% % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % \section[Bags]{@Bag@: an unordered collection with duplicates} \begin{code} module Bag ( Bag, -- abstract type emptyBag, unitBag, unionBags, unionManyBags, mapBag, elemBag, filterBag, partitionBag, concatBag, foldBag, foldrBag, foldlBag, isEmptyBag, isSingletonBag, consBag, snocBag, anyBag, listToBag, bagToList, mapBagM, mapAndUnzipBagM ) where #include "HsVersions.h" import Outputable import Util ( isSingleton ) import List ( partition ) \end{code} \begin{code} data Bag a = EmptyBag | UnitBag a | TwoBags (Bag a) (Bag a) -- INVARIANT: neither branch is empty | ListBag [a] -- INVARIANT: the list is non-empty emptyBag = EmptyBag unitBag = UnitBag elemBag :: Eq a => a -> Bag a -> Bool elemBag x EmptyBag = False elemBag x (UnitBag y) = x==y elemBag x (TwoBags b1 b2) = x `elemBag` b1 || x `elemBag` b2 elemBag x (ListBag ys) = any (x ==) ys unionManyBags :: [Bag a] -> Bag a unionManyBags xs = foldr unionBags EmptyBag xs -- This one is a bit stricter! The bag will get completely evaluated. unionBags :: Bag a -> Bag a -> Bag a unionBags EmptyBag b = b unionBags b EmptyBag = b unionBags b1 b2 = TwoBags b1 b2 consBag :: a -> Bag a -> Bag a snocBag :: Bag a -> a -> Bag a consBag elt bag = (unitBag elt) `unionBags` bag snocBag bag elt = bag `unionBags` (unitBag elt) isEmptyBag EmptyBag = True isEmptyBag other = False -- NB invariants isSingletonBag :: Bag a -> Bool isSingletonBag EmptyBag = False isSingletonBag (UnitBag x) = True isSingletonBag (TwoBags b1 b2) = False -- Neither is empty isSingletonBag (ListBag xs) = isSingleton xs filterBag :: (a -> Bool) -> Bag a -> Bag a filterBag pred EmptyBag = EmptyBag filterBag pred b@(UnitBag val) = if pred val then b else EmptyBag filterBag pred (TwoBags b1 b2) = sat1 `unionBags` sat2 where sat1 = filterBag pred b1 sat2 = filterBag pred b2 filterBag pred (ListBag vs) = listToBag (filter pred vs) anyBag :: (a -> Bool) -> Bag a -> Bool anyBag p EmptyBag = False anyBag p (UnitBag v) = p v anyBag p (TwoBags b1 b2) = anyBag p b1 || anyBag p b2 anyBag p (ListBag xs) = any p xs concatBag :: Bag (Bag a) -> Bag a concatBag EmptyBag = EmptyBag concatBag (UnitBag b) = b concatBag (TwoBags b1 b2) = concatBag b1 `unionBags` concatBag b2 concatBag (ListBag bs) = unionManyBags bs partitionBag :: (a -> Bool) -> Bag a -> (Bag a {- Satisfy predictate -}, Bag a {- Don't -}) partitionBag pred EmptyBag = (EmptyBag, EmptyBag) partitionBag pred b@(UnitBag val) = if pred val then (b, EmptyBag) else (EmptyBag, b) partitionBag pred (TwoBags b1 b2) = (sat1 `unionBags` sat2, fail1 `unionBags` fail2) where (sat1,fail1) = partitionBag pred b1 (sat2,fail2) = partitionBag pred b2 partitionBag pred (ListBag vs) = (listToBag sats, listToBag fails) where (sats,fails) = partition pred vs foldBag :: (r -> r -> r) -- Replace TwoBags with this; should be associative -> (a -> r) -- Replace UnitBag with this -> r -- Replace EmptyBag with this -> Bag a -> r {- Standard definition foldBag t u e EmptyBag = e foldBag t u e (UnitBag x) = u x foldBag t u e (TwoBags b1 b2) = (foldBag t u e b1) `t` (foldBag t u e b2) foldBag t u e (ListBag xs) = foldr (t.u) e xs -} -- More tail-recursive definition, exploiting associativity of "t" foldBag t u e EmptyBag = e foldBag t u e (UnitBag x) = u x `t` e foldBag t u e (TwoBags b1 b2) = foldBag t u (foldBag t u e b2) b1 foldBag t u e (ListBag xs) = foldr (t.u) e xs foldrBag :: (a -> r -> r) -> r -> Bag a -> r foldrBag k z EmptyBag = z foldrBag k z (UnitBag x) = k x z foldrBag k z (TwoBags b1 b2) = foldrBag k (foldrBag k z b2) b1 foldrBag k z (ListBag xs) = foldr k z xs foldlBag :: (r -> a -> r) -> r -> Bag a -> r foldlBag k z EmptyBag = z foldlBag k z (UnitBag x) = k z x foldlBag k z (TwoBags b1 b2) = foldlBag k (foldlBag k z b1) b2 foldlBag k z (ListBag xs) = foldl k z xs mapBag :: (a -> b) -> Bag a -> Bag b mapBag f EmptyBag = EmptyBag mapBag f (UnitBag x) = UnitBag (f x) mapBag f (TwoBags b1 b2) = TwoBags (mapBag f b1) (mapBag f b2) mapBag f (ListBag xs) = ListBag (map f xs) mapBagM :: Monad m => (a -> m b) -> Bag a -> m (Bag b) mapBagM f EmptyBag = return EmptyBag mapBagM f (UnitBag x) = do { r <- f x; return (UnitBag r) } mapBagM f (TwoBags b1 b2) = do { r1 <- mapBagM f b1; r2 <- mapBagM f b2; return (TwoBags r1 r2) } mapBagM f (ListBag xs) = do { rs <- mapM f xs; return (ListBag rs) } mapAndUnzipBagM :: Monad m => (a -> m (b,c)) -> Bag a -> m (Bag b, Bag c) mapAndUnzipBagM f EmptyBag = return (EmptyBag, EmptyBag) mapAndUnzipBagM f (UnitBag x) = do { (r,s) <- f x; return (UnitBag r, UnitBag s) } mapAndUnzipBagM f (TwoBags b1 b2) = do { (r1,s1) <- mapAndUnzipBagM f b1 ; (r2,s2) <- mapAndUnzipBagM f b2 ; return (TwoBags r1 r2, TwoBags s1 s2) } mapAndUnzipBagM f (ListBag xs) = do { ts <- mapM f xs ; let (rs,ss) = unzip ts ; return (ListBag rs, ListBag ss) } listToBag :: [a] -> Bag a listToBag [] = EmptyBag listToBag vs = ListBag vs bagToList :: Bag a -> [a] bagToList b = foldrBag (:) [] b \end{code} \begin{code} instance (Outputable a) => Outputable (Bag a) where ppr EmptyBag = ptext SLIT("emptyBag") ppr (UnitBag a) = ppr a ppr (TwoBags b1 b2) = hsep [ppr b1 <> comma, ppr b2] ppr (ListBag as) = interpp'SP as \end{code}