpr (Case expr bndr ty alts) interesting_ids = do (expr', sat_info_expr, expr_app) <- satExpr expr interesting_ids let sat_info_expr' = finalizeApp expr_app sat_info_expr zipped_alts' <- mapM satAlt alts let (alts', sat_infos_alts) = unzip zipped_alts' return (Case expr' bndr ty alts', mergeIdSATInfo sat_info_expr' (mergeIdSATInfos sat_infos_alts), Nothing) where satAlt (con, bndrs, expr) = do (expr', sat_info_expr) <- satTopLevelExpr expr interesting_ids return ((con, bndrs, expr'), sat_info_expr) satExpr (Let bind body) interesting_ids = do (body', sat_info_body, body_app) <- satExpr body interesting_ids (bind', sat_info_bind) <- satBind bind interesting_ids return (Let bind' body', mergeIdSATInfo sat_info_body sat_info_bind, body_app) satExpr (Tick tickish expr) interesting_ids = do (expr', sat_info_expr, expr_app) <- satExpr expr interesting_ids return (Tick tickish expr', sat_info_expr, expr_app) satExpr ty@(Type _) _ = do return (ty, emptyIdSATInfo, Nothing) satExpr co@(Coercion _) _ = do return (co, emptyIdSATInfo, Nothing) satExpr (Cast expr coercion) interesting_ids = do (expr', sat_info_expr, expr_app) <- satExpr expr interesting_ids return (Cast expr' coercion, sat_info_expr, expr_app) \end{code} %************************************************************************ Static Argument Transformation Monad %************************************************************************ \begin{code} type SatM result = UniqSM result runSAT :: UniqSupply -> SatM a -> a runSAT = initUs_ newUnique :: SatM Unique newUnique = getUniqueUs \end{code} %************************************************************************ Static Argument Transformation Monad %************************************************************************ To do the transformation, the game plan is to: 1. Create a small nonrecursive RHS that takes the original arguments to the function but discards the ones that are static and makes a call to the SATed version with the remainder. We intend that this will be inlined later, removing the overhead 2. Bind this nonrecursive RHS over the original body WITH THE SAME UNIQUE as the original body so that any recursive calls to the original now go via the small wrapper 3. Rebind the original function to a new one which contains our SATed function and just makes a call to it: we call the thing making this call the local body Example: transform this map :: forall a b. (a->b) -> [a] -> [b] map = /\ab. \(f:a->b) (as:[a]) -> body[map] to map :: forall a b. (a->b) -> [a] -> [b] map = /\ab. \(f:a->b) (as:[a]) -> letrec map' :: [a] -> [b] -- The "worker function map' = \(as:[a]) -> let map :: forall a' b'. (a -> b) -> [a] -> [b] -- The "shadow function map = /\a'b'. \(f':(a->b) (as:[a]). map' as in body[map] in map' as Note [Shadow binding] ~~~~~~~~~~~~~~~~~~~~~ The calls to the inner map inside body[map] should get inlined by the local re-binding of 'map'. We call this the "shadow binding". But we can't use the original binder 'map' unchanged, because it might be exported, in which case the shadow binding won't be discarded as dead code after it is inlined. So we use a hack: we make a new SysLocal binder with the *same* unique as binder. (Another alternative would be to reset the export flag.) Note [Binder type capture] ~~~~~~~~~~~~~~~~~~~~~~~~~~ Notice that in the inner map (the "shadow function"), the static arguments are discarded -- it's as if they were underscores. Instead, mentions of these arguments (notably in the types of dynamic arguments) are bound by the *outer* lambdas of the main function. So we must make up