% % (c) The University of Glasgow 2006 % (c) The AQUA Project, Glasgow University, 1994-1998 % ``Finite maps'' are the heart of the compiler's lookup-tables/environments and its implementation of sets. Important stuff! This code is derived from that in the paper: \begin{display} S Adams "Efficient sets: a balancing act" Journal of functional programming 3(4) Oct 1993, pp553-562 \end{display} The code is SPECIALIZEd to various highly-desirable types (e.g., Id) near the end. \begin{code} module FiniteMap ( -- * Mappings keyed from arbitrary types FiniteMap, -- abstract type -- ** Manipulating those mappings emptyFM, unitFM, listToFM, addToFM, addToFM_C, addListToFM, addListToFM_C, delFromFM, delListFromFM, plusFM, plusFM_C, minusFM, foldFM, intersectFM, intersectFM_C, mapFM, filterFM, sizeFM, isEmptyFM, elemFM, lookupFM, lookupWithDefaultFM, fmToList, keysFM, eltsFM, bagToFM ) where #if defined(DEBUG_FINITEMAPS)/* NB NB NB */ #define OUTPUTABLE_key , Outputable key #else #define OUTPUTABLE_key {--} #endif import Maybes import Bag ( Bag, foldrBag ) import Outputable #if 0 import GHC.Exts -- was this import only needed for I#, or does it have something -- to do with the (not-presently-used) IF_NCG also? #endif import Data.List #if 0 #if ! OMIT_NATIVE_CODEGEN # define IF_NCG(a) a #else # define IF_NCG(a) {--} #endif #endif \end{code} %************************************************************************ %* * \subsection{The signature of the module} %* * %************************************************************************ \begin{code} -- BUILDING emptyFM :: FiniteMap key elt unitFM :: key -> elt -> FiniteMap key elt -- | In the case of duplicates keys, the last item is taken listToFM :: (Ord key OUTPUTABLE_key) => [(key,elt)] -> FiniteMap key elt -- | In the case of duplicate keys, who knows which item is taken bagToFM :: (Ord key OUTPUTABLE_key) => Bag (key,elt) -> FiniteMap key elt -- ADDING AND DELETING -- | Throws away any previous binding addToFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> key -> elt -> FiniteMap key elt -- | Throws away any previous binding, items are added left-to-right addListToFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> [(key,elt)] -> FiniteMap key elt -- | Combines added item with previous item, if any addToFM_C :: (Ord key OUTPUTABLE_key) => (elt -> elt -> elt) -> FiniteMap key elt -> key -> elt -> FiniteMap key elt -- | Combines added item with previous item, if any, items are added left-to-right addListToFM_C :: (Ord key OUTPUTABLE_key) => (elt -> elt -> elt) -> FiniteMap key elt -> [(key,elt)] -> FiniteMap key elt -- | Deletion doesn't complain if you try to delete something which isn't there delFromFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> key -> FiniteMap key elt -- | Deletion doesn't complain if you try to delete something which isn't there delListFromFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> [key] -> FiniteMap key elt -- COMBINING -- | Bindings in right argument shadow those in the left plusFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt -- | Combines bindings for the same thing with the given function, -- bindings in right argument shadow those in the left plusFM_C :: (Ord key OUTPUTABLE_key) => (elt -> elt -> elt) -> FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt -- | Deletes from the left argument any bindings in the right argument minusFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt intersectFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt -- | Combines bindings for the same thing in the two maps with the given function intersectFM_C :: (Ord key OUTPUTABLE_key) => (elt1 -> elt2 -> elt3) -> FiniteMap key elt1 -> FiniteMap key elt2 -> FiniteMap key elt3 -- MAPPING, FOLDING, FILTERING foldFM :: (key -> elt -> a -> a) -> a -> FiniteMap