
The Backpack algorithm

May 13, 2015

This document describes the Backpack shaping and typechecking passes, as we intend to implement it.

1 Changelog

April 28, 2015 A signature declaration no longer provides a signature in the technical shaping sense;
the motivation for this change is explained in In-scope signatures are not provisions. The simplest
consequence of this is that all requirements are importable (Derek has stated that he doesn’t think this will
be too much of a problem in practice); it is also possible to extend shape with a signatures field, although
some work has to be done specifying coherence conditions between signatures and requirements.

2 Front-end syntax

p, q, r Package names
m,n Module names

Packages
pkg ::= package p [provreq] where {d1; . . . ;dn}

Declarations
d ::= module m [exports] where body

| signature m [exports] where body
| include p [provreq]

Provides/requires specification
provreq ::= (rns) [requires(rns)]

rns ::= rn0, . . . , rnn[,] Renamings
rn ::= m as n Renaming

Haskell code
exports A Haskell module export list

body A Haskell module body

Figure 1: Syntax of Backpack

The syntax of Backpack is given in Figure 1. See the “Backpack manual” for more explanation about the
syntax. It is slightly simplified here by removing any constructs which are easily implemented as syntactic
sugar (e.g., a bare m in a renaming is simply m as m.)

1

3 Shaping

Shape ::= provides: m -> Module {Name, . . . }; . . .
requires: m -> Module {Name, . . . }; . . .

PkgKey ::= p(m -> Module, . . .)
Module ::= PkgKey:m

Name ::= Module.OccName
OccName Unqualified name in a namespace

Figure 2: Semantic entities in Backpack

Shaping computes a Shape, whose form is described in Figure 2. Initializing the shape context to the
empty shape, we incrementally build the context as follows:

1. Calculate the shape of a declaration, with respect to the current shape context. (e.g., by renaming a
module/signature, or using the shape from an included package.)

2. Merge this shape into the shape context.

The final shape context is the shape of the package as a whole. Optionally, we can also compute the
renamed syntax trees of modules and signatures.

In the description below, we’ll assume THIS is the package key of the package being processed.

3.1 module M

A module declaration provides a module THIS:M at module name M. It has the shape:

provides: M -> THIS:M { exports of renamed M under THIS:M }

requires: (nothing)

Example:

module A(T) where

data T = T

-- provides: A -> THIS:A { THIS:A.T }

-- requires: (nothing)

OccName is implied by Name. In Haskell, the following is not valid syntax:

import A (foobar as baz)

In particular, a Name which is in scope will always have the same OccName (even if it may be qualified.) You
might imagine relaxing this restriction so that declarations can be used under different OccNames; in such a
world, we need a different definition of shape:

Shape ::=

provided: ModName -> { OccName -> Name }

required: ModName -> { OccName -> Name }

Presently, however, such an OccName annotation would be redundant: it can be inferred from the Name.

2

Holes of a package are a mapping, not a set. Why can’t the PkgKey just record a set of Modules, e.g.
PkgKey ::= SrcPkgKey { Module }? Consider:

package p (A) requires (H1, H2) where

signature H1(T) where

data T

signature H2(T) where

data T

module A(A(..)) where

import qualified H1

import qualified H2

data A = A H1.T H2.T

package q (A12, A21) where

module I1(T) where

data T = T Int

module I2(T) where

data T = T Bool

include p (A as A12) requires (H1 as I1, H2 as I2)

include p (A as A21) requires (H1 as I2, H2 as I1)

With a mapping, the first instance of p has key p(H1 -> q():I1, H2 -> q():I2) while the second instance has
key p(H1 -> q():I2, H2 -> q():I1); with a set, both would have the key p(q():I1, q():I2).

