module Vectorise( vectorise ) where import VectMonad import VectUtils import VectType import VectCore import HscTypes hiding ( MonadThings(..) ) import Module ( PackageId ) import CoreSyn import CoreUtils import CoreUnfold ( mkInlineRule ) import MkCore ( mkWildCase ) import CoreFVs import CoreMonad ( CoreM, getHscEnv ) import DataCon import TyCon import Type import FamInstEnv ( extendFamInstEnvList ) import Var import VarEnv import VarSet import Id import OccName import BasicTypes ( isLoopBreaker ) import Literal ( Literal, mkMachInt ) import TysWiredIn import TysPrim ( intPrimTy ) import Outputable import FastString import Util ( zipLazy ) import Control.Monad import Data.List ( sortBy, unzip4 ) vectorise :: PackageId -> ModGuts -> CoreM ModGuts vectorise backend guts = do hsc_env <- getHscEnv liftIO $ vectoriseIO backend hsc_env guts vectoriseIO :: PackageId -> HscEnv -> ModGuts -> IO ModGuts vectoriseIO backend hsc_env guts = do eps <- hscEPS hsc_env let info = hptVectInfo hsc_env `plusVectInfo` eps_vect_info eps Just (info', guts') <- initV backend hsc_env guts info (vectModule guts) return (guts' { mg_vect_info = info' }) vectModule :: ModGuts -> VM ModGuts vectModule guts = do (types', fam_insts, tc_binds) <- vectTypeEnv (mg_types guts) let fam_inst_env' = extendFamInstEnvList (mg_fam_inst_env guts) fam_insts updGEnv (setFamInstEnv fam_inst_env') -- dicts <- mapM buildPADict pa_insts -- workers <- mapM vectDataConWorkers pa_insts binds' <- mapM vectTopBind (mg_binds guts) return $ guts { mg_types = types' , mg_binds = Rec tc_binds : binds' , mg_fam_inst_env = fam_inst_env' , mg_fam_insts = mg_fam_insts guts ++ fam_insts } vectTopBind :: CoreBind -> VM CoreBind vectTopBind b@(NonRec var expr) = do (inline, expr') <- vectTopRhs var expr var' <- vectTopBinder var inline expr' hs <- takeHoisted cexpr <- tryConvert var var' expr return . Rec $ (var, cexpr) : (var', expr') : hs `orElseV` return b vectTopBind b@(Rec bs) = do (vars', _, exprs') <- fixV $ \ ~(_, inlines, rhss) -> do vars' <- sequence [vectTopBinder var inline rhs | (var, ~(inline, rhs)) <- zipLazy vars (zip inlines rhss)] (inlines', exprs') <- mapAndUnzipM (uncurry vectTopRhs) bs return (vars', inlines', exprs') hs <- takeHoisted cexprs <- sequence $ zipWith3 tryConvert vars vars' exprs return . Rec $ zip vars cexprs ++ zip vars' exprs' ++ hs `orElseV` return b where (vars, exprs) = unzip bs -- NOTE: vectTopBinder *MUST* be lazy in inline and expr because of how it is -- used inside of fixV in vectTopBind vectTopBinder :: Var -> Inline -> CoreExpr -> VM Var vectTopBinder var inline expr = do vty <- vectType (idType var) var' <- liftM (`setIdUnfolding` unfolding) $ cloneId mkVectOcc var vty defGlobalVar var var' return var' where unfolding = case inline of Inline arity -> mkInlineRule expr (Just arity) DontInline -> noUnfolding vectTopRhs :: Var -> CoreExpr -> VM (Inline, CoreExpr) vectTopRhs var expr = closedV $ do (inline, vexpr) <- inBind var $ vectPolyExpr (isLoopBreaker $ idOccInfo var) (freeVars expr) return (inline, vectorised vexpr) tryConvert :: Var -> Var -> CoreExpr -> VM CoreExpr tryConvert var vect_var rhs = fromVect (idType var) (Var vect_var) `orElseV` return rhs -- ---------------------------------------------------------------------------- -- Bindings vectBndr :: Var -> VM VVar vectBndr v = do (vty, lty) <- vectAndLiftType (idType v) let vv = v `Id.setIdType` vty lv = v `Id.setIdType` lty updLEnv (mapTo vv lv) return (vv, lv) where mapTo vv lv env = env { local_vars = extendVarEnv (local_vars env) v (vv, lv) } vectBndrNew :: Var -> FastString -> VM VVar vectBndrNew v fs = do vty <- vectType (idType v) vv <- newLocalVVar fs vty updLEnv (upd vv) return vv where upd vv env = env { local_vars = extendVarEnv (local_vars env) v vv } vectBndrIn :: Var -> VM a -> VM (VVar, a) vectBndrIn v p = localV $ do vv <- vectBndr v x <- p return (vv, x) vectBndrNewIn :: Var -> FastString -> VM a -> VM (VVar, a) vectBndrNewIn v fs p = localV $ do vv <- vectBndrNew v fs x <- p return (vv, x) vectBndrsIn :: [Var] -> VM a -> VM ([VVar], a) vectBndrsIn vs p = localV $ do vvs <- mapM vectBndr vs x <- p return (vvs, x) -- ---------------------------------------------------------------------------- -- Expressions vectVar :: Var -> VM VExpr vectVar v = do r <- lookupVar v case r of Local (vv,lv) -> return (Var vv, Var lv) Global vv -> do let vexpr = Var vv lexpr <- liftPD vexpr return (vexpr, lexpr) vectPolyVar :: Var -> [Type] -> VM VExpr vectPolyVar v tys = do vtys <- mapM vectType tys r <- lookupVar v case r of Local (vv, lv) -> liftM2 (,) (polyApply (Var vv) vtys) (polyApply (Var lv) vtys) Global poly -> do vexpr <- polyApply (Var poly) vtys lexpr <- liftPD vexpr return (vexpr, lexpr) vectLiteral :: Literal -> VM VExpr vectLiteral lit = do lexpr <- liftPD (Lit lit) return (Lit lit, lexpr) vectPolyExpr :: Bool -> CoreExprWithFVs -> VM (Inline, VExpr) vectPolyExpr loop_breaker (_, AnnNote note expr) = do (inline, expr') <- vectPolyExpr loop_breaker expr return (inline, vNote note expr') vectPolyExpr loop_breaker expr = do arity <- polyArity tvs polyAbstract tvs $ \args -> do (inline, mono') <- vectFnExpr False loop_breaker mono return (addInlineArity inline arity, mapVect (mkLams $ tvs ++ args) mono') where (tvs, mono) = collectAnnTypeBinders expr vectExpr :: CoreExprWithFVs -> VM VExpr vectExpr (_, AnnType ty) = liftM vType (vectType ty) vectExpr (_, AnnVar v) = vectVar v vectExpr (_, AnnLit lit) = vectLiteral lit vectExpr (_, AnnNote note expr) = liftM (vNote note) (vectExpr expr) vectExpr e@(_, AnnApp _ arg) | isAnnTypeArg arg = vectTyAppExpr fn tys where (fn, tys) = collectAnnTypeArgs e vectExpr (_, AnnApp (_, AnnVar v) (_, AnnLit lit)) | Just con <- isDataConId_maybe v , is_special_con con = do let vexpr = App (Var v) (Lit lit) lexpr <- liftPD vexpr return (vexpr, lexpr) where is_special_con con = con `elem` [intDataCon, floatDataCon, doubleDataCon] vectExpr (_, AnnApp fn arg) = do arg_ty' <- vectType arg_ty res_ty' <- vectType res_ty fn' <- vectExpr fn arg' <- vectExpr arg mkClosureApp arg_ty' res_ty' fn' arg' where (arg_ty, res_ty) = splitFunTy . exprType $ deAnnotate fn vectExpr (_, AnnCase scrut bndr ty alts) | Just (tycon, ty_args) <- splitTyConApp_maybe scrut_ty , isAlgTyCon tycon = vectAlgCase tycon ty_args scrut bndr ty alts where scrut_ty = exprType (deAnnotate scrut) vectExpr (_, AnnLet (AnnNonRec bndr rhs) body) = do vrhs <- localV . inBind bndr . liftM snd $ vectPolyExpr False rhs (vbndr, vbody) <- vectBndrIn bndr (vectExpr body) return $ vLet (vNonRec vbndr vrhs) vbody vectExpr (_, AnnLet (AnnRec bs) body) = do (vbndrs, (vrhss, vbody)) <- vectBndrsIn bndrs $ liftM2 (,) (zipWithM vect_rhs bndrs rhss) (vectExpr body) return $ vLet (vRec vbndrs vrhss) vbody where (bndrs, rhss) = unzip bs vect_rhs bndr rhs = localV . inBind bndr . liftM snd $ vectPolyExpr (isLoopBreaker $ idOccInfo bndr) rhs vectExpr e@(_, AnnLam bndr _) | isId bndr = liftM snd $ vectFnExpr True False e {- onlyIfV (isEmptyVarSet