key elt -> a mapFM :: (key -> elt1 -> elt2) -> FiniteMap key elt1 -> FiniteMap key elt2 filterFM :: (Ord key OUTPUTABLE_key) => (key -> elt -> Bool) -> FiniteMap key elt -> FiniteMap key elt -- INTERROGATING sizeFM :: FiniteMap key elt -> Int isEmptyFM :: FiniteMap key elt -> Bool elemFM :: (Ord key OUTPUTABLE_key) => key -> FiniteMap key elt -> Bool lookupFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> key -> Maybe elt -- | Supplies a "default" element in return for an unmapped key lookupWithDefaultFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> elt -> key -> elt -- LISTIFYING fmToList :: FiniteMap key elt -> [(key,elt)] keysFM :: FiniteMap key elt -> [key] eltsFM :: FiniteMap key elt -> [elt] \end{code} %************************************************************************ %* * \subsection{The @FiniteMap@ data type, and building of same} %* * %************************************************************************ Invariants about @FiniteMap@: \begin{enumerate} \item all keys in a FiniteMap are distinct \item all keys in left subtree are $<$ key in Branch and all keys in right subtree are $>$ key in Branch \item size field of a Branch gives number of Branch nodes in the tree \item size of left subtree is differs from size of right subtree by a factor of at most \tr{sIZE_RATIO} \end{enumerate} \begin{code} -- | A finite mapping from (orderable) key types to elements data FiniteMap key elt = EmptyFM | Branch key elt -- Key and elt stored here {-# UNPACK #-} !Int -- Size >= 1 (FiniteMap key elt) -- Children (FiniteMap key elt) \end{code} \begin{code} emptyFM = EmptyFM {- emptyFM = Branch bottom bottom 0 bottom bottom where bottom = panic "emptyFM" -} -- #define EmptyFM (Branch _ _ 0 _ _) unitFM key elt = Branch key elt 1 emptyFM emptyFM listToFM = addListToFM emptyFM bagToFM = foldrBag (\(k,v) fm -> addToFM fm k v) emptyFM \end{code} %************************************************************************ %* * \subsection{Adding to and deleting from @FiniteMaps@} %* * %************************************************************************ \begin{code} addToFM fm key elt = addToFM_C (\ _old new -> new) fm key elt addToFM_C _ EmptyFM key elt = unitFM key elt addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = case compare new_key key of LT -> mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r GT -> mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) EQ -> Branch new_key (combiner elt new_elt) size fm_l fm_r addListToFM fm key_elt_pairs = addListToFM_C (\ _old new -> new) fm key_elt_pairs addListToFM_C combiner fm key_elt_pairs = foldl' add fm key_elt_pairs -- foldl adds from the left where add fmap (key,elt) = addToFM_C combiner fmap key elt \end{code} \begin{code} delFromFM EmptyFM _ = emptyFM delFromFM (Branch key elt _ fm_l fm_r) del_key = case compare del_key key of GT -> mkBalBranch key elt fm_l (delFromFM fm_r del_key) LT -> mkBalBranch key elt (delFromFM fm_l del_key) fm_r EQ -> glueBal fm_l fm_r delListFromFM fm keys = foldl' delFromFM fm keys \end{code} %************************************************************************ %* * \subsection{Combining @FiniteMaps@} %* * %************************************************************************ \begin{code} plusFM_C _ EmptyFM fm2 = fm2 plusFM_C _ fm1 EmptyFM = fm1 plusFM_C combiner fm1 (Branch split_key elt2 _ left right) = mkVBalBranch split_key new_elt (plusFM_C combiner lts left) (plusFM_C combiner gts right) where lts = splitLT fm1 split_key gts = splitGT fm1 split_key new_elt = case lookupFM fm1 split_key of Nothing -> elt2 Just elt1 -> combiner elt1 elt2 -- It's worth doing plusFM specially, because we don't need -- to do the lookup in fm1. -- FM2 over-rides FM1. plusFM EmptyFM fm2 = fm2 plusFM fm1 EmptyFM = fm1 plusFM fm1 (Branch split_key