% % (c) The University of Glasgow 2006 % (c) The AQUA Project, Glasgow University, 1994-1998 % UniqFM: Specialised finite maps, for things with @Uniques@ Based on @FiniteMaps@ (as you would expect). Basically, the things need to be in class @Uniquable@, and we use the @getUnique@ method to grab their @Uniques@. (A similar thing to @UniqSet@, as opposed to @Set@.) \begin{code} module UniqFM ( UniqFM, -- abstract type emptyUFM, unitUFM, unitDirectlyUFM, listToUFM, listToUFM_Directly, addToUFM,addToUFM_C,addToUFM_Acc, addListToUFM,addListToUFM_C, addToUFM_Directly, addListToUFM_Directly, delFromUFM, delFromUFM_Directly, delListFromUFM, plusUFM, plusUFM_C, minusUFM, intersectsUFM, intersectUFM, intersectUFM_C, foldUFM, mapUFM, elemUFM, elemUFM_Directly, filterUFM, filterUFM_Directly, sizeUFM, hashUFM, isNullUFM, lookupUFM, lookupUFM_Directly, lookupWithDefaultUFM, lookupWithDefaultUFM_Directly, eltsUFM, keysUFM, ufmToList ) where #include "HsVersions.h" import Unique ( Uniquable(..), Unique, getKey#, mkUniqueGrimily ) import Maybes ( maybeToBool ) import FastTypes import Outputable import GHC.Exts -- Lots of Int# operations \end{code} %************************************************************************ %* * \subsection{The @UniqFM@ type, and signatures for the functions} %* * %************************************************************************ We use @FiniteMaps@, with a (@getUnique@-able) @Unique@ as ``key''. \begin{code} emptyUFM :: UniqFM elt isNullUFM :: UniqFM elt -> Bool unitUFM :: Uniquable key => key -> elt -> UniqFM elt unitDirectlyUFM -- got the Unique already :: Unique -> elt -> UniqFM elt listToUFM :: Uniquable key => [(key,elt)] -> UniqFM elt listToUFM_Directly :: [(Unique, elt)] -> UniqFM elt addToUFM :: Uniquable key => UniqFM elt -> key -> elt -> UniqFM elt addListToUFM :: Uniquable key => UniqFM elt -> [(key,elt)] -> UniqFM elt addToUFM_Directly :: UniqFM elt -> Unique -> elt -> UniqFM elt addToUFM_C :: Uniquable key => (elt -> elt -> elt) -- old -> new -> result -> UniqFM elt -- old -> key -> elt -- new -> UniqFM elt -- result addToUFM_Acc :: Uniquable key => (elt -> elts -> elts) -- Add to existing -> (elt -> elts) -- New element -> UniqFM elts -- old -> key -> elt -- new -> UniqFM elts -- result addListToUFM_C :: Uniquable key => (elt -> elt -> elt) -> UniqFM elt -> [(key,elt)] -> UniqFM elt delFromUFM :: Uniquable key => UniqFM elt -> key -> UniqFM elt delListFromUFM :: Uniquable key => UniqFM elt -> [key] -> UniqFM elt delFromUFM_Directly :: UniqFM elt -> Unique -> UniqFM elt plusUFM :: UniqFM elt -> UniqFM elt -> UniqFM elt plusUFM_C :: (elt -> elt -> elt) -> UniqFM elt -> UniqFM elt -> UniqFM elt minusUFM :: UniqFM elt1 -> UniqFM elt2 -> UniqFM elt1 intersectUFM :: UniqFM elt -> UniqFM elt -> UniqFM elt intersectUFM_C :: (elt1 -> elt2 -> elt3) -> UniqFM elt1 -> UniqFM elt2 -> UniqFM elt3 intersectsUFM :: UniqFM elt1 -> UniqFM elt2 -> Bool foldUFM :: (elt -> a -> a) -> a -> UniqFM elt -> a mapUFM :: (elt1 -> elt2) -> UniqFM elt1 -> UniqFM elt2 filterUFM :: (elt -> Bool) -> UniqFM elt -> UniqFM