{-# LANGUAGE CPP, MagicHash, UnboxedTuples #-} {-# LANGUAGE FlexibleInstances #-} {-# OPTIONS_GHC -O -funbox-strict-fields #-} -- We always optimise this, otherwise performance of a non-optimised -- compiler is severely affected -- -- (c) The University of Glasgow 2002-2006 -- -- Binary I/O library, with special tweaks for GHC -- -- Based on the nhc98 Binary library, which is copyright -- (c) Malcolm Wallace and Colin Runciman, University of York, 1998. -- Under the terms of the license for that software, we must tell you -- where you can obtain the original version of the Binary library, namely -- http://www.cs.york.ac.uk/fp/nhc98/ module Binary ( {-type-} Bin, {-class-} Binary(..), {-type-} BinHandle, SymbolTable, Dictionary, openBinMem, -- closeBin, seekBin, seekBy, tellBin, castBin, writeBinMem, readBinMem, fingerprintBinMem, computeFingerprint, isEOFBin, putAt, getAt, -- for writing instances: putByte, getByte, -- lazy Bin I/O lazyGet, lazyPut, UserData(..), getUserData, setUserData, newReadState, newWriteState, putDictionary, getDictionary, putFS, ) where #include "HsVersions.h" -- The *host* architecture version: #include "../includes/MachDeps.h" import {-# SOURCE #-} Name (Name) import FastString import Panic import UniqFM import FastMutInt import Fingerprint import BasicTypes import SrcLoc import Foreign import Data.Array import Data.ByteString (ByteString) import qualified Data.ByteString.Internal as BS import qualified Data.ByteString.Unsafe as BS import Data.IORef import Data.Char ( ord, chr ) import Data.Time import Data.Typeable import Control.Monad ( when ) import System.IO as IO import System.IO.Unsafe ( unsafeInterleaveIO ) import System.IO.Error ( mkIOError, eofErrorType ) import GHC.Real ( Ratio(..) ) import GHC.Serialized type BinArray = ForeignPtr Word8 --------------------------------------------------------------- -- BinHandle --------------------------------------------------------------- data BinHandle = BinMem { -- binary data stored in an unboxed array bh_usr :: UserData, -- sigh, need parameterized modules :-) _off_r :: !FastMutInt, -- the current offset _sz_r :: !FastMutInt, -- size of the array (cached) _arr_r :: !(IORef BinArray) -- the array (bounds: (0,size-1)) } -- XXX: should really store a "high water mark" for dumping out -- the binary data to a file. getUserData :: BinHandle -> UserData getUserData bh = bh_usr bh setUserData :: BinHandle -> UserData -> BinHandle setUserData bh us = bh { bh_usr = us } --------------------------------------------------------------- -- Bin --------------------------------------------------------------- newtype Bin a = BinPtr Int deriving (Eq, Ord, Show, Bounded) castBin :: Bin a -> Bin b castBin (BinPtr i) = BinPtr i --------------------------------------------------------------- -- class Binary --------------------------------------------------------------- class Binary a where put_ :: BinHandle -> a -> IO () put :: BinHandle -> a -> IO (Bin a) get :: BinHandle -> IO a -- define one of put_, put. Use of put_ is recommended because it -- is more likely that tail-calls can kick in, and we rarely need the -- position return value. put_ bh a = do _ <- put bh a; return () put bh a = do p <- tellBin bh; put_ bh a; return p putAt :: Binary a => BinHandle -> Bin a -> a -> IO () putAt bh p x = do seekBin bh p; put_ bh x; return () getAt :: Binary a => BinHandle -> Bin a -> IO a getAt bh p = do seekBin bh p; get bh openBinMem :: Int -> IO BinHandle openBinMem size | size <= 0 = error "Data.Binary.openBinMem: size must be >= 0" | otherwise = do arr <- mallocForeignPtrBytes size arr_r <- newIORef arr ix_r <- newFastMutInt writeFastMutInt ix_r 0 sz_r <- newFastMutInt writeFastMutInt sz_r size return (BinMem noUserData ix_r sz_r arr_r) tellBin :: BinHandle -> IO (Bin a) tellBin (BinMem _ r _ _) = do ix <- readFastMutInt r; return (BinPtr ix) seekBin :: BinHandle -> Bin a -> IO () seekBin h@(BinMem _ ix_r sz_r _) (BinPtr p) = do sz <- readFastMutInt sz_r if (p >= sz) then do expandBin h p; writeFastMutInt ix_r p else writeFastMutInt ix_r p seekBy :: BinHandle -> Int -> IO () seekBy h@(BinMem _ ix_r sz_r _) off = do sz <- readFastMutInt sz_r ix <- readFastMutInt ix_r let ix' = ix + off if (ix' >= sz) then do expandBin h ix'; writeFastMutInt ix_r ix' else writeFastMutInt ix_r ix' isEOFBin :: BinHandle -> IO Bool isEOFBin (BinMem _ ix_r sz_r _) = do ix <- readFastMutInt ix_r sz <- readFastMutInt sz_r return (ix >= sz) writeBinMem :: BinHandle -> FilePath -> IO () writeBinMem (BinMem _ ix_r _ arr_r) fn = do h <- openBinaryFile fn WriteMode arr <- readIORef arr_r ix <- readFastMutInt ix_r withForeignPtr arr $ \p -> hPutBuf h p ix hClose h readBinMem :: FilePath -> IO BinHandle -- Return a BinHandle with a totally undefined State readBinMem filename = do h <- openBinaryFile filename ReadMode filesize' <- hFileSize h let filesize = fromIntegral filesize' arr <- mallocForeignPtrBytes (filesize*2) count <- withForeignPtr arr $ \p -> hGetBuf h p filesize when (count /= filesize) $ error ("Binary.readBinMem: only read " ++ show count ++ " bytes") hClose h arr_r <- newIORef arr ix_r <- newFastMutInt writeFastMutInt ix_r 0 sz_r <- newFastMutInt writeFastMutInt sz_r filesize return (BinMem noUserData ix_r sz_r arr_r) fingerprintBinMem :: BinHandle -> IO Fingerprint fingerprintBinMem (BinMem _ ix_r _ arr_r) = do arr <- readIORef arr_r ix <- readFastMutInt ix_r withForeignPtr arr $ \p -> fingerprintData p ix computeFingerprint :: Binary a => (BinHandle -> Name -> IO ()) -> a -> IO Fingerprint computeFingerprint put_name a = do bh <- openBinMem (3*1024) -- just less than a block bh <- return $ setUserData bh $ newWriteState put_name putFS put_ bh a fingerprintBinMem bh -- expand the size of the array to include a specified offset expandBin :: BinHandle -> Int -> IO () expandBin (BinMem _ _ sz_r arr_r) off = do sz <- readFastMutInt sz_r let sz' = head (dropWhile (<= off) (iterate (* 2) sz)) arr <- readIORef arr_r arr' <- mallocForeignPtrBytes sz' withForeignPtr arr $ \old -> withForeignPtr arr' $ \new -> copyBytes new old sz writeFastMutInt sz_r sz' writeIORef arr_r arr' -- ----------------------------------------------------------------------------- -- Low-level reading/writing of bytes putWord8 :: BinHandle -> Word8 -> IO () putWord8 h@(BinMem _ ix_r sz_r arr_r) w = do ix <- readFastMutInt ix_r sz <- readFastMutInt sz_r -- double the size of the array if it overflows if (ix >= sz) then do expandBin h ix putWord8 h w else do arr <- readIORef arr_r withForeignPtr arr $ \p -> pokeByteOff p ix w writeFastMutInt ix_r (ix+1) return () getWord8 :: BinHandle -> IO Word8 getWord8 (BinMem _ ix_r sz_r arr_r) = do ix <- readFastMutInt ix_r sz <- readFastMutInt sz_r when (ix >= sz) $ ioError (mkIOError eofErrorType "Data.Binary.getWord8" Nothing Nothing) arr <- readIORef arr_r w <- withForeignPtr arr $ \p -> peekByteOff p ix writeFastMutInt ix_r (ix+1) return w putByte :: BinHandle -> Word8 -> IO () putByte bh w = put_ bh w getByte :: BinHandle -> IO Word8 getByte = getWord8 -- ----------------------------------------------------------------------------- -- Primitve Word writes instance Binary Word8 where put_ = putWord8 get = getWord8 instance Binary Word16 where put_ h w = do -- XXX too slow.. inline putWord8? putByte h (fromIntegral (w `shiftR` 8)) putByte h (fromIntegral (w .