elt1 _ left right) = mkVBalBranch split_key elt1 (plusFM lts left) (plusFM gts right) where lts = splitLT fm1 split_key gts = splitGT fm1 split_key minusFM EmptyFM _ = emptyFM minusFM fm1 EmptyFM = fm1 minusFM fm1 (Branch split_key _ _ left right) = glueVBal (minusFM lts left) (minusFM gts right) -- The two can be way different, so we need glueVBal where lts = splitLT fm1 split_key -- NB gt and lt, so the equal ones gts = splitGT fm1 split_key -- are not in either. intersectFM fm1 fm2 = intersectFM_C (\ _ right -> right) fm1 fm2 intersectFM_C _ _ EmptyFM = emptyFM intersectFM_C _ EmptyFM _ = emptyFM intersectFM_C combiner fm1 (Branch split_key elt2 _ left right) | maybeToBool maybe_elt1 -- split_elt *is* in intersection = mkVBalBranch split_key (combiner elt1 elt2) (intersectFM_C combiner lts left) (intersectFM_C combiner gts right) | otherwise -- split_elt is *not* in intersection = glueVBal (intersectFM_C combiner lts left) (intersectFM_C combiner gts right) where lts = splitLT fm1 split_key -- NB gt and lt, so the equal ones gts = splitGT fm1 split_key -- are not in either. maybe_elt1 = lookupFM fm1 split_key Just elt1 = maybe_elt1 \end{code} %************************************************************************ %* * \subsection{Mapping, folding, and filtering with @FiniteMaps@} %* * %************************************************************************ \begin{code} foldFM _ z EmptyFM = z foldFM k z (Branch key elt _ fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l mapFM _ EmptyFM = emptyFM mapFM f (Branch key elt size fm_l fm_r) = Branch key (f key elt) size (mapFM f fm_l) (mapFM f fm_r) filterFM _ EmptyFM = emptyFM filterFM p (Branch key elt _ fm_l fm_r) | p key elt -- Keep the item = mkVBalBranch key elt (filterFM p fm_l) (filterFM p fm_r) | otherwise -- Drop the item = glueVBal (filterFM p fm_l) (filterFM p fm_r) \end{code} %************************************************************************ %* * \subsection{Interrogating @FiniteMaps@} %* * %************************************************************************ \begin{code} --{-# INLINE sizeFM #-} sizeFM EmptyFM = 0 sizeFM (Branch _ _ size _ _) = size isEmptyFM fm = sizeFM fm == 0 lookupFM EmptyFM _ = Nothing lookupFM (Branch key elt _ fm_l fm_r) key_to_find = case compare key_to_find key of LT -> lookupFM fm_l key_to_find GT -> lookupFM fm_r key_to_find EQ -> Just elt key `elemFM` fm = isJust (lookupFM fm key) lookupWithDefaultFM fm deflt key = case (lookupFM fm key) of { Nothing -> deflt; Just elt -> elt } \end{code} %************************************************************************ %* * \subsection{Listifying @FiniteMaps@} %* * %************************************************************************ \begin{code} fmToList fm = foldFM (\ key elt rest -> (key, elt) : rest) [] fm keysFM fm = foldFM (\ key _elt rest -> key : rest) [] fm eltsFM fm = foldFM (\ _key elt rest -> elt : rest) [] fm \end{code} %************************************************************************ %* * \subsection{The implementation of balancing} %* * %************************************************************************ %************************************************************************ %* * \subsubsection{Basic construction of a @FiniteMap@} %* * %************************************************************************ @mkBranch@ simply gets the size component right. This is the ONLY (non-trivial) place the Branch object is built, so the ASSERTion recursively checks consistency. (The trivial use of Branch is in @unitFM@.) \begin{code} sIZE_RATIO :: Int sIZE_RATIO = 5 mkBranch :: (Ord key OUTPUTABLE_key) -- Used for the assertion checking only => Int -> key -> elt -> FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt mkBranch _which key elt fm_l fm_r = --ASSERT( left_ok && right_ok && balance_ok ) #if defined(DEBUG_FINITEMAPS) if not ( left_ok && right_ok && balance_ok ) then pprPanic ("mkBranch:"++show _which) (vcat [ppr [left_ok, right_ok, balance_ok], ppr key, ppr fm_l, ppr fm_r]) else #endif let result = Branch key elt (1 + left_size + right_size) fm_l fm_r in -- if sizeFM result <= 8 then result -- else -- pprTrace ("mkBranch:"++(show which)) (ppr result) ( -- result -- ) where #if defined(DEBUG_FINITEMAPS) left_ok = case fm_l of EmptyFM -> True Branch _ _ _ _ _ -> let biggest_left_key = fst (findMax fm_l) in biggest_left_key < key right_ok = case fm_r of EmptyFM -> True Branch _ _ _ _ _ -> let smallest_right_key = fst (findMin fm_r) in key < smallest_right_key balance_ok = True -- sigh #endif {- LATER: balance_ok = -- Both subtrees have one or no elements... (left_size + right_size <= 1) -- NO || left_size == 0 -- ??? -- NO || right_size == 0 -- ??? -- ... or the number of elements in a subtree does not exceed -- sIZE_RATIO times the number of elements in the other subtree || (left_size * sIZE_RATIO >= right_size && right_size * sIZE_RATIO >= left_size) -} left_size = sizeFM fm_l right_size = sizeFM fm_r \end{code} %************************************************************************ %* * \subsubsection{{\em Balanced} construction of a @FiniteMap@} %* * %************************************************************************ @mkBalBranch@ rebalances, assuming that the subtrees aren't too far out of whack. \begin{code} mkBalBranch :: (Ord key OUTPUTABLE_key) => key -> elt -> FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1{-which-} key elt fm_L fm_R | size_r > sIZE_RATIO * size_l -- Right tree too big = case fm_R of Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R | otherwise -> double_L fm_L fm_R _ -> panic "mkBalBranch: impossible case 1" | size_l > sIZE_RATIO * size_r -- Left tree too big = case fm_L of Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R | otherwise -> double_R fm_L fm_R _ -> panic "mkBalBranch: impossible case 2" | otherwise -- No imbalance = mkBranch 2{-which-} key elt fm_L fm_R where size_l = sizeFM fm_L size_r = sizeFM fm_R single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3{-which-} key_r elt_r (mkBranch 4{-which-} key elt fm_l fm_rl) fm_rr single_L _ _ = panic "mkBalBranch: impossible case 3" double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5{-which-} key_rl elt_rl (mkBranch 6{-which-} key elt fm_l fm_rll) (mkBranch 7{-which-} key_r elt_r fm_rlr fm_rr) double_L _ _ = panic "mkBalBranch: impossible case 4" single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8{-which-} key_l elt_l fm_ll (mkBranch 9{-which-} key elt fm_lr fm_r) single_R _ _ = panic "mkBalBranch: impossible case 5" double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10{-which-} key_lr elt_lr (mkBranch 11{-which-} key_l elt_l fm_ll fm_lrl) (mkBranch 12{-which-} key elt fm_lrr fm_r) double_R _ _ = panic "mkBalBranch: impossible case 6" \end{code} \begin{code} mkVBalBranch :: (Ord key OUTPUTABLE_key) => key -> elt -> FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt -- Assert: in any call to (mkVBalBranch_C comb key elt l r), -- (a) all keys in l are < all keys in r -- (b) all keys in l are < key -- (c) all keys in r are > key mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt mkVBalBranch key elt fm_l@(Branch key_l elt_l _ fm_ll fm_lr) fm_r@(Branch key_r elt_r _ fm_rl fm_rr) | sIZE_RATIO * size_l < size_r = mkBalBranch key_r elt_r (mkVBalBranch key elt fm_l fm_rl) fm_rr | sIZE_RATIO * size_r < size_l = mkBalBranch key_l elt_l fm_ll (mkVBalBranch key elt fm_lr fm_r) | otherwise = mkBranch 13{-which-} key elt fm_l fm_r where size_l = sizeFM fm_l size_r = sizeFM fm_r \end{code} %************************************************************************ %* * \subsubsection{Gluing two trees together} %* * %************************************************************************ @glueBal@ assumes its two arguments aren't too far out of whack, just like @mkBalBranch@. But: all keys in first arg are $<$ all keys in second. \begin{code} glueBal :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt glueBal EmptyFM fm2 = fm2 glueBal fm1 EmptyFM = fm1 glueBal fm1 fm2 -- The case analysis here (absent in Adams' program) is really to deal -- with the case where fm2 is a singleton. Then deleting the minimum means -- we pass an empty tree to mkBalBranch, which breaks its invariant. | sizeFM fm2 > sizeFM fm1 = mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2) | otherwise = mkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2 where (mid_key1, mid_elt1) = findMax fm1 (mid_key2, mid_elt2) = findMin fm2 \end{code} @glueVBal@ copes with arguments which can be of any size. But: all keys in first arg are $<$ all keys in second. \begin{code} glueVBal :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt glueVBal EmptyFM fm2 = fm2 glueVBal fm1 EmptyFM = fm1 glueVBal fm_l@(Branch key_l elt_l _ fm_ll fm_lr) fm_r@(Branch key_r elt_r _ fm_rl fm_rr) | sIZE_RATIO * size_l < size_r = mkBalBranch key_r elt_r (glueVBal fm_l fm_rl) fm_rr | sIZE_RATIO * size_r < size_l = mkBalBranch key_l elt_l fm_ll (glueVBal fm_lr fm_r) | otherwise -- We now need the same two cases as in glueBal above. = glueBal fm_l fm_r where size_l = sizeFM fm_l size_r = sizeFM fm_r \end{code} %************************************************************************ %* * \subsection{Local utilities} %* * %************************************************************************ \begin{code} splitLT, splitGT :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> key -> FiniteMap key elt -- splitLT fm split_key = fm restricted to keys < split_key -- splitGT fm split_key = fm restricted to keys > split_key splitLT EmptyFM _ = emptyFM splitLT (Branch key elt _ fm_l fm_r) split_key = case compare split_key key of LT -> splitLT fm_l split_key GT -> mkVBalBranch key elt fm_l (splitLT fm_r split_key) EQ -> fm_l splitGT EmptyFM _ = emptyFM splitGT (Branch key elt _ fm_l fm_r) split_key = case compare split_key key of GT -> splitGT fm_r split_key LT -> mkVBalBranch key elt (splitGT fm_l split_key) fm_r EQ -> fm_r findMin :: FiniteMap key elt -> (key,elt) findMin (Branch key elt _ EmptyFM _) = (key, elt) findMin (Branch _ _ _ fm_l _) = findMin fm_l findMin EmptyFM = panic "findMin: Empty" deleteMin :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt deleteMin (Branch _ _ _ EmptyFM fm_r) = fm_r deleteMin (Branch key elt _ fm_l fm_r) = mkBalBranch key elt (deleteMin fm_l) fm_r deleteMin EmptyFM = panic "deleteMin: Empty" findMax :: FiniteMap key elt -> (key, elt) findMax (Branch key elt _ _ EmptyFM) = (key, elt) findMax (Branch _ _ _ _ fm_r) = findMax fm_r findMax EmptyFM = panic "findMax: Empty" deleteMax :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt deleteMax (Branch _ _ _ fm_l EmptyFM) = fm_l deleteMax (Branch key elt _ fm_l fm_r) = mkBalBranch key elt fm_l (deleteMax fm_r) deleteMax EmptyFM = panic "deleteMax: Empty" \end{code} %************************************************************************ %* * \subsection{Output-ery} %* * %************************************************************************ \begin{code} #if defined(DEBUG_FINITEMAPS) instance (Outputable key) => Outputable (FiniteMap key elt) where ppr fm = pprX fm pprX EmptyFM = char '!' pprX (Branch key elt sz fm_l fm_r) = parens (hcat [pprX fm_l, space, ppr key, space, int sz, space, pprX fm_r]) #else -- and when not debugging the package itself... instance (Outputable key, Outputable elt) => Outputable (FiniteMap key elt) where ppr fm = ppr (fmToList fm) #endif #if 0 instance (Eq