elt filterUFM_Directly :: (Unique -> elt -> Bool) -> UniqFM elt -> UniqFM elt sizeUFM :: UniqFM elt -> Int hashUFM :: UniqFM elt -> Int elemUFM :: Uniquable key => key -> UniqFM elt -> Bool elemUFM_Directly:: Unique -> UniqFM elt -> Bool lookupUFM :: Uniquable key => UniqFM elt -> key -> Maybe elt lookupUFM_Directly -- when you've got the Unique already :: UniqFM elt -> Unique -> Maybe elt lookupWithDefaultUFM :: Uniquable key => UniqFM elt -> elt -> key -> elt lookupWithDefaultUFM_Directly :: UniqFM elt -> elt -> Unique -> elt keysUFM :: UniqFM elt -> [Unique] -- Get the keys eltsUFM :: UniqFM elt -> [elt] ufmToList :: UniqFM elt -> [(Unique, elt)] \end{code} %************************************************************************ %* * \subsection{The @IdFinMap@ and @TyVarFinMap@ specialisations for Ids/TyVars} %* * %************************************************************************ \begin{code} -- Turn off for now, these need to be updated (SDM 4/98) #if 0 #ifdef __GLASGOW_HASKELL__ -- I don't think HBC was too happy about this (WDP 94/10) {-# SPECIALIZE addListToUFM :: UniqFM elt -> [(Name, elt)] -> UniqFM elt #-} {-# SPECIALIZE addListToUFM_C :: (elt -> elt -> elt) -> UniqFM elt -> [(Name, elt)] -> UniqFM elt #-} {-# SPECIALIZE addToUFM :: UniqFM elt -> Unique -> elt -> UniqFM elt #-} {-# SPECIALIZE listToUFM :: [(Unique, elt)] -> UniqFM elt #-} {-# SPECIALIZE lookupUFM :: UniqFM elt -> Name -> Maybe elt , UniqFM elt -> Unique -> Maybe elt #-} #endif /* __GLASGOW_HASKELL__ */ #endif \end{code} %************************************************************************ %* * \subsection{Andy Gill's underlying @UniqFM@ machinery} %* * %************************************************************************ ``Uniq Finite maps'' are the heart and soul of the compiler's lookup-tables/environments. Important stuff! It works well with Dense and Sparse ranges. Both @Uq@ Finite maps and @Hash@ Finite Maps are built ontop of Int Finite Maps. This code is explained in the paper: \begin{display} A Gill, S Peyton Jones, B O'Sullivan, W Partain and Aqua Friends "A Cheap balancing act that grows on a tree" Glasgow FP Workshop, Sep 1994, pp??-?? \end{display} %************************************************************************ %* * \subsubsection{The @UniqFM@ type, and signatures for the functions} %* * %************************************************************************ @UniqFM a@ is a mapping from Unique to a. First, the DataType itself; which is either a Node, a Leaf, or an Empty. \begin{code} data UniqFM ele = EmptyUFM | LeafUFM FastInt ele | NodeUFM FastInt -- the switching FastInt -- the delta (UniqFM ele) (UniqFM ele) -- INVARIANT: the children of a NodeUFM are never EmptyUFMs {- -- for debugging only :-) instance Outputable (UniqFM a) where ppr(NodeUFM a b t1 t2) = sep [text "NodeUFM " <+> int IBOX(a) <+> int IBOX(b), nest 1 (parens (ppr t1)), nest 1 (parens (ppr t2))] ppr (LeafUFM x a) = text "LeafUFM " <+> int IBOX(x) ppr (EmptyUFM) = empty -} -- and when not debugging the package itself... instance Outputable