{-# LANGUAGE TypeFamilies #-} {-| Note [CSE for Stg] ~~~~~~~~~~~~~~~~~~ This module implements a simple common subexpression elimination pass for STG. This is useful because there are expressions that we want to common up (because they are operational equivalent), but that we cannot common up in Core, because their types differ. This was original reported as #9291. There are two types of common code occurrences that we aim for, see note [Case 1: CSEing allocated closures] and note [Case 2: CSEing case binders] below. Note [Case 1: CSEing allocated closures] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The fist kind of CSE opportunity we aim for is generated by this Haskell code: bar :: a -> (Either Int a, Either Bool a) bar x = (Right x, Right x) which produces this Core: bar :: forall a. a -> (Either Int a, Either Bool a) bar @a x = (Right @Int @a x, Right @Bool @a x) where the two components of the tuple are differnt terms, and cannot be commoned up (easily). On the STG level we have bar [x] = let c1 = Right [x] c2 = Right [x] in (c1,c2) and now it is obvious that we can write bar [x] = let c1 = Right [x] in (c1,c1) instead. Note [Case 2: CSEing case binders] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The second kind of CSE opportunity we aim for is more interesting, and came up in #9291 and #5344: The Haskell code foo :: Either Int a -> Either Bool a foo (Right x) = Right x foo _ = Left False produces this Core foo :: forall a. Either Int a -> Either Bool a foo @a e = case e of b { Left n -> … , Right x -> Right @Bool @a x } where we cannot CSE `Right @Bool @a x` with the case binder `b` as they have different types. But in STG we have foo [e] = case e of b { Left [n] -> … , Right [x] -> Right [x] } and nothing stops us from transforming that to foo [e] = case e of b { Left [n] -> … , Right [x] -> b} -} module StgCse (stgCse) where import DataCon import Id import StgSyn import Outputable import VarEnv import CoreSyn (AltCon(..)) import Data.List (mapAccumL) import Data.Maybe (fromMaybe) import TrieMap import NameEnv import Control.Monad( (>=>) ) -------------- -- The Trie -- -------------- -- A lookup trie for data constructor applications, i.e. -- keys of type `(DataCon, [StgArg])`, following the patterns in TrieMap. data StgArgMap a = SAM { sam_var :: DVarEnv a , sam_lit :: LiteralMap a } instance TrieMap StgArgMap where type Key StgArgMap = StgArg emptyTM = SAM { sam_var = emptyTM , sam_lit = emptyTM } lookupTM (StgVarArg var) = sam_var >.> lkDFreeVar var lookupTM (StgLitArg lit) = sam_lit >.> lookupTM lit alterTM (StgVarArg var) f m = m { sam_var = sam_var m |> xtDFreeVar var f } alterTM (StgLitArg lit) f m = m { sam_lit = sam_lit m |> alterTM lit f } foldTM k m = foldTM k (sam_var m) . foldTM k (sam_lit m) mapTM f (SAM {sam_var = varm, sam_lit = litm}) = SAM { sam_var = mapTM f varm, sam_lit = mapTM f litm } newtype ConAppMap a = CAM { un_cam :: DNameEnv (ListMap StgArgMap a) } instance TrieMap ConAppMap where type Key ConAppMap = (DataCon, [StgArg]) emptyTM = CAM emptyTM lookupTM (dataCon, args) = un_cam >.> lkDNamed dataCon >=> lookupTM args alterTM (dataCon, args) f m = m { un_cam = un_cam m |> xtDNamed dataCon |>> alterTM args f } foldTM k = un_cam >.> foldTM (foldTM k) mapTM f = un_cam >.> mapTM (mapTM f) >.