% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % Bag: an unordered collection with duplicates \begin{code} module Bag ( Bag, -- abstract type emptyBag, unitBag, unionBags, unionManyBags, mapBag, elemBag, lengthBag, filterBag, partitionBag, partitionBagWith, concatBag, foldBag, foldrBag, foldlBag, isEmptyBag, isSingletonBag, consBag, snocBag, anyBag, listToBag, bagToList, foldrBagM, foldlBagM, mapBagM, mapBagM_, flatMapBagM, flatMapBagPairM, mapAndUnzipBagM, mapAccumBagLM ) where import Outputable import Util import MonadUtils import Data.Data import Data.List ( partition ) infixr 3 `consBag` infixl 3 `snocBag` \end{code} \begin{code} data Bag a = EmptyBag | UnitBag a | TwoBags (Bag a) (Bag a) -- INVARIANT: neither branch is empty | ListBag [a] -- INVARIANT: the list is non-empty deriving Typeable emptyBag :: Bag a emptyBag = EmptyBag unitBag :: a -> Bag a unitBag = UnitBag lengthBag :: Bag a -> Int lengthBag EmptyBag = 0 lengthBag (UnitBag {}) = 1 lengthBag (TwoBags b1 b2) = lengthBag b1 + lengthBag b2 lengthBag (ListBag xs) = length xs elemBag :: Eq a => a -> Bag a -> Bool elemBag _ EmptyBag = False elemBag x (UnitBag y) = x == y elemBag x (TwoBags b1 b2) = x `elemBag` b1 || x `elemBag` b2 elemBag x (ListBag ys) = any (x ==) ys unionManyBags :: [Bag a] -> Bag a unionManyBags xs = foldr unionBags EmptyBag xs -- This one is a bit stricter! The bag will get completely evaluated. unionBags :: Bag a -> Bag a -> Bag a unionBags EmptyBag b = b unionBags b EmptyBag = b unionBags b1 b2 = TwoBags b1 b2 consBag :: a -> Bag a -> Bag a snocBag :: Bag a -> a -> Bag a consBag elt bag = (unitBag elt) `unionBags` bag snocBag bag elt = bag `unionBags` (unitBag elt) isEmptyBag :: Bag a -> Bool isEmptyBag EmptyBag = True isEmptyBag _ = False -- NB invariants isSingletonBag :: Bag a -> Bool isSingletonBag EmptyBag = False isSingletonBag (UnitBag _) = True isSingletonBag (TwoBags _ _) = False -- Neither is empty isSingletonBag (ListBag xs) = isSingleton xs filterBag :: (a -> Bool) -> Bag a -> Bag a filterBag _ EmptyBag = EmptyBag filterBag pred b@(UnitBag val) = if pred val then b else EmptyBag filterBag pred (TwoBags b1 b2) = sat1 `unionBags` sat2 where sat1 = filterBag pred b1 sat2 = filterBag pred b2 filterBag pred (ListBag vs) = listToBag (filter pred vs) anyBag :: (a -> Bool) -> Bag a -> Bool anyBag _ EmptyBag = False anyBag p (UnitBag v) = p v anyBag p (TwoBags b1 b2) = anyBag p b1 || anyBag p b2 anyBag p (ListBag xs) = any p xs concatBag :: Bag (Bag a) -> Bag a concatBag EmptyBag = EmptyBag concatBag (UnitBag b) = b concatBag (TwoBags b1 b2) = concatBag b1 `unionBags` concatBag b2 concatBag (ListBag bs) = unionManyBags bs partitionBag :: (a -> Bool) -> Bag a -> (Bag a {- Satisfy predictate -}, Bag a {- Don't -}) partitionBag _ EmptyBag = (EmptyBag, EmptyBag) partitionBag pred b@(UnitBag val) = if pred val then (b, EmptyBag) else (EmptyBag, b) partitionBag pred (TwoBags b1 b2) = (sat1 `unionBags` sat2, fail1 `unionBags` fail2) where (sat1, fail1) = partitionBag pred b1 (sat2, fail2) = partitionBag pred b2 partitionBag pred (ListBag vs) = (listToBag sats, listToBag fails) where (sats, fails) = partition pred vs partitionBagWith :: (a -> Either b c) -> Bag a -> (Bag b {- Left -}, Bag c {- Right -}) partitionBagWith _ EmptyBag = (EmptyBag, EmptyBag) partitionBagWith pred (UnitBag val) = case pred val of Left a -> (UnitBag a, EmptyBag) Right b -> (EmptyBag, UnitBag b) partitionBagWith pred (TwoBags b1 b2) = (sat1 `unionBags` sat2, fail1 `unionBags` fail2) where (sat1, fail1) = partitionBagWith pred b1 (sat2, fail2) = partitionBagWith pred b2 partitionBagWith pred (ListBag vs) = (listToBag sats, listToBag fails) where (sats, fails) = partitionWith pred vs foldBag :: (r -> r -> r) -- Replace TwoBags with this; should be associative -> (a -> r) -- Replace UnitBag with this -> r -- Replace EmptyBag with this -> Bag a -> r {- Standard definition foldBag t u e EmptyBag = e foldBag t u e (UnitBag x) = u x foldBag t u e (TwoBags b1 b2) = (foldBag t u e b1) `t` (foldBag t u e b2) foldBag t u e (ListBag xs) = foldr (t.u) e xs -} -- More tail-recursive definition, exploiting associativity of "t" foldBag _ _ e EmptyBag = e foldBag t u e (UnitBag x) = u x `t` e foldBag t u e (TwoBags b1 b2) = foldBag t u (foldBag t u e b2) b1 foldBag t u e (ListBag xs) = foldr (t.u) e xs foldrBag :: (a -> r -> r) -> r -> Bag a -> r foldrBag _ z EmptyBag = z foldrBag k z (UnitBag x) = k x z foldrBag k z (TwoBags b1 b2) = foldrBag k (foldrBag k z b2) b1 foldrBag k z (ListBag xs) = foldr k z xs foldlBag :: (r -> a -> r) -> r -> Bag a -> r foldlBag _ z EmptyBag = z foldlBag k z (UnitBag x) = k z x foldlBag k z (TwoBags b1 b2) = foldlBag k (foldlBag k z b1) b2 foldlBag k z (ListBag xs) = foldl k z xs foldrBagM :: (Monad m) => (a -> b -> m b) -> b -> Bag a -> m b foldrBagM _ z EmptyBag = return z foldrBagM k z (UnitBag x) = k x z foldrBagM k z (TwoBags b1 b2) = do { z' <- foldrBagM k z b2; foldrBagM k z' b1 } foldrBagM k z (ListBag xs) = foldrM k z xs foldlBagM :: (Monad m) => (b -> a -> m b) -> b -> Bag a -> m b foldlBagM _ z EmptyBag = return z foldlBagM k z (UnitBag x) = k z x foldlBagM k z (TwoBags b1 b2) = do { z' <- foldlBagM k z b1; foldlBagM k z' b2 } foldlBagM k z (ListBag xs) = foldlM k z xs mapBag :: (a -> b) -> Bag a -> Bag b mapBag _ EmptyBag = EmptyBag mapBag f (UnitBag x) = UnitBag (f x) mapBag f (TwoBags b1 b2) = TwoBags (mapBag f b1) (mapBag f b2) mapBag f (ListBag xs) = ListBag (map f xs) mapBagM :: Monad m => (a -> m b) -> Bag a -> m (Bag b) mapBagM _ EmptyBag = return EmptyBag mapBagM f (UnitBag x) = do r <- f x return (UnitBag r) mapBagM f (TwoBags b1 b2) = do r1 <- mapBagM f b1 r2 <- mapBagM f b2 return (TwoBags r1 r2) mapBagM f (ListBag xs) = do rs <- mapM f xs return (ListBag rs) mapBagM_ :: Monad m => (a -> m b) -> Bag a -> m () mapBagM_ _ EmptyBag = return () mapBagM_ f (UnitBag x) = f x >> return () mapBagM_ f (TwoBags b1 b2) = mapBagM_ f b1 >> mapBagM_ f b2 mapBagM_ f (ListBag xs) = mapM_ f xs flatMapBagM :: Monad m => (a -> m (Bag b)) -> Bag a -> m (Bag b) flatMapBagM _ EmptyBag = return EmptyBag flatMapBagM f (UnitBag x) = f x flatMapBagM f (TwoBags b1 b2) = do r1 <- flatMapBagM f b1 r2 <- flatMapBagM f b2 return (r1 `unionBags` r2) flatMapBagM f (ListBag xs) = foldrM k EmptyBag xs where k x b2 = do { b1 <- f x; return (b1 `unionBags` b2) } flatMapBagPairM :: Monad m => (a -> m (Bag b, Bag c)) -> Bag a -> m (Bag b, Bag c) flatMapBagPairM _ EmptyBag = return (EmptyBag, EmptyBag) flatMapBagPairM f (UnitBag x) = f x flatMapBagPairM f (TwoBags b1 b2) = do (r1,s1) <- flatMapBagPairM f b1 (r2,s2) <- flatMapBagPairM f b2 return (r1 `unionBags` r2, s1 `unionBags` s2) flatMapBagPairM f (ListBag xs) = foldrM k (EmptyBag, EmptyBag) xs where k x (r2,s2) = do { (r1,s1) <- f x ; return (r1 `unionBags` r2, s1 `unionBags` s2) } mapAndUnzipBagM :: Monad m => (a -> m (b,c)) -> Bag a -> m (Bag b, Bag c) mapAndUnzipBagM _ EmptyBag = return (EmptyBag, EmptyBag) mapAndUnzipBagM f (UnitBag x) = do (r,s) <- f x return (UnitBag r, UnitBag s) mapAndUnzipBagM f (TwoBags b1 b2) = do (r1,s1) <- mapAndUnzipBagM f b1 (r2,s2) <- mapAndUnzipBagM f b2 return (TwoBags r1 r2, TwoBags s1 s2) mapAndUnzipBagM f (ListBag xs) = do ts <- mapM f xs let (rs,ss) = unzip ts return (ListBag rs, ListBag ss) mapAccumBagLM :: Monad m => (acc -> x -> m (acc, y)) -- ^ combining funcction -> acc -- ^ initial state -> Bag x -- ^ inputs -> m (acc, Bag y) -- ^ final state, outputs mapAccumBagLM _ s EmptyBag = return (s, EmptyBag) mapAccumBagLM f s (UnitBag x) = do { (s1, x1) <- f s x; return (s1, UnitBag x1) } mapAccumBagLM f s (TwoBags b1 b2) = do { (s1, b1') <- mapAccumBagLM f s b1 ; (s2, b2') <- mapAccumBagLM f s1 b2 ; return (s2, TwoBags b1' b2') } mapAccumBagLM f s (ListBag xs) = do { (s', xs') <- mapAccumLM f s xs ; return (s', ListBag xs') } listToBag :: [a] -> Bag a listToBag [] = EmptyBag listToBag vs = ListBag vs bagToList :: Bag a -> [a] bagToList b = foldrBag (:) [] b \end{code} \begin{code} instance (Outputable a) => Outputable (Bag a) where ppr bag = braces (pprWithCommas ppr (bagToList bag)) instance Data a => Data (Bag a) where gfoldl k z b = z listToBag `k` bagToList b -- traverse abstract type abstractly toConstr _ = abstractConstr $ "Bag("++show (typeOf (undefined::a))++")" gunfold _ _ = error "gunfold" dataTypeOf _ = mkNoRepType "Bag" dataCast1 x = gcast1 x \end{code}