a => Outputable (UniqFM a) where ppr ufm = ppr (ufmToList ufm) \end{code} %************************************************************************ %* * \subsubsection{The @UniqFM@ functions} %* * %************************************************************************ First the ways of building a UniqFM. \begin{code} emptyUFM = EmptyUFM unitUFM key elt = mkLeafUFM (getKey# (getUnique key)) elt unitDirectlyUFM key elt = mkLeafUFM (getKey# key) elt listToUFM key_elt_pairs = addListToUFM_C use_snd EmptyUFM key_elt_pairs listToUFM_Directly uniq_elt_pairs = addListToUFM_directly_C use_snd EmptyUFM uniq_elt_pairs \end{code} Now ways of adding things to UniqFMs. There is an alternative version of @addListToUFM_C@, that uses @plusUFM@, but the semantics of this operation demands a linear insertion; perhaps the version without the combinator function could be optimised using it. \begin{code} addToUFM fm key elt = addToUFM_C use_snd fm key elt addToUFM_Directly fm u elt = insert_ele use_snd fm (getKey# u) elt addToUFM_C combiner fm key elt = insert_ele combiner fm (getKey# (getUnique key)) elt addToUFM_Acc add unit fm key item = insert_ele combiner fm (getKey# (getUnique key)) (unit item) where combiner old _unit_item = add item old addListToUFM fm key_elt_pairs = addListToUFM_C use_snd fm key_elt_pairs addListToUFM_Directly fm uniq_elt_pairs = addListToUFM_directly_C use_snd fm uniq_elt_pairs addListToUFM_C combiner fm key_elt_pairs = foldl (\ fm (k, e) -> insert_ele combiner fm (getKey# (getUnique k)) e) fm key_elt_pairs addListToUFM_directly_C combiner fm uniq_elt_pairs = foldl (\ fm (k, e) -> insert_ele combiner fm (getKey# k) e) fm uniq_elt_pairs \end{code} Now ways of removing things from UniqFM. \begin{code} delListFromUFM fm lst = foldl delFromUFM fm lst delFromUFM fm key = delete fm (getKey# (getUnique key)) delFromUFM_Directly fm u = delete fm (getKey# u) delete EmptyUFM _ = EmptyUFM delete fm key = del_ele fm where del_ele :: UniqFM a -> UniqFM a del_ele lf@(LeafUFM j _) | j ==# key = EmptyUFM | otherwise = lf -- no delete! del_ele nd@(NodeUFM j p t1 t2) | j ># key = mkSLNodeUFM (NodeUFMData j p) (del_ele t1) t2 | otherwise = mkLSNodeUFM (NodeUFMData j p) t1 (del_ele t2) del_ele _ = panic "Found EmptyUFM FM when rec-deleting" \end{code} Now ways of adding two UniqFM's together. \begin{code} plusUFM tr1 tr2 = plusUFM_C use_snd tr1 tr2 plusUFM_C f EmptyUFM tr = tr plusUFM_C f tr EmptyUFM = tr plusUFM_C f fm1 fm2 = mix_trees fm1 fm2 where mix_trees (LeafUFM i a) t2 = insert_ele (flip f) t2 i a mix_trees t1 (LeafUFM i a) = insert_ele f t1 i a mix_trees left_t@(NodeUFM j p t1 t2) right_t@(NodeUFM j' p' t1' t2') = mix_branches (ask_about_common_ancestor (NodeUFMData j p) (NodeUFMData j' p')) where -- Given a disjoint j,j' (p >^ p' && p' >^ p): -- -- j j' (C j j') -- / \ + / \ ==> / \ -- t1 t2 t1' t2' j j' -- / \ / \ -- t1 t2 t1' t2' -- Fast, Ehh ! -- mix_branches (NewRoot nd False) = mkLLNodeUFM nd left_t right_t mix_branches (NewRoot nd True) = mkLLNodeUFM nd right_t left_t -- Now, if j == j': -- -- j j' j -- / \ + / \ ==> / \ -- t1 t2 t1' t2' t1 + t1' t2 + t2' -- mix_branches (SameRoot) = mkSSNodeUFM (NodeUFMData j p) (mix_trees t1 t1') (mix_trees t2 t2') -- Now the 4 different other ways; all like this: -- -- Given j >^ j' (and, say, j > j') -- -- j j' j -- / \ + / \ ==> / \ -- t1 t2 t1' t2' t1 t2 + j' -- / \ -- t1' t2' mix_branches (LeftRoot Leftt) -- | trace "LL" True = mkSLNodeUFM (NodeUFMData j p) (mix_trees t1 right_t) t2 mix_branches (LeftRoot Rightt) -- | trace "LR" True = mkLSNodeUFM (NodeUFMData j p) t1 (mix_trees t2 right_t) mix_branches (RightRoot Leftt) -- | trace "RL" True = mkSLNodeUFM (NodeUFMData j' p') (mix_trees left_t t1') t2' mix_branches (RightRoot Rightt) -- | trace "RR" True = mkLSNodeUFM (NodeUFMData j' p') t1' (mix_trees left_t t2') mix_trees _ _ = panic "EmptyUFM found when inserting into plusInt" \end{code} And ways of subtracting them. First the base cases, then the full D&C approach. \begin{code} minusUFM EmptyUFM _ = EmptyUFM minusUFM t1 EmptyUFM = t1 minusUFM fm1 fm2 = minus_trees fm1 fm2 where -- -- Notice the asymetry of subtraction -- minus_trees lf@(LeafUFM i a) t2 = case lookUp t2 i of Nothing -> lf Just b -> EmptyUFM minus_trees t1 (LeafUFM i _) = delete t1 i minus_trees left_t@(NodeUFM j p t1 t2) right_t@(NodeUFM j' p' t1' t2') = minus_branches (ask_about_common_ancestor (NodeUFMData j p) (NodeUFMData j' p')) where -- Given a disjoint j,j' (p >^ p' && p' >^ p): -- -- j j' j -- / \ + / \ ==> / \ -- t1 t2 t1' t2' t1 t2 -- -- -- Fast, Ehh ! -- minus_branches (NewRoot nd _) = left_t -- Now, if j == j': -- -- j j' j -- / \ + / \ ==> / \ -- t1 t2 t1' t2' t1 + t1' t2 + t2' -- minus_branches (SameRoot) = mkSSNodeUFM (NodeUFMData j p) (minus_trees t1 t1') (minus_trees t2 t2') -- Now the 4 different other ways; all like this: -- again, with asymatry -- -- The left is above the right -- minus_branches (LeftRoot Leftt) = mkSLNodeUFM (NodeUFMData j p) (minus_trees t1 right_t) t2 minus_branches (LeftRoot Rightt) = mkLSNodeUFM (NodeUFMData j p) t1 (minus_trees t2 right_t) -- -- The right is above the left -- minus_branches (RightRoot Leftt) = minus_trees left_t t1' minus_branches (RightRoot Rightt) = minus_trees left_t t2' minus_trees _ _ = panic "EmptyUFM found when insering into plusInt" \end{code} And taking the intersection of two UniqFM's. \begin{code} intersectUFM t1 t2 = intersectUFM_C use_snd t1 t2 intersectsUFM t1 t2 = isNullUFM (intersectUFM_C (\ _ _ -> error "urk") t1 t2) intersectUFM_C f EmptyUFM _ = EmptyUFM intersectUFM_C f _ EmptyUFM = EmptyUFM intersectUFM_C f fm1 fm2 = intersect_trees fm1 fm2 where intersect_trees (LeafUFM i a) t2 = case lookUp t2 i of Nothing -> EmptyUFM Just b -> mkLeafUFM i (f a b) intersect_trees t1 (LeafUFM i a) = case lookUp t1 i of Nothing -> EmptyUFM Just b -> mkLeafUFM i (f b a) intersect_trees left_t@(NodeUFM j p t1 t2) right_t@(NodeUFM j' p' t1' t2') = intersect_branches (ask_about_common_ancestor (NodeUFMData j p) (NodeUFMData j' p')) where -- Given a disjoint j,j' (p >^ p' && p' >^ p): -- -- j j' -- / \ + / \ ==> EmptyUFM -- t1 t2 t1' t2' -- -- Fast, Ehh ! -- intersect_branches (NewRoot nd _) = EmptyUFM -- Now, if j == j': -- -- j j' j -- / \ + / \ ==> / \ -- t1 t2 t1' t2' t1 x t1' t2 x t2' -- intersect_branches (SameRoot) = mkSSNodeUFM (NodeUFMData j p) (intersect_trees t1 t1') (intersect_trees t2 t2') -- Now the 4 different other ways; all like this: -- -- Given j >^ j' (and, say, j > j') -- -- j j' t2 + j' -- / \ + / \ ==> / \ -- t1 t2 t1' t2' t1' t2' -- -- This does cut down the search space quite a bit. intersect_branches (LeftRoot Leftt) = intersect_trees t1 right_t intersect_branches (LeftRoot Rightt) = intersect_trees t2 right_t intersect_branches (RightRoot Leftt) = intersect_trees left_t t1' intersect_branches (RightRoot Rightt) = intersect_trees left_t t2' intersect_trees x y = panic ("EmptyUFM found when intersecting trees") \end{code} Now the usual set of `collection' operators, like map, fold, etc. \begin{code} foldUFM f a (NodeUFM _ _ t1 t2) = foldUFM f (foldUFM f a t2) t1 foldUFM f a (LeafUFM _ obj) = f obj a foldUFM f a EmptyUFM = a \end{code} \begin{code} mapUFM fn EmptyUFM = EmptyUFM mapUFM fn fm = map_tree fn fm filterUFM fn EmptyUFM = EmptyUFM filterUFM fn fm = filter_tree pred fm where pred (i::FastInt) e = fn e filterUFM_Directly fn EmptyUFM = EmptyUFM filterUFM_Directly fn fm = filter_tree pred fm where pred i e = fn (mkUniqueGrimily (iBox i)) e \end{code} Note, this takes a long time, O(n), but because we dont want to do this very often, we put up with this. O'rable, but how often do we look at the size of a finite map? \begin{code} sizeUFM EmptyUFM = 0 sizeUFM (NodeUFM _ _ t1 t2) = sizeUFM t1 + sizeUFM t2 sizeUFM (LeafUFM _ _) = 1 isNullUFM EmptyUFM = True isNullUFM _ = False -- hashing is used in VarSet.uniqAway, and should be fast -- We use a cheap and cheerful method for now hashUFM EmptyUFM = 0 hashUFM (NodeUFM n _ _ _) = iBox n hashUFM (LeafUFM n _) = iBox n \end{code} looking up in a hurry is the {\em whole point} of this binary tree lark. Lookup up a binary tree is easy (and fast). \begin{code} elemUFM key fm = maybeToBool (lookupUFM fm key) elemUFM_Directly key fm = maybeToBool (lookupUFM_Directly fm key) lookupUFM fm key = lookUp fm (getKey# (getUnique key)) lookupUFM_Directly fm key = lookUp fm (getKey# key) lookupWithDefaultUFM fm deflt key = case lookUp fm (getKey# (getUnique key)) of Nothing -> deflt Just elt -> elt lookupWithDefaultUFM_Directly fm deflt key = case lookUp fm (getKey# key) of Nothing -> deflt Just elt -> elt lookUp EmptyUFM _ = Nothing lookUp fm i = lookup_tree fm where lookup_tree :: UniqFM a -> Maybe a lookup_tree (LeafUFM j b) | j ==# i = Just b | otherwise = Nothing lookup_tree (NodeUFM j p t1 t2) | j ># i = lookup_tree t1 | otherwise = lookup_tree t2 lookup_tree EmptyUFM = panic "lookup Failed" \end{code} folds are *wonderful* things. \begin{code} eltsUFM fm = foldUFM (:) [] fm ufmToList fm = fold_tree (\ iu elt rest -> (mkUniqueGrimily (iBox iu), elt) : rest) [] fm keysUFM fm = fold_tree (\ iu elt rest -> mkUniqueGrimily (iBox iu) : rest) [] fm fold_tree f a (NodeUFM _ _ t1 t2) = fold_tree f (fold_tree f a t2) t1 fold_tree