&. 0xff)) get h = do w1 <- getWord8 h w2 <- getWord8 h return $! ((fromIntegral w1 `shiftL` 8) .|. fromIntegral w2) instance Binary Word32 where put_ h w = do putByte h (fromIntegral (w `shiftR` 24)) putByte h (fromIntegral ((w `shiftR` 16) .&. 0xff)) putByte h (fromIntegral ((w `shiftR` 8) .&. 0xff)) putByte h (fromIntegral (w .&. 0xff)) get h = do w1 <- getWord8 h w2 <- getWord8 h w3 <- getWord8 h w4 <- getWord8 h return $! ((fromIntegral w1 `shiftL` 24) .|. (fromIntegral w2 `shiftL` 16) .|. (fromIntegral w3 `shiftL` 8) .|. (fromIntegral w4)) instance Binary Word64 where put_ h w = do putByte h (fromIntegral (w `shiftR` 56)) putByte h (fromIntegral ((w `shiftR` 48) .&. 0xff)) putByte h (fromIntegral ((w `shiftR` 40) .&. 0xff)) putByte h (fromIntegral ((w `shiftR` 32) .&. 0xff)) putByte h (fromIntegral ((w `shiftR` 24) .&. 0xff)) putByte h (fromIntegral ((w `shiftR` 16) .&. 0xff)) putByte h (fromIntegral ((w `shiftR` 8) .&. 0xff)) putByte h (fromIntegral (w .&. 0xff)) get h = do w1 <- getWord8 h w2 <- getWord8 h w3 <- getWord8 h w4 <- getWord8 h w5 <- getWord8 h w6 <- getWord8 h w7 <- getWord8 h w8 <- getWord8 h return $! ((fromIntegral w1 `shiftL` 56) .|. (fromIntegral w2 `shiftL` 48) .|. (fromIntegral w3 `shiftL` 40) .|. (fromIntegral w4 `shiftL` 32) .|. (fromIntegral w5 `shiftL` 24) .|. (fromIntegral w6 `shiftL` 16) .|. (fromIntegral w7 `shiftL` 8) .|. (fromIntegral w8)) -- ----------------------------------------------------------------------------- -- Primitve Int writes instance Binary Int8 where put_ h w = put_ h (fromIntegral w :: Word8) get h = do w <- get h; return $! (fromIntegral (w::Word8)) instance Binary Int16 where put_ h w = put_ h (fromIntegral w :: Word16) get h = do w <- get h; return $! (fromIntegral (w::Word16)) instance Binary Int32 where put_ h w = put_ h (fromIntegral w :: Word32) get h = do w <- get h; return $! (fromIntegral (w::Word32)) instance Binary Int64 where put_ h w = put_ h (fromIntegral w :: Word64) get h = do w <- get h; return $! (fromIntegral (w::Word64)) -- ----------------------------------------------------------------------------- -- Instances for standard types instance Binary () where put_ _ () = return () get _ = return () instance Binary Bool where put_ bh b = putByte bh (fromIntegral (fromEnum b)) get bh = do x <- getWord8 bh; return $! (toEnum (fromIntegral x)) instance Binary Char where put_ bh c = put_ bh (fromIntegral (ord c) :: Word32) get bh = do x <- get bh; return $! (chr (fromIntegral (x :: Word32))) instance Binary Int where put_ bh i = put_ bh (fromIntegral i :: Int64) get bh = do x <- get bh return $! (fromIntegral (x :: Int64)) instance Binary a => Binary [a] where put_ bh l = do let len = length l if (len < 0xff) then putByte bh (fromIntegral len :: Word8) else do putByte bh 0xff; put_ bh (fromIntegral len :: Word32) mapM_ (put_ bh) l get bh = do b <- getByte bh len <- if b == 0xff then get bh else return (fromIntegral b :: Word32) let loop 0 = return [] loop n = do a <- get