fresh names for the static arguments so that they do not capture variables mentioned in the types of dynamic args. In the map example, the shadow function must clone the static type argument a,b, giving a',b', to ensure that in the \(as:[a]), the 'a' is bound by the outer forall. We clone f' too for consistency, but that doesn't matter either way because static Id arguments aren't mentioned in the shadow binding at all. If we don't we get something like this: [Exported] [Arity 3] GHC.Base.until = \ (@ a_aiK) (p_a6T :: a_aiK -> GHC.Types.Bool) (f_a6V :: a_aiK -> a_aiK) (x_a6X :: a_aiK) -> letrec { sat_worker_s1aU :: a_aiK -> a_aiK [] sat_worker_s1aU = \ (x_a6X :: a_aiK) -> let { sat_shadow_r17 :: forall a_a3O. (a_a3O -> GHC.Types.Bool) -> (a_a3O -> a_a3O) -> a_a3O -> a_a3O [] sat_shadow_r17 = \ (@ a_aiK) (p_a6T :: a_aiK -> GHC.Types.Bool) (f_a6V :: a_aiK -> a_aiK) (x_a6X :: a_aiK) -> sat_worker_s1aU x_a6X } in case p_a6T x_a6X of wild_X3y [ALWAYS Dead Nothing] { GHC.Types.False -> GHC.Base.until @ a_aiK p_a6T f_a6V (f_a6V x_a6X); GHC.Types.True -> x_a6X }; } in sat_worker_s1aU x_a6X Where sat_shadow has captured the type variables of x_a6X etc as it has a a_aiK type argument. This is bad because it means the application sat_worker_s1aU x_a6X is not well typed. \begin{code} saTransformMaybe :: Id -> Maybe SATInfo -> [Id] -> CoreExpr -> SatM CoreBind saTransformMaybe binder maybe_arg_staticness rhs_binders rhs_body | Just arg_staticness <- maybe_arg_staticness , should_transform arg_staticness = saTransform binder arg_staticness rhs_binders rhs_body | otherwise = return (Rec [(binder, mkLams rhs_binders rhs_body)]) where should_transform staticness = n_static_args > 1 -- THIS IS THE DECISION POINT where n_static_args = length (filter isStaticValue staticness) saTransform :: Id -> SATInfo -> [Id] -> CoreExpr -> SatM CoreBind saTransform binder arg_staticness rhs_binders rhs_body = do { shadow_lam_bndrs <- mapM clone binders_w_staticness ; uniq <- newUnique ; return (NonRec binder (mk_new_rhs uniq shadow_lam_bndrs)) } where -- Running example: foldr -- foldr \alpha \beta c n xs = e, for some e -- arg_staticness = [Static TypeApp, Static TypeApp, Static VarApp, Static VarApp, NonStatic] -- rhs_binders = [\alpha, \beta, c, n, xs] -- rhs_body = e binders_w_staticness = rhs_binders `zip` (arg_staticness ++ repeat NotStatic) -- Any extra args are assumed NotStatic non_static_args :: [Var] -- non_static_args = [xs] -- rhs_binders_without_type_capture = [\alpha', \beta', c, n, xs] non_static_args = [v | (v, NotStatic) <- binders_w_staticness] clone (bndr, NotStatic) = return bndr clone (bndr, _ ) = do { uniq <- newUnique ; return (setVarUnique bndr uniq) } -- new_rhs = \alpha beta c n xs -> -- let sat_worker = \xs -> let sat_shadow = \alpha' beta' c n xs -> -- sat_worker xs -- in e -- in sat_worker xs mk_new_rhs uniq shadow_lam_bndrs = mkLams rhs_binders $ Let (Rec [(rec_body_bndr, rec_body)]) local_body where local_body = mkVarApps (Var rec_body_bndr) non_static_args rec_body = mkLams non_static_args $ Let (NonRec shadow_bndr shadow_rhs) rhs_body -- See Note [Binder type capture] shadow_rhs = mkLams shadow_lam_bndrs local_body -- nonrec_rhs = \alpha' beta' c n xs -> sat_worker xs rec_body_bndr = mkSysLocal (fsLit "sat_worker") uniq (exprType rec_body) -- rec_body_bndr = sat_worker -- See Note [Shadow binding]; make a SysLocal shadow_bndr = mkSysLocal (occNameFS (getOccName binder)) (idUnique binder) (exprType shadow_rhs) isStaticValue :: Staticness App -> Bool isStaticValue (Static (VarApp _)) = True isStaticValue _ = False \end{code}