f a (LeafUFM iu obj) = f iu obj a fold_tree f a EmptyUFM = a \end{code} %************************************************************************ %* * \subsubsection{The @UniqFM@ type, and its functions} %* * %************************************************************************ You should always use these to build the tree. There are 4 versions of mkNodeUFM, depending on the strictness of the two sub-tree arguments. The strictness is used *both* to prune out empty trees, *and* to improve performance, stoping needless thunks lying around. The rule of thumb (from experence with these trees) is make thunks strict, but data structures lazy. If in doubt, use mkSSNodeUFM, which has the `strongest' functionality, but may do a few needless evaluations. \begin{code} mkLeafUFM :: FastInt -> a -> UniqFM a mkLeafUFM i a = LeafUFM i a -- The *ONLY* ways of building a NodeUFM. mkSSNodeUFM (NodeUFMData j p) EmptyUFM t2 = t2 mkSSNodeUFM (NodeUFMData j p) t1 EmptyUFM = t1 mkSSNodeUFM (NodeUFMData j p) t1 t2 = ASSERT(correctNodeUFM (iBox j) (iBox p) t1 t2) NodeUFM j p t1 t2 mkSLNodeUFM (NodeUFMData j p) EmptyUFM t2 = t2 mkSLNodeUFM (NodeUFMData j p) t1 t2 = ASSERT(correctNodeUFM (iBox j) (iBox p) t1 t2) NodeUFM j p t1 t2 mkLSNodeUFM (NodeUFMData j p) t1 EmptyUFM = t1 mkLSNodeUFM (NodeUFMData j p) t1 t2 = ASSERT(correctNodeUFM (iBox j) (iBox p) t1 t2) NodeUFM j p t1 t2 mkLLNodeUFM (NodeUFMData j p) t1 t2 = ASSERT(correctNodeUFM (iBox j) (iBox p) t1 t2) NodeUFM j p t1 t2 correctNodeUFM :: Int -> Int -> UniqFM a -> UniqFM a -> Bool correctNodeUFM j p t1 t2 = correct (j-p) (j-1) p t1 && correct j ((j-1)+p) p t2 where correct low high _ (LeafUFM i _) = low <= iBox i && iBox i <= high correct low high above_p (NodeUFM j p _ _) = low <= iBox j && iBox j <= high && above_p > iBox p correct _ _ _ EmptyUFM = panic "EmptyUFM stored inside a tree" \end{code} Note: doing SAT on this by hand seems to make it worse. Todo: Investigate, and if necessary do $\lambda$ lifting on our functions that are bound. \begin{code} insert_ele :: (a -> a -> a) -- old -> new -> result -> UniqFM a -> FastInt -> a -> UniqFM a insert_ele f EmptyUFM i new = mkLeafUFM i new insert_ele f (LeafUFM j old) i new | j ># i = mkLLNodeUFM (getCommonNodeUFMData (indexToRoot i) (indexToRoot j)) (mkLeafUFM i new) (mkLeafUFM j old) | j ==# i = mkLeafUFM j (f old new) | otherwise = mkLLNodeUFM (getCommonNodeUFMData (indexToRoot i) (indexToRoot j)) (mkLeafUFM j old) (mkLeafUFM i new) insert_ele f n@(NodeUFM j p t1 t2) i a | i <# j = if (i >=# (j -# p)) then mkSLNodeUFM (NodeUFMData j p) (insert_ele f t1 i a) t2 else mkLLNodeUFM (getCommonNodeUFMData (indexToRoot i) ((NodeUFMData j p))) (mkLeafUFM i a) n | otherwise = if (i <=# ((j -# _ILIT(1)) +# p)) then mkLSNodeUFM (NodeUFMData j p) t1 (insert_ele f t2 i a) else mkLLNodeUFM (getCommonNodeUFMData (indexToRoot i) ((NodeUFMData j p))) n (mkLeafUFM i a) \end{code} \begin{code} map_tree f (NodeUFM j p t1 t2) = mkLLNodeUFM (NodeUFMData j p) (map_tree f t1) (map_tree f t2) -- NB. lazy! we know the tree is well-formed. map_tree f (LeafUFM