fvs) (vectScalarLam bs $ deAnnotate body) `orElseV` vectLam True fvs bs body where (bs,body) = collectAnnValBinders e -} vectExpr e = cantVectorise "Can't vectorise expression" (ppr $ deAnnotate e) vectFnExpr :: Bool -> Bool -> CoreExprWithFVs -> VM (Inline, VExpr) vectFnExpr inline loop_breaker e@(fvs, AnnLam bndr _) | isId bndr = onlyIfV (isEmptyVarSet fvs) (mark DontInline . vectScalarLam bs $ deAnnotate body) `orElseV` mark inlineMe (vectLam inline loop_breaker fvs bs body) where (bs,body) = collectAnnValBinders e vectFnExpr _ _ e = mark DontInline $ vectExpr e mark :: Inline -> VM a -> VM (Inline, a) mark b p = do { x <- p; return (b,x) } vectScalarLam :: [Var] -> CoreExpr -> VM VExpr vectScalarLam args body = do scalars <- globalScalars onlyIfV (all is_scalar_ty arg_tys && is_scalar_ty res_ty && is_scalar (extendVarSetList scalars args) body) $ do fn_var <- hoistExpr (fsLit "fn") (mkLams args body) DontInline zipf <- zipScalars arg_tys res_ty clo <- scalarClosure arg_tys res_ty (Var fn_var) (zipf `App` Var fn_var) clo_var <- hoistExpr (fsLit "clo") clo DontInline lclo <- liftPD (Var clo_var) return (Var clo_var, lclo) where arg_tys = map idType args res_ty = exprType body is_scalar_ty ty | Just (tycon, []) <- splitTyConApp_maybe ty = tycon == intTyCon || tycon == floatTyCon || tycon == doubleTyCon | otherwise = False is_scalar vs (Var v) = v `elemVarSet` vs is_scalar _ e@(Lit _) = is_scalar_ty $ exprType e is_scalar vs (App e1 e2) = is_scalar vs e1 && is_scalar vs e2 is_scalar _ _ = False vectLam :: Bool -> Bool -> VarSet -> [Var] -> CoreExprWithFVs -> VM VExpr vectLam inline loop_breaker fvs bs body = do tyvars <- localTyVars (vs, vvs) <- readLEnv $ \env -> unzip [(var, vv) | var <- varSetElems fvs , Just vv <- [lookupVarEnv (local_vars env) var]] arg_tys <- mapM (vectType . idType) bs res_ty <- vectType (exprType $ deAnnotate body) buildClosures tyvars vvs arg_tys res_ty . hoistPolyVExpr tyvars (maybe_inline (length vs + length bs)) $ do lc <- builtin liftingContext (vbndrs, vbody) <- vectBndrsIn (vs ++ bs) (vectExpr body) vbody' <- break_loop lc res_ty vbody return $ vLams lc vbndrs vbody' where maybe_inline n | inline = Inline n | otherwise = DontInline break_loop lc ty (ve, le) | loop_breaker = do empty <- emptyPD ty lty <- mkPDataType ty return (ve, mkWildCase (Var lc) intPrimTy lty [(DEFAULT, [], le), (LitAlt (mkMachInt 0), [], empty)]) | otherwise = return (ve, le) vectTyAppExpr :: CoreExprWithFVs -> [Type] -> VM VExpr vectTyAppExpr (_, AnnVar v) tys = vectPolyVar v tys vectTyAppExpr e tys = cantVectorise "Can't vectorise expression" (ppr $ deAnnotate e `mkTyApps` tys) -- We convert -- -- case e :: t of v { ... } -- -- to -- -- V: let v' = e in case v' of _ { ... } -- L: let v' = e in case v' `cast` ... of _ { ... } -- -- When lifting, we have to do it this way because v must have the type -- [:V(T):] but the scrutinee must be cast to the representation type. We also -- have to handle the case where v is a wild var correctly. -- -- FIXME: this is too lazy vectAlgCase :: TyCon -> [Type] -> CoreExprWithFVs -> Var -> Type -> [(AltCon, [Var], CoreExprWithFVs)] -> VM VExpr vectAlgCase _tycon _ty_args scrut bndr ty [(DEFAULT, [], body)] = do vscrut <- vectExpr scrut (vty, lty) <- vectAndLiftType ty (vbndr, vbody) <- vectBndrIn bndr (vectExpr body) return $ vCaseDEFAULT vscrut vbndr vty lty vbody vectAlgCase _tycon _ty_args scrut bndr ty [(DataAlt _, [], body)] = do vscrut <- vectExpr scrut (vty, lty) <- vectAndLiftType