\begin{code} {-# LANGUAGE CPP, BangPatterns, MagicHash, UnboxedTuples #-} {-# OPTIONS_GHC -O #-} -- We always optimise this, otherwise performance of a non-optimised -- compiler is severely affected -- -- (c) The University of Glasgow 2002-2006 -- -- Unboxed mutable Ints module FastMutInt( FastMutInt, newFastMutInt, readFastMutInt, writeFastMutInt, FastMutPtr, newFastMutPtr, readFastMutPtr, writeFastMutPtr ) where #ifdef __GLASGOW_HASKELL__ #include "../includes/MachDeps.h" #ifndef SIZEOF_HSINT #define SIZEOF_HSINT INT_SIZE_IN_BYTES #endif import GHC.Base import GHC.Ptr #else /* ! __GLASGOW_HASKELL__ */ import Data.IORef #endif newFastMutInt :: IO FastMutInt readFastMutInt :: FastMutInt -> IO Int writeFastMutInt :: FastMutInt -> Int -> IO () newFastMutPtr :: IO FastMutPtr readFastMutPtr :: FastMutPtr -> IO (Ptr a) writeFastMutPtr :: FastMutPtr -> Ptr a -> IO () \end{code} \begin{code} #ifdef __GLASGOW_HASKELL__ data FastMutInt = FastMutInt (MutableByteArray# RealWorld) newFastMutInt = IO $ \s -> case newByteArray# size s of { (# s, arr #) -> (# s, FastMutInt arr #) } where !(I# size) = SIZEOF_HSINT readFastMutInt (FastMutInt arr) = IO $ \s -> case readIntArray# arr 0# s of { (# s, i #) -> (# s, I# i #) } writeFastMutInt (FastMutInt arr) (I# i) = IO $ \s -> case writeIntArray# arr 0# i s of { s -> (# s, () #) } data FastMutPtr = FastMutPtr (MutableByteArray# RealWorld) newFastMutPtr = IO $ \s -> case newByteArray# size s of { (# s, arr #) -> (# s, FastMutPtr arr #) } where !(I# size) = SIZEOF_VOID_P readFastMutPtr (FastMutPtr arr) = IO $ \s -> case readAddrArray# arr 0# s of { (# s, i #) -> (# s, Ptr i #) } writeFastMutPtr (FastMutPtr arr) (Ptr i) = IO $ \s -> case writeAddrArray# arr 0# i s of { s -> (# s, () #) } #else /* ! __GLASGOW_HASKELL__ */ --maybe someday we could use --http://haskell.org/haskellwiki/Library/ArrayRef --which has an implementation of IOURefs --that is unboxed in GHC and just strict in all other compilers... newtype FastMutInt = FastMutInt (IORef Int) -- If any default value was chosen, it surely would be 0, -- so we will use that since IORef requires a default value. -- Or maybe it would be more interesting to package an error, -- assuming nothing relies on being able to read a bogus Int? -- That could interfere with its strictness for smart optimizers -- (are they allowed to optimize a 'newtype' that way?) ... -- Well, maybe that can be added (in DEBUG?) later. newFastMutInt = fmap FastMutInt (newIORef 0) readFastMutInt (FastMutInt ioRefInt) = readIORef ioRefInt -- FastMutInt is strict in the value it contains. writeFastMutInt (FastMutInt ioRefInt) i = i `seq` writeIORef ioRefInt i newtype FastMutPtr = FastMutPtr (IORef (Ptr ())) -- If any default value was chosen, it surely would be 0, -- so we will use that since IORef requires a default value. -- Or maybe it would be more interesting to package an error, -- assuming nothing relies on being able to read a bogus Ptr? -- That could interfere with its strictness for smart optimizers -- (are they allowed to optimize a 'newtype' that way?) ... -- Well, maybe that can be added (in DEBUG?) later. newFastMutPtr = fmap FastMutPtr (newIORef (castPtr nullPtr)) readFastMutPtr (FastMutPtr ioRefPtr) = readIORef ioRefPtr -- FastMutPtr is strict in the value it contains. writeFastMutPtr (FastMutPtr ioRefPtr) i = i `seq` writeIORef ioRefPtr i #endif \end{code}