i obj) = mkLeafUFM i (f obj) map_tree f _ = panic "map_tree failed" \end{code} \begin{code} filter_tree :: (FastInt -> a -> Bool) -> UniqFM a -> UniqFM a filter_tree f nd@(NodeUFM j p t1 t2) = mkSSNodeUFM (NodeUFMData j p) (filter_tree f t1) (filter_tree f t2) filter_tree f lf@(LeafUFM i obj) | f i obj = lf | otherwise = EmptyUFM filter_tree f _ = panic "filter_tree failed" \end{code} %************************************************************************ %* * \subsubsection{The @UniqFM@ type, and signatures for the functions} %* * %************************************************************************ Now some Utilities; This is the information that is held inside a NodeUFM, packaged up for consumer use. \begin{code} data NodeUFMData = NodeUFMData FastInt FastInt \end{code} This is the information used when computing new NodeUFMs. \begin{code} data Side = Leftt | Rightt -- NB: avoid 1.3 names "Left" and "Right" data CommonRoot = LeftRoot Side -- which side is the right down ? | RightRoot Side -- which side is the left down ? | SameRoot -- they are the same ! | NewRoot NodeUFMData -- here's the new, common, root Bool -- do you need to swap left and right ? \end{code} This specifies the relationship between NodeUFMData and CalcNodeUFMData. \begin{code} indexToRoot :: FastInt -> NodeUFMData indexToRoot i = let l = (_ILIT(1) :: FastInt) in NodeUFMData (((i `shiftR_` l) `shiftL_` l) +# _ILIT(1)) l getCommonNodeUFMData :: NodeUFMData -> NodeUFMData -> NodeUFMData getCommonNodeUFMData (NodeUFMData i p) (NodeUFMData i2 p2) | p ==# p2 = getCommonNodeUFMData_ p j j2 | p <# p2 = getCommonNodeUFMData_ p2 (j `quotFastInt` (p2 `quotFastInt` p)) j2 | otherwise = getCommonNodeUFMData_ p j (j2 `quotFastInt` (p `quotFastInt` p2)) where l = (_ILIT(1) :: FastInt) j = i `quotFastInt` (p `shiftL_` l) j2 = i2 `quotFastInt` (p2 `shiftL_` l) getCommonNodeUFMData_ :: FastInt -> FastInt -> FastInt -> NodeUFMData getCommonNodeUFMData_ p j j_ | j ==# j_ = NodeUFMData (((j `shiftL_` l) +# l) *# p) p | otherwise = getCommonNodeUFMData_ (p `shiftL_` l) (j `shiftR_` l) (j_ `shiftR_` l) ask_about_common_ancestor :: NodeUFMData -> NodeUFMData -> CommonRoot ask_about_common_ancestor x@(NodeUFMData j p) y@(NodeUFMData j2 p2) | j ==# j2 = SameRoot | otherwise = case getCommonNodeUFMData x y of nd@(NodeUFMData j3 p3) | j3 ==# j -> LeftRoot (decideSide (j ># j2)) | j3 ==# j2 -> RightRoot (decideSide (j <# j2)) | otherwise -> NewRoot nd (j ># j2) where decideSide :: Bool -> Side decideSide True = Leftt decideSide False = Rightt \end{code} This might be better in Util.lhs ? Now the bit twiddling functions. \begin{code} shiftL_ :: FastInt -> FastInt -> FastInt shiftR_ :: FastInt -> FastInt -> FastInt #if __GLASGOW_HASKELL__ {-# INLINE shiftL_ #-} {-# INLINE shiftR_ #-} shiftL_ n p = word2Int#((int2Word# n) `uncheckedShiftL#` p) shiftR_ n p = word2Int#((int2Word# n) `uncheckedShiftRL#` p) #else /* not GHC */ shiftL_ n p = n * (2 ^ p) shiftR_ n p = n `quot` (2 ^ p) #endif /* not GHC */ \end{code} \begin{code} use_snd :: a -> b -> b use_snd a b = b \end{code}