ty (vbndr, vbody) <- vectBndrIn bndr (vectExpr body) return $ vCaseDEFAULT vscrut vbndr vty lty vbody vectAlgCase _tycon _ty_args scrut bndr ty [(DataAlt dc, bndrs, body)] = do (vty, lty) <- vectAndLiftType ty vexpr <- vectExpr scrut (vbndr, (vbndrs, (vect_body, lift_body))) <- vect_scrut_bndr . vectBndrsIn bndrs $ vectExpr body let (vect_bndrs, lift_bndrs) = unzip vbndrs (vscrut, lscrut, pdata_tc, _arg_tys) <- mkVScrut (vVar vbndr) vect_dc <- maybeV (lookupDataCon dc) let [pdata_dc] = tyConDataCons pdata_tc let vcase = mk_wild_case vscrut vty vect_dc vect_bndrs vect_body lcase = mk_wild_case lscrut lty pdata_dc lift_bndrs lift_body return $ vLet (vNonRec vbndr vexpr) (vcase, lcase) where vect_scrut_bndr | isDeadBinder bndr = vectBndrNewIn bndr (fsLit "scrut") | otherwise = vectBndrIn bndr mk_wild_case expr ty dc bndrs body = mkWildCase expr (exprType expr) ty [(DataAlt dc, bndrs, body)] vectAlgCase tycon _ty_args scrut bndr ty alts = do vect_tc <- maybeV (lookupTyCon tycon) (vty, lty) <- vectAndLiftType ty let arity = length (tyConDataCons vect_tc) sel_ty <- builtin (selTy arity) sel_bndr <- newLocalVar (fsLit "sel") sel_ty let sel = Var sel_bndr (vbndr, valts) <- vect_scrut_bndr $ mapM (proc_alt arity sel vty lty) alts' let (vect_dcs, vect_bndrss, lift_bndrss, vbodies) = unzip4 valts vexpr <- vectExpr scrut (vect_scrut, lift_scrut, pdata_tc, _arg_tys) <- mkVScrut (vVar vbndr) let [pdata_dc] = tyConDataCons pdata_tc let (vect_bodies, lift_bodies) = unzip vbodies vdummy <- newDummyVar (exprType vect_scrut) ldummy <- newDummyVar (exprType lift_scrut) let vect_case = Case vect_scrut vdummy vty (zipWith3 mk_vect_alt vect_dcs vect_bndrss vect_bodies) lc <- builtin liftingContext lbody <- combinePD vty (Var lc) sel lift_bodies let lift_case = Case lift_scrut ldummy lty [(DataAlt pdata_dc, sel_bndr : concat lift_bndrss, lbody)] return . vLet (vNonRec vbndr vexpr) $ (vect_case, lift_case) where vect_scrut_bndr | isDeadBinder bndr = vectBndrNewIn bndr (fsLit "scrut") | otherwise = vectBndrIn bndr alts' = sortBy (\(alt1, _, _) (alt2, _, _) -> cmp alt1 alt2) alts cmp (DataAlt dc1) (DataAlt dc2) = dataConTag dc1 `compare` dataConTag dc2 cmp DEFAULT DEFAULT = EQ cmp DEFAULT _ = LT cmp _ DEFAULT = GT cmp _ _ = panic "vectAlgCase/cmp" proc_alt arity sel _ lty (DataAlt dc, bndrs, body) = do vect_dc <- maybeV (lookupDataCon dc) let ntag = dataConTagZ vect_dc tag = mkDataConTag vect_dc fvs = freeVarsOf body `delVarSetList` bndrs sel_tags <- liftM (`App` sel) (builtin (selTags arity)) lc <- builtin liftingContext elems <- builtin (selElements arity ntag) (vbndrs, vbody) <- vectBndrsIn bndrs . localV $ do binds <- mapM (pack_var (Var lc) sel_tags tag) . filter isLocalId $ varSetElems fvs (ve, le) <- vectExpr body return (ve, Case (elems `App` sel) lc lty [(DEFAULT, [], (mkLets (concat binds) le))]) -- empty <- emptyPD vty -- return (ve, Case (elems `App` sel) lc lty -- [(DEFAULT, [], Let (NonRec flags_var flags_expr) -- $ mkLets (concat binds) le), -- (LitAlt (mkMachInt 0), [], empty)]) let (vect_bndrs, lift_bndrs) = unzip vbndrs return (vect_dc, vect_bndrs, lift_bndrs, vbody) proc_alt _ _ _ _ _ = panic "vectAlgCase/proc_alt" mk_vect_alt vect_dc bndrs body = (DataAlt vect_dc, bndrs, body) pack_var len tags t v = do r <- lookupVar v case r of Local (vv, lv) -> do lv' <- cloneVar lv expr <- packByTagPD (idType vv) (Var lv) len tags t updLEnv (\env -> env { local_vars = extendVarEnv (local_vars env) v (vv, lv') }) return [(NonRec lv' expr)] _ -> return []