bh; as <- loop (n-1); return (a:as) loop len instance (Binary a, Binary b) => Binary (a,b) where put_ bh (a,b) = do put_ bh a; put_ bh b get bh = do a <- get bh b <- get bh return (a,b) instance (Binary a, Binary b, Binary c) => Binary (a,b,c) where put_ bh (a,b,c) = do put_ bh a; put_ bh b; put_ bh c get bh = do a <- get bh b <- get bh c <- get bh return (a,b,c) instance (Binary a, Binary b, Binary c, Binary d) => Binary (a,b,c,d) where put_ bh (a,b,c,d) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d get bh = do a <- get bh b <- get bh c <- get bh d <- get bh return (a,b,c,d) instance (Binary a, Binary b, Binary c, Binary d, Binary e) => Binary (a,b,c,d, e) where put_ bh (a,b,c,d, e) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d; put_ bh e; get bh = do a <- get bh b <- get bh c <- get bh d <- get bh e <- get bh return (a,b,c,d,e) instance (Binary a, Binary b, Binary c, Binary d, Binary e, Binary f) => Binary (a,b,c,d, e, f) where put_ bh (a,b,c,d, e, f) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d; put_ bh e; put_ bh f; get bh = do a <- get bh b <- get bh c <- get bh d <- get bh e <- get bh f <- get bh return (a,b,c,d,e,f) instance Binary a => Binary (Maybe a) where put_ bh Nothing = putByte bh 0 put_ bh (Just a) = do putByte bh 1; put_ bh a get bh = do h <- getWord8 bh case h of 0 -> return Nothing _ -> do x <- get bh; return (Just x) instance (Binary a, Binary b) => Binary (Either a b) where put_ bh (Left a) = do putByte bh 0; put_ bh a put_ bh (Right b) = do putByte bh 1; put_ bh b get bh = do h <- getWord8 bh case h of 0 -> do a <- get bh ; return (Left a) _ -> do b <- get bh ; return (Right b) instance Binary UTCTime where put_ bh u = do put_ bh (utctDay u) put_ bh (utctDayTime u) get bh = do day <- get bh dayTime <- get bh return $ UTCTime { utctDay = day, utctDayTime = dayTime } instance Binary Day where put_ bh d = put_ bh (toModifiedJulianDay d) get bh = do i <- get bh return $ ModifiedJulianDay { toModifiedJulianDay = i } instance Binary DiffTime where put_ bh dt = put_ bh (toRational dt) get bh = do r <- get bh return $ fromRational r --to quote binary-0.3 on this code idea, -- -- TODO This instance is not architecture portable. GMP stores numbers as -- arrays of machine sized words, so the byte format is not portable across -- architectures with different endianess and word size. -- -- This makes it hard (impossible) to make an equivalent instance -- with code that is compilable with non-GHC. Do we need any instance -- Binary Integer, and if so, does it have to be blazing fast? Or can -- we just change this instance to be portable like the rest of the -- instances? (binary package has code to steal for that) -- -- yes, we need Binary Integer and Binary Rational in basicTypes/Literal.hs instance Binary Integer where -- XXX This is hideous put_ bh i = put_ bh (show i) get bh = do str <- get bh case reads str of [(i, "")] -> return i _ -> fail ("Binary Integer: got " ++ show str) {- -- This code is currently commented out. -- See https://ghc.haskell.org/trac/ghc/ticket/3379#comment:10 for -- discussion. put_ bh (S# i#) = do putByte bh 0; put_ bh (I# i#) put_ bh (J# s# a#) = do putByte bh 1 put_ bh (I# s#) let sz# = sizeofByteArray# a# -- in *bytes* put_ bh (I# sz#) -- in *bytes* putByteArray bh a# sz# get bh = do b <- getByte bh case b of 0 -> do (I# i#) <- get bh return (S# i#) _ -> do (I# s#) <- get bh sz <- get bh (BA a#) <- getByteArray bh sz