key, Eq elt) => Eq (FiniteMap key elt) where fm_1 == fm_2 = (sizeFM fm_1 == sizeFM fm_2) && -- quick test (fmToList fm_1 == fmToList fm_2) {- NO: not clear what The Right Thing to do is: instance (Ord key, Ord elt) => Ord (FiniteMap key elt) where fm_1 <= fm_2 = (sizeFM fm_1 <= sizeFM fm_2) && -- quick test (fmToList fm_1 <= fmToList fm_2) -} #endif \end{code} %************************************************************************ %* * \subsection{Efficiency pragmas for GHC} %* * %************************************************************************ When the FiniteMap module is used in GHC, we specialise it for \tr{Uniques}, for dastardly efficiency reasons. \begin{code} #if 0 #ifdef __GLASGOW_HASKELL__ {-# SPECIALIZE addListToFM :: FiniteMap (FastString, FAST_STRING) elt -> [((FAST_STRING, FAST_STRING),elt)] -> FiniteMap (FAST_STRING, FAST_STRING) elt , FiniteMap RdrName elt -> [(RdrName,elt)] -> FiniteMap RdrName elt IF_NCG(COMMA FiniteMap Reg elt -> [(Reg COMMA elt)] -> FiniteMap Reg elt) #-} {-# SPECIALIZE addListToFM_C :: (elt -> elt -> elt) -> FiniteMap TyCon elt -> [(TyCon,elt)] -> FiniteMap TyCon elt , (elt -> elt -> elt) -> FiniteMap FastString elt -> [(FAST_STRING,elt)] -> FiniteMap FAST_STRING elt IF_NCG(COMMA (elt -> elt -> elt) -> FiniteMap Reg elt -> [(Reg COMMA elt)] -> FiniteMap Reg elt) #-} {-# SPECIALIZE addToFM :: FiniteMap CLabel elt -> CLabel -> elt -> FiniteMap CLabel elt , FiniteMap FastString elt -> FAST_STRING -> elt -> FiniteMap FAST_STRING elt , FiniteMap (FastString, FAST_STRING) elt -> (FAST_STRING, FAST_STRING) -> elt -> FiniteMap (FAST_STRING, FAST_STRING) elt , FiniteMap RdrName elt -> RdrName -> elt -> FiniteMap RdrName elt IF_NCG(COMMA FiniteMap Reg elt -> Reg -> elt -> FiniteMap Reg elt) #-} {-# SPECIALIZE addToFM_C :: (elt -> elt -> elt) -> FiniteMap (RdrName, RdrName) elt -> (RdrName, RdrName) -> elt -> FiniteMap (RdrName, RdrName) elt , (elt -> elt -> elt) -> FiniteMap FastString elt -> FAST_STRING -> elt -> FiniteMap FAST_STRING elt IF_NCG(COMMA (elt -> elt -> elt) -> FiniteMap Reg elt -> Reg -> elt -> FiniteMap Reg elt) #-} {-# SPECIALIZE bagToFM :: Bag (FastString,elt) -> FiniteMap FAST_STRING elt #-} {-# SPECIALIZE delListFromFM :: FiniteMap RdrName elt -> [RdrName] -> FiniteMap RdrName elt , FiniteMap FastString elt -> [FAST_STRING] -> FiniteMap FAST_STRING elt IF_NCG(COMMA FiniteMap Reg elt -> [Reg] -> FiniteMap Reg elt) #-} {-# SPECIALIZE listToFM :: [([Char],elt)] -> FiniteMap [Char] elt , [(FastString,elt)] -> FiniteMap FAST_STRING elt , [((FastString,FAST_STRING),elt)] -> FiniteMap (FAST_STRING, FAST_STRING) elt IF_NCG(COMMA [(Reg COMMA elt)] -> FiniteMap Reg elt) #-} {-# SPECIALIZE lookupFM :: FiniteMap CLabel elt -> CLabel -> Maybe elt , FiniteMap [Char] elt -> [Char] -> Maybe elt , FiniteMap FastString elt -> FAST_STRING -> Maybe elt , FiniteMap (FastString,FAST_STRING) elt -> (FAST_STRING,FAST_STRING) -> Maybe elt , FiniteMap RdrName elt -> RdrName -> Maybe elt , FiniteMap (RdrName,RdrName) elt -> (RdrName,RdrName) -> Maybe elt IF_NCG(COMMA FiniteMap Reg elt -> Reg -> Maybe elt) #-} {-# SPECIALIZE lookupWithDefaultFM :: FiniteMap FastString elt -> elt -> FAST_STRING -> elt IF_NCG(COMMA FiniteMap Reg elt -> elt -> Reg -> elt) #-} {-# SPECIALIZE plusFM :: FiniteMap RdrName elt -> FiniteMap RdrName elt -> FiniteMap RdrName elt , FiniteMap FastString elt -> FiniteMap FAST_STRING elt -> FiniteMap FAST_STRING elt IF_NCG(COMMA FiniteMap Reg elt -> FiniteMap Reg elt -> FiniteMap Reg elt) #-} {-# SPECIALIZE plusFM_C :: (elt -> elt -> elt) -> FiniteMap FastString elt -> FiniteMap FAST_STRING elt -> FiniteMap FAST_STRING elt IF_NCG(COMMA (elt -> elt -> elt) -> FiniteMap Reg elt -> FiniteMap Reg elt -> FiniteMap Reg elt) #-} #endif /* compiling with ghc and have specialiser */ #endif /* 0 */ \end{code}