% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % \section[ListSetOps]{Set-like operations on lists} \begin{code} module ListSetOps ( unionLists, minusList, insertList, -- Association lists Assoc, assoc, assocMaybe, assocUsing, assocDefault, assocDefaultUsing, emptyAssoc, unitAssoc, mapAssoc, plusAssoc_C, extendAssoc_C, mkLookupFun, findInList, assocElts, -- Duplicate handling hasNoDups, runs, removeDups, findDupsEq, equivClasses, equivClassesByUniq ) where #include "HsVersions.h" import Outputable import Unique ( Unique ) import UniqFM ( eltsUFM, emptyUFM, addToUFM_C ) import Util ( isn'tIn, isIn, sortLe ) import Data.List \end{code} %************************************************************************ %* * Treating lists as sets Assumes the lists contain no duplicates, but are unordered %* * %************************************************************************ \begin{code} insertList :: Eq a => a -> [a] -> [a] -- Assumes the arg list contains no dups; guarantees the result has no dups insertList x xs | isIn "insert" x xs = xs | otherwise = x : xs unionLists :: (Eq a) => [a] -> [a] -> [a] -- Assumes that the arguments contain no duplicates unionLists xs ys = [x | x <- xs, isn'tIn "unionLists" x ys] ++ ys minusList :: (Eq a) => [a] -> [a] -> [a] -- Everything in the first list that is not in the second list: minusList xs ys = [ x | x <- xs, isn'tIn "minusList" x ys] \end{code} %************************************************************************ %* * \subsection[Utils-assoc]{Association lists} %* * %************************************************************************ Inefficient finite maps based on association lists and equality. \begin{code} type Assoc a b = [(a,b)] -- A finite mapping based on equality and association lists emptyAssoc :: Assoc a b unitAssoc :: a -> b -> Assoc a b assocElts :: Assoc a b -> [(a,b)] assoc :: (Eq a) => String -> Assoc a b -> a -> b assocDefault :: (Eq a) => b -> Assoc a b -> a -> b assocUsing :: (a -> a -> Bool) -> String -> Assoc a b -> a -> b assocMaybe :: (Eq a) => Assoc a b -> a -> Maybe b assocDefaultUsing :: (a -> a -> Bool) -> b -> Assoc a b -> a -> b mapAssoc :: (b -> c) -> Assoc a b -> Assoc a c extendAssoc_C :: (Eq a) => (b -> b -> b) -> Assoc a b -> (a,b) -> Assoc a b plusAssoc_C :: (Eq a) => (b -> b -> b) -> Assoc a b -> Assoc a b -> Assoc a b -- combining fn takes (old->new->result) emptyAssoc = [] unitAssoc a b = [(a,b)] assocElts xs = xs assocDefaultUsing eq deflt ((k,v) : rest) key | k `eq` key = v | otherwise = assocDefaultUsing eq deflt rest key assocDefaultUsing eq deflt [] key = deflt assoc crash_msg list key = assocDefaultUsing (==) (panic ("Failed in assoc: " ++ crash_msg)) list key assocDefault deflt list key = assocDefaultUsing (==) deflt list key assocUsing eq crash_msg list key = assocDefaultUsing eq (panic ("Failed in assoc: " ++ crash_msg)) list key assocMaybe alist key = lookup alist where lookup [] = Nothing lookup ((tv,ty):rest) = if key == tv then Just ty else lookup rest mapAssoc f alist = [(key, f val) | (key,val) <- alist] plusAssoc_C combine [] new = new -- Shortcut for common case plusAssoc_C combine old new = foldl (extendAssoc_C combine) old new extendAssoc_C combine old_list (new_key, new_val) = go old_list where go [] = [(new_key, new_val)] go ((old_key, old_val) : old_list) | new_key == old_key = ((old_key, old_val `combine` new_val) : old_list) | otherwise = (old_key, old_val) : go old_list \end{code} @mkLookupFun eq alist@ is a function which looks up its argument in the association list @alist@, returning a Maybe type. @mkLookupFunDef@ is similar except that it is given a value to return on failure. \begin{code} mkLookupFun :: (key -> key -> Bool) -- Equality predicate -> [(key,val)] -- The assoc list -> key -- The key -> Maybe val -- The corresponding value mkLookupFun eq alist s = case [a | (s',a) <- alist, s' `eq` s] of [] -> Nothing (a:_) -> Just a findInList :: (a -> Bool) -> [a] -> Maybe a findInList p [] = Nothing findInList p (x:xs) | p x = Just x | otherwise = findInList p xs \end{code} %************************************************************************ %* * \subsection[Utils-dups]{Duplicate-handling} %* * %************************************************************************ \begin{code} hasNoDups :: (Eq a) => [a] -> Bool hasNoDups xs = f [] xs where f seen_so_far [] = True f seen_so_far (x:xs) = if x `is_elem` seen_so_far then False else f (x:seen_so_far) xs is_elem = isIn "hasNoDups" \end{code} \begin{code} equivClasses :: (a -> a -> Ordering) -- Comparison -> [a] -> [[a]] equivClasses cmp stuff@[] = [] equivClasses cmp stuff@[item] = [stuff] equivClasses cmp items = runs eq (sortLe le items) where eq a b = case cmp a b of { EQ -> True; _ -> False } le a b = case cmp a b of { LT -> True; EQ -> True; GT -> False } \end{code} The first cases in @equivClasses@ above are just to cut to the point more quickly... @runs@ groups a list into a list of lists, each sublist being a run of identical elements of the input list. It is passed a predicate @p@ which tells when two elements are equal. \begin{code} runs :: (a -> a -> Bool) -- Equality -> [a] -> [[a]] runs p [] = [] runs p (x:xs) = case (span (p x) xs) of (first, rest) -> (x:first) : (runs p rest) \end{code} \begin{code} removeDups :: (a -> a -> Ordering) -- Comparison function -> [a] -> ([a], -- List with no duplicates [[a]]) -- List of duplicate groups. One representative from -- each group appears in the first result removeDups cmp [] = ([], []) removeDups cmp [x] = ([x],[]) removeDups cmp xs = case (mapAccumR collect_dups [] (equivClasses cmp xs)) of { (dups, xs') -> (xs', dups) } where collect_dups dups_so_far [x] = (dups_so_far, x) collect_dups dups_so_far dups@(x:xs) = (dups:dups_so_far, x) findDupsEq :: (a->a->Bool) -> [a] -> [[a]] findDupsEq eq [] = [] findDupsEq eq (x:xs) | null eq_xs = findDupsEq eq xs | otherwise = (x:eq_xs) : findDupsEq eq neq_xs where (eq_xs, neq_xs) = partition (eq x) xs \end{code} \begin{code} equivClassesByUniq :: (a -> Unique) -> [a] -> [[a]] -- NB: it's *very* important that if we have the input list [a,b,c], -- where a,b,c all have the same unique, then we get back the list -- [a,b,c] -- not -- [c,b,a] -- Hence the use of foldr, plus the reversed-args tack_on below equivClassesByUniq get_uniq xs = eltsUFM (foldr add emptyUFM xs) where add a ufm = addToUFM_C tack_on ufm (get_uniq a) [a] tack_on old new = new++old \end{code}