return (J# s# a#) putByteArray :: BinHandle -> ByteArray# -> Int# -> IO () putByteArray bh a s# = loop 0# where loop n# | n# ==# s# = return () | otherwise = do putByte bh (indexByteArray a n#) loop (n# +# 1#) getByteArray :: BinHandle -> Int -> IO ByteArray getByteArray bh (I# sz) = do (MBA arr) <- newByteArray sz let loop n | n ==# sz = return () | otherwise = do w <- getByte bh writeByteArray arr n w loop (n +# 1#) loop 0# freezeByteArray arr -} {- data ByteArray = BA ByteArray# data MBA = MBA (MutableByteArray# RealWorld) newByteArray :: Int# -> IO MBA newByteArray sz = IO $ \s -> case newByteArray# sz s of { (# s, arr #) -> (# s, MBA arr #) } freezeByteArray :: MutableByteArray# RealWorld -> IO ByteArray freezeByteArray arr = IO $ \s -> case unsafeFreezeByteArray# arr s of { (# s, arr #) -> (# s, BA arr #) } writeByteArray :: MutableByteArray# RealWorld -> Int# -> Word8 -> IO () writeByteArray arr i (W8# w) = IO $ \s -> case writeWord8Array# arr i w s of { s -> (# s, () #) } indexByteArray :: ByteArray# -> Int# -> Word8 indexByteArray a# n# = W8# (indexWord8Array# a# n#) -} instance (Binary a) => Binary (Ratio a) where put_ bh (a :% b) = do put_ bh a; put_ bh b get bh = do a <- get bh; b <- get bh; return (a :% b) instance Binary (Bin a) where put_ bh (BinPtr i) = put_ bh (fromIntegral i :: Int32) get bh = do i <- get bh; return (BinPtr (fromIntegral (i :: Int32))) -- ----------------------------------------------------------------------------- -- Instances for Data.Typeable stuff instance Binary TyCon where put_ bh tc = do put_ bh (tyConPackage tc) put_ bh (tyConModule tc) put_ bh (tyConName tc) get bh = do p <- get bh m <- get bh n <- get bh return (mkTyCon3 p m n) instance Binary TypeRep where put_ bh type_rep = do let (ty_con, child_type_reps) = splitTyConApp type_rep put_ bh ty_con put_ bh child_type_reps get bh = do ty_con <- get bh child_type_reps <- get bh return (mkTyConApp ty_con child_type_reps) -- ----------------------------------------------------------------------------- -- Lazy reading/writing lazyPut :: Binary a => BinHandle -> a -> IO () lazyPut bh a = do -- output the obj with a ptr to skip over it: pre_a <- tellBin bh put_ bh pre_a -- save a slot for the ptr put_ bh a -- dump the object q <- tellBin bh -- q = ptr to after object putAt bh pre_a q -- fill in slot before a with ptr to q seekBin bh q -- finally carry on writing at q lazyGet :: Binary a => BinHandle -> IO a lazyGet bh = do p <- get bh -- a BinPtr p_a <- tellBin bh a <- unsafeInterleaveIO $ do -- NB: Use a fresh off_r variable in the child thread, for thread -- safety. off_r <- newFastMutInt getAt bh { _off_r = off_r } p_a seekBin bh p -- skip over the object for now return a -- ----------------------------------------------------------------------------- -- UserData -- ----------------------------------------------------------------------------- data UserData = UserData { -- for *deserialising* only: ud_get_name :: BinHandle -> IO Name, ud_get_fs :: BinHandle -> IO FastString, -- for *serialising* only: ud_put_name :: BinHandle -> Name -> IO (), ud_put_fs :: BinHandle -> FastString -> IO () } newReadState :: (BinHandle -> IO Name) -> (BinHandle -> IO FastString) -> UserData newReadState get_name get_fs = UserData { ud_get_name = get_name, ud_get_fs = get_fs, ud_put_name = undef "put_name", ud_put_fs = undef "put_fs" } newWriteState :: (BinHandle -> Name -> IO ()) -> (BinHandle -> FastString -> IO ()) -> UserData newWriteState put_name put_fs = UserData { ud_get_name = undef "get_name", ud_get_fs = undef "get_fs", ud_put_name = put_name, ud_put_fs = put_fs } noUserData :: a noUserData = undef "UserData" undef :: String -> a undef s = panic ("Binary.UserData: no " ++ s) --------------------------------------------------------- -- The Dictionary --------------------------------------------------------- type Dictionary = Array Int FastString -- The dictionary -- Should be 0-indexed putDictionary :: BinHandle -> Int -> UniqFM (Int,FastString) -> IO () putDictionary bh sz dict = do put_ bh sz mapM_ (putFS bh) (elems (array (0,sz-1) (eltsUFM dict))) getDictionary :: BinHandle -> IO Dictionary getDictionary bh = do sz <- get bh elems <- sequence (take sz (repeat (getFS bh))) return (listArray (0,sz-1) elems) --------------------------------------------------------- -- The Symbol Table --------------------------------------------------------- -- On disk, the symbol table is an array of IfaceExtName, when -- reading it in we turn it into a SymbolTable. type SymbolTable = Array Int Name --------------------------------------------------------- -- Reading and writing FastStrings --------------------------------------------------------- putFS :: BinHandle -> FastString -> IO () putFS bh fs = putBS bh $ fastStringToByteString fs getFS :: BinHandle -> IO FastString getFS bh = do bs <- getBS bh return $! mkFastStringByteString bs putBS :: BinHandle -> ByteString -> IO () putBS bh bs = BS.unsafeUseAsCStringLen bs $ \(ptr, l) -> do put_ bh l let go n | n == l = return () | otherwise = do b <- peekElemOff (castPtr ptr) n putByte bh b go (n+1) go 0 {- -- possible faster version, not quite there yet: getBS bh@BinMem{} = do (I# l) <- get bh arr <- readIORef (arr_r bh) off <- readFastMutInt (off_r bh) return $! (mkFastSubBytesBA# arr off l) -} getBS :: BinHandle -> IO ByteString getBS bh = do l <- get bh fp <- mallocForeignPtrBytes l withForeignPtr fp $ \ptr -> do let go n | n == l = return $ BS.fromForeignPtr fp 0 l | otherwise = do b <- getByte bh pokeElemOff ptr n b go (n+1) -- go 0 instance Binary ByteString where put_ bh f = putBS bh f get bh = getBS bh instance Binary FastString where put_ bh f = case getUserData bh of UserData { ud_put_fs = put_fs } -> put_fs bh f get bh = case getUserData bh of UserData { ud_get_fs = get_fs } -> get_fs bh -- Here to avoid loop instance Binary Fingerprint where put_ h (Fingerprint w1 w2) = do put_ h w1; put_ h w2 get h = do w1 <- get h; w2 <- get h; return (Fingerprint w1 w2) instance Binary FunctionOrData where put_ bh IsFunction = putByte bh 0 put_ bh IsData = putByte bh 1 get bh = do h <- getByte bh case h of 0 -> return IsFunction 1 -> return IsData _ -> panic "Binary FunctionOrData" instance Binary TupleSort where put_ bh BoxedTuple = putByte bh 0 put_ bh UnboxedTuple = putByte bh 1 put_ bh ConstraintTuple = putByte bh 2 get bh = do h <- getByte bh case h of 0 -> do return BoxedTuple 1 -> do return UnboxedTuple _ -> do return ConstraintTuple instance Binary Activation where put_ bh NeverActive = do putByte bh 0 put_ bh AlwaysActive = do putByte bh 1 put_ bh (ActiveBefore src aa) = do putByte bh 2 put_ bh src put_ bh aa put_ bh (ActiveAfter src ab) = do putByte bh 3 put_ bh src put_ bh ab get bh = do h <- getByte bh case h of 0 -> do return NeverActive 1 -> do return AlwaysActive 2 -> do src <- get bh aa <- get bh return (ActiveBefore src aa) _ -> do src <- get bh ab <- get bh return (ActiveAfter src ab) instance Binary InlinePragma where put_ bh (InlinePragma s a b c d) = do put_ bh s put_ bh a put_ bh b put_ bh c put_ bh d get bh = do s <- get bh a <- get bh b <- get bh c <- get bh d <- get bh return (InlinePragma s a b c d) instance Binary RuleMatchInfo where put_ bh FunLike = putByte bh 0 put_ bh ConLike = putByte bh 1 get bh = do h <- getByte bh if h == 1 then return ConLike else return FunLike instance Binary InlineSpec where put_ bh EmptyInlineSpec = putByte bh 0 put_ bh Inline = putByte bh 1 put_ bh Inlinable = putByte bh 2 put_ bh NoInline = putByte bh 3 get bh = do h <- getByte bh case h of 0 -> return EmptyInlineSpec 1 -> return Inline 2 -> return Inlinable _ -> return NoInline instance Binary RecFlag where put_ bh Recursive = do putByte bh 0 put_ bh NonRecursive = do putByte bh 1 get bh = do h <- getByte bh case h of 0 -> do return Recursive _ -> do return NonRecursive instance Binary OverlapMode where put_ bh (NoOverlap s) = putByte bh 0 >> put_ bh s put_ bh (Overlaps s) = putByte bh 1 >> put_ bh s put_ bh (Incoherent s) = putByte bh 2 >> put_ bh s put_ bh (Overlapping s) = putByte bh 3 >> put_ bh s put_ bh (Overlappable s) = putByte bh 4 >> put_ bh s get bh = do h <- getByte bh case h of 0 -> (get bh) >>= \s -> return $ NoOverlap s 1 -> (get bh) >>= \s -> return $ Overlaps s 2 -> (get bh) >>= \s -> return $ Incoherent s 3 -> (get bh) >>= \s -> return $ Overlapping s 4 -> (get bh) >>= \s -> return $ Overlappable s _ -> panic ("get OverlapMode" ++ show h) instance Binary OverlapFlag where put_ bh flag = do put_ bh (overlapMode flag) put_ bh (isSafeOverlap flag) get bh = do h <- get bh b <- get bh return OverlapFlag { overlapMode = h, isSafeOverlap = b } instance Binary FixityDirection where put_ bh InfixL = do putByte bh 0 put_ bh InfixR = do putByte bh 1 put_ bh InfixN = do putByte bh 2 get bh = do h <- getByte bh case h of 0 -> do return InfixL 1 -> do return InfixR _ -> do return InfixN instance Binary Fixity where put_ bh (Fixity src aa ab) = do put_ bh src put_ bh aa put_ bh ab get bh = do src <- get bh aa <- get bh ab <- get bh return (Fixity src aa ab) instance Binary WarningTxt where put_ bh (WarningTxt s w) = do putByte bh 0 put_ bh s put_ bh w put_ bh (DeprecatedTxt s d) = do putByte bh 1 put_ bh s put_ bh d get bh = do h <- getByte bh case h of 0 -> do s <- get bh w <- get bh return (WarningTxt s w) _ -> do s <- get bh d <- get bh return (DeprecatedTxt s d) instance Binary StringLiteral where put_ bh (StringLiteral st fs) = do put_ bh st put_ bh fs get bh = do st <- get bh fs <- get bh return (StringLiteral st fs) instance Binary a => Binary (GenLocated SrcSpan a) where put_ bh (L l x) = do put_ bh l put_ bh x get bh = do l <- get bh x <- get bh return (L l x) instance Binary SrcSpan where put_ bh (RealSrcSpan ss) = do putByte bh 0 put_ bh (srcSpanFile ss) put_ bh (srcSpanStartLine ss) put_ bh (srcSpanStartCol ss) put_ bh (srcSpanEndLine ss) put_ bh (srcSpanEndCol ss) put_ bh (UnhelpfulSpan s) = do putByte bh 1 put_ bh s get bh = do h <- getByte bh case h of 0 -> do f <- get bh sl <- get bh sc <- get bh el <- get bh ec <- get bh return (mkSrcSpan (mkSrcLoc f sl sc) (mkSrcLoc f el ec)) _ -> do s <- get bh return (UnhelpfulSpan s) instance Binary Serialized where put_ bh (Serialized the_type bytes) = do put_ bh the_type put_ bh bytes get bh = do the_type <- get bh bytes <- get bh return (Serialized the_type bytes)