> CAM ----------------- -- The CSE Env -- ----------------- -- | The CSE environment. See note [CseEnv Example] data CseEnv = CseEnv { ce_conAppMap :: ConAppMap OutId -- ^ The main component of the environment is the trie that maps -- data constructor applications (with their `OutId` arguments) -- to an in-scope name that can be used instead. -- This name is always either a let-bound variable or a case binder. , ce_subst :: IdEnv OutId -- ^ This substitution is applied to the code as we traverse it. -- Entries have one of two reasons: -- -- * The input might have shadowing (see Note [Shadowing]), so we have -- to rename some binders as we traverse the tree. -- * If we remove `let x = Con z` because `let y = Con z` is in scope, -- we note this here as x ↦ y. , ce_bndrMap :: IdEnv OutId -- If we come across a case expression case x as b of … with a trivial -- binder, we add b ↦ x to this. -- This map is *only* used when looking something up in the ce_conAppMap. -- See Note [Trivial case scrutinee] , ce_in_scope :: InScopeSet -- ^ The third component is an in-scope set, to rename away any -- shadowing binders } {-| Note [CseEnv Example] ~~~~~~~~~~~~~~~~~~~~~ The following tables shows how the CseEnvironment changes as code is traversed, as well as the changes to that code. InExpr OutExpr conAppMap subst in_scope ─────────────────────────────────────────────────────────── -- empty {} {} case … as a of {Con x y -> case … as a of {Con x y -> -- Con x y ↦ a {} {a,x,y} let b = Con x y (removed) -- Con x y ↦ a b↦a {a,x,y,b} let c = Bar a let c = Bar a -- Con x y ↦ a, Bar a ↦ c b↦a {a,x,y,b,c} let c = some expression let c' = some expression -- Con x y ↦ a, Bar a ↦ c b↦a, c↦c', {a,x,y,b,c,c'} let d = Bar b (removed) -- Con x y ↦ a, Bar a ↦ c b↦a, c↦c', d↦c {a,x,y,b,c,c',d} (a, b, c d) (a, a, c' c) -} initEnv :: InScopeSet -> CseEnv initEnv in_scope = CseEnv { ce_conAppMap = emptyTM , ce_subst = emptyVarEnv , ce_bndrMap = emptyVarEnv , ce_in_scope = in_scope } envLookup :: DataCon -> [OutStgArg] -> CseEnv -> Maybe OutId envLookup dataCon args env = lookupTM (dataCon, args') (ce_conAppMap env) where args' = map go args -- See Note [Trivial case scrutinee] go (StgVarArg v ) = StgVarArg (fromMaybe v $ lookupVarEnv (ce_bndrMap env) v) go (StgLitArg lit) = StgLitArg lit addDataCon :: OutId -> DataCon -> [OutStgArg] -> CseEnv -> CseEnv -- do not bother with nullary data constructors, they are static anyways addDataCon _ _ [] env = env addDataCon bndr dataCon args env = env { ce_conAppMap = new_env } where new_env = insertTM (dataCon, args) bndr (ce_conAppMap env) forgetCse :: CseEnv -> CseEnv forgetCse env = env { ce_conAppMap = emptyTM } -- See note [Free variables of an StgClosure] addSubst :: OutId -> OutId -> CseEnv -> CseEnv addSubst from to env = env { ce_subst = extendVarEnv (ce_subst env) from to } addTrivCaseBndr :: OutId -> OutId -> CseEnv -> CseEnv addTrivCaseBndr from to env = env { ce_bndrMap = extendVarEnv (ce_bndrMap env) from to } substArgs :: CseEnv -> [InStgArg] -> [OutStgArg] substArgs env = map (substArg env) substArg :: CseEnv -> InStgArg -> OutStgArg substArg env (StgVarArg from) = StgVarArg (substVar env from) substArg _ (StgLitArg lit) = StgLitArg lit substVars :: CseEnv -> [InId] -> [OutId] substVars env = map (substVar env) substVar :: CseEnv -> InId -> OutId substVar env id = fromMaybe id $ lookupVarEnv (ce_subst env) id -- Functions to enter binders -- This is much simpler than the requivalent code in CoreSubst: -- * We do not substitute type variables, and -- * There is nothing relevant in IdInfo at this stage -- that needs substitutions. -- Therefore, no special treatment for a recursive group is required. substBndr :: CseEnv -> InId -> (CseEnv, OutId) substBndr env old_id = (new_env, new_id) where new_id = uniqAway (ce_in_scope env) old_id no_change = new_id == old_id env' = env { ce_in_scope = ce_in_scope env `extendInScopeSet` new_id } new_env | no_change = env' { ce_subst = extendVarEnv (ce_subst env) old_id new_id } | otherwise = env' substBndrs :: CseEnv -> [InVar] -> (CseEnv, [OutVar]) substBndrs env bndrs = mapAccumL substBndr env bndrs substPairs :: CseEnv -> [(InVar, a)] -> (CseEnv, [(OutVar, a)]) substPairs env bndrs = mapAccumL go env bndrs where go env (id, x) = let (env', id') = substBndr env id in (env', (id', x)) -- Main entry point stgCse :: [InStgTopBinding] -> [OutStgTopBinding] stgCse binds = snd $ mapAccumL stgCseTopLvl emptyInScopeSet binds -- Top level bindings. -- -- We do not CSE these, as top-level closures are allocated statically anyways. -- Also, they might be exported. -- But we still have to collect the set of in-scope variables, otherwise -- uniqAway might shadow a top-level closure. stgCseTopLvl :: InScopeSet -> InStgTopBinding -> (InScopeSet, OutStgTopBinding) stgCseTopLvl in_scope t@(StgTopStringLit _ _) = (in_scope, t) stgCseTopLvl in_scope (StgTopLifted (StgNonRec bndr rhs)) = (in_scope' , StgTopLifted (StgNonRec bndr (stgCseTopLvlRhs in_scope rhs))) where in_scope' = in_scope `extendInScopeSet` bndr stgCseTopLvl in_scope (StgTopLifted (StgRec eqs)) = ( in_scope' , StgTopLifted (StgRec [ (bndr, stgCseTopLvlRhs in_scope' rhs) | (bndr, rhs) <- eqs ])) where in_scope' = in_scope `extendInScopeSetList` [ bndr | (bndr, _) <- eqs ] stgCseTopLvlRhs :: InScopeSet -> InStgRhs -> OutStgRhs stgCseTopLvlRhs in_scope (StgRhsClosure ccs info occs upd args body) = let body' = stgCseExpr (initEnv in_scope) body in StgRhsClosure ccs info occs upd args body' stgCseTopLvlRhs _ (StgRhsCon ccs dataCon args) = StgRhsCon ccs dataCon args ------------------------------ -- The actual AST traversal -- ------------------------------ -- Trivial cases stgCseExpr :: CseEnv -> InStgExpr -> OutStgExpr stgCseExpr env (StgApp fun args) = StgApp fun' args' where fun' = substVar env fun args' = substArgs env args stgCseExpr _ (StgLit lit) = StgLit lit stgCseExpr env (StgOpApp op args tys) = StgOpApp op args' tys where args' = substArgs env args stgCseExpr _ (StgLam _ _) = pprPanic "stgCseExp" (text "StgLam") stgCseExpr env (StgTick tick body) = let body' = stgCseExpr env body in StgTick tick body' stgCseExpr env (StgCase scrut bndr ty alts) = mkStgCase scrut' bndr' ty alts' where scrut' = stgCseExpr env scrut (env1, bndr') = substBndr env bndr env2 | StgApp trivial_scrut [] <- scrut' = addTrivCaseBndr bndr trivial_scrut env1 -- See Note [Trivial case scrutinee] | otherwise = env1 alts' = map (stgCseAlt env2 bndr') alts -- A constructor application. -- To be removed by a variable use when found in the CSE environment stgCseExpr env (StgConApp dataCon args tys) | Just bndr' <- envLookup dataCon args' env = StgApp bndr' [] | otherwise = StgConApp dataCon args' tys where args' = substArgs env args -- Let bindings -- The binding might be removed due to CSE (we do not want trivial bindings on -- the STG level), so use the smart constructor `mkStgLet` to remove the binding -- if empty. stgCseExpr env (StgLet binds body) = let (binds', env') = stgCseBind env binds body' = stgCseExpr env' body in mkStgLet StgLet binds' body' stgCseExpr env (StgLetNoEscape binds body) = let (binds', env') = stgCseBind env binds body' = stgCseExpr env' body in mkStgLet StgLetNoEscape binds' body' -- Case alternatives -- Extend the CSE environment stgCseAlt :: CseEnv -> OutId -> InStgAlt -> OutStgAlt stgCseAlt env case_bndr (DataAlt dataCon, args, rhs) = let (env1, args') = substBndrs env args env2 = addDataCon case_bndr dataCon (map StgVarArg args') env1 -- see note [Case 2: CSEing case binders] rhs' = stgCseExpr env2 rhs in (DataAlt dataCon, args', rhs') stgCseAlt env _ (altCon, args, rhs) = let (env1, args') = substBndrs env args rhs' = stgCseExpr env1 rhs in (altCon, args', rhs') -- Bindings stgCseBind :: CseEnv -> InStgBinding -> (Maybe OutStgBinding, CseEnv) stgCseBind env (StgNonRec b e) = let (env1, b') = substBndr env b in case stgCseRhs env1 b' e of (Nothing, env2) -> (Nothing, env2) (Just (b2,e'), env2) -> (Just (StgNonRec b2 e'), env2) stgCseBind env (StgRec pairs) = let (env1, pairs1) = substPairs env pairs in case stgCsePairs env1 pairs1 of ([], env2) -> (Nothing, env2) (pairs2, env2) -> (Just (StgRec pairs2), env2) stgCsePairs :: CseEnv -> [(OutId, InStgRhs)] -> ([(OutId, OutStgRhs)], CseEnv) stgCsePairs env [] = ([], env) stgCsePairs env0 ((b,e):pairs) = let (pairMB, env1) = stgCseRhs env0 b e (pairs', env2) = stgCsePairs env1 pairs in (pairMB `mbCons` pairs', env2) where mbCons = maybe id (:) -- The RHS of a binding. -- If it is an constructor application, either short-cut it or extend the environment stgCseRhs :: CseEnv -> OutId -> InStgRhs -> (Maybe (OutId, OutStgRhs), CseEnv) stgCseRhs env bndr (StgRhsCon ccs dataCon args) | Just other_bndr <- envLookup dataCon args' env = let env' = addSubst bndr other_bndr env in (Nothing, env') | otherwise = let env' = addDataCon bndr dataCon args' env -- see note [Case 1: CSEing allocated closures] pair = (bndr, StgRhsCon ccs dataCon args') in (Just pair, env') where args' = substArgs env args stgCseRhs env bndr (StgRhsClosure ccs info occs upd args body) = let (env1, args') = substBndrs env args env2 = forgetCse env1 -- See note [Free variables of an StgClosure] body' = stgCseExpr env2 body in (Just (substVar env bndr, StgRhsClosure ccs info occs' upd args' body'), env) where occs' = substVars env occs mkStgCase :: StgExpr -> OutId -> AltType -> [StgAlt] -> StgExpr mkStgCase scrut bndr ty alts | all isBndr alts = scrut | otherwise = StgCase scrut bndr ty alts where -- see Note [All alternatives are the binder] isBndr (_, _, StgApp f []) = f == bndr isBndr _ = False -- Utilities -- | This function short-cuts let-bindings that are now obsolete mkStgLet :: (a -> b -> b) -> Maybe a -> b -> b mkStgLet _ Nothing body = body mkStgLet stgLet (Just binds) body = stgLet binds body {- Note [All alternatives are the binder] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When all alternatives simply refer to the case binder, then we do not have to bother with the case expression at all (#13588). CoreSTG does this as well, but sometimes, types get into the way: newtype T = MkT Int f :: (Int, Int) -> (T, Int) f (x, y) = (MkT x, y) Core cannot just turn this into f p = p as this would not be well-typed. But to STG, where MkT is no longer in the way, we can. Note [Trivial case scrutinee] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We want to be able to handle nested reconstruction of constructors as in nested :: Either Int (Either Int a) -> Either Bool (Either Bool a) nested (Right (Right v)) = Right (Right v) nested _ = Left True So if we come across case x of r1 Right a -> case a of r2 Right b -> let v = Right b in Right v we first replace v with r2. Next we want to replace Right r2 with r1. But the ce_conAppMap contains Right a! Therefore, we add r1 ↦ x to ce_bndrMap when analysing the outer case, and use this subsitution before looking Right r2 up in ce_conAppMap, and everything works out. Note [Free variables of an StgClosure] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ StgClosures (function and thunks) have an explicit list of free variables: foo [x] = let not_a_free_var = Left [x] let a_free_var = Right [x] let closure = \[x a_free_var] -> \[y] -> bar y (Left [x]) a_free_var in closure If we were to CSE `Left [x]` in the body of `closure` with `not_a_free_var`, then the list of free variables would be wrong, so for now, we do not CSE across such a closure, simply because I (Joachim) was not sure about possible knock-on effects. If deemed safe and worth the slight code complication of re-calculating this list during or after this pass, this can surely be done. -}