Signatures can require a specific entity. With requirements like A -> { HOLE:A.T, HOLE:A.foo }, why
not specify it as A -> { T, foo }, e.g., required: { ModName -> { OccName } }? Consider:

package p () requires (A, B) where

signature A(T) where

data T

signature B(T) where

import T

The requirements of this package specify that A.T = B.T; this can be expressed with Names as

A -> { HOLE:A.T }

B -> { HOLE:A.T }

But, without Names, the sharing constraint is impossible: A -> { T }; B -> { T }. (NB: A and B don’t have
to be implemented with the same module.)

3

The Name of a value is used to avoid ambiguous identifier errors. We state that two types are equal
when their Names are the same; however, for values, it is less clear why we care. But consider this example:

package p (A) requires (H1, H2) where

signature H1(x) where

x :: Int

signature H2(x) where

import H1(x)

module A(y) where

import H1

import H2

y = x

The reference to x in A is unambiguous, because it is known that x from H1 and x from H2 are the same (have
the same Name.) If they were not the same, it would be ambiguous and should cause an error. Knowing the
Name of a value distinguishes between these two cases.

Holes are linear Requirements do not record what Module represents the identity of a requirement, which
means that it’s not possible to assert that hole A and hole B should be implemented with the same module, as
might occur with aliasing:

signature A where

signature B where

alias A = B

The benefit of this restriction is that when a requirement is filled, it is obvious that this is the only requirement
that is filled: you won’t magically cause some other requirements to be filled. The downside is it’s not possible
to write a package which looks for an interface it is looking for in one of n names, accepting any name as an
acceptable linkage. If aliasing was allowed, we’d need a separate physical shaping context, to make sure multiple
mentions of the same hole were consistent.

3.2 signature M

A signature declaration creates a requirement at module name M. It has the shape:

provides: (nothing)

requires: M -> { exports of renamed M under HOLE:M }

Example:

signature H(T) where

data T

-- provides: H -> (nothing)

-- requires: H -> { HOLE:H.T }

4

In-scope signatures are not provisions. We enforce the invariant that a provision is always (syntactically)
a module and a requirement is always a signature. This means that if you have a requirement and a provision
of the same name, the requirement can always be filled with the provision. Without this invariant, it’s not clear
if a provision will actually fill a signature. Consider this example, where a signature is required and exposed:

package a-sigs (A) requires (A) where -- ***

signature A where

data T

package a-user (B) requires (A) where

signature A where

data T

x :: T

module B where

...

package p where

include a-sigs

include a-user

When we consider merging in the shape of a-user, does the A provided by a-sigs fill in the A requirement in
a-user? It should not, since a-sigs does not actually provide enough declarations to satisfy a-user’s require-
ment: the intended semantics merges the requirements of a-sigs and a-user.

package a-sigs (M as A) requires (H as A) where

signature H(T) where

data T

module M(T) where

import H(T)

We rightly should error, since the provision is a module. And in this situation:

package a-sigs (H as A) requires (H) where

signature H(T) where

data T

The requirements should be merged, but should the merged requirement be under the name H or A?
It may still be possible to use the (A) requires (A) syntax to indicate exposed signatures, but this would be
a mere syntactic alternative to () requires (exposed A).

5

3.3 include pkg (X) requires (Y)

We merge with the transformed shape of package pkg, where this shape is transformed by:

• Renaming and thinning the provisions according to (X)

• Renaming requirements according to (Y) (requirements cannot be thinned, so non-mentioned require-
ments are implicitly passed through.) For each renamed requirement from Y to Y’, substitute HOLE:Y

with HOLE:Y’ in the Modules and Names of the provides and requires.

If there are no thinnings/renamings, you just merge the shape unchanged! Here is an example:

package p (M) requires (H) where

signature H where

data T

module M where

import H

data S = S T

package q (A) where

module X where

data T = T

include p (M as A) requires (H as X)

The shape of package p is:

requires: M -> { p(H -> HOLE:H):M.S }

provides: H -> { HOLE:H.T }

Thus, when we process the include in package q, we make the following two changes: we rename the
provisions, and we rename the requirements, substituting HOLEs. The resulting shape to be merged in is:

provides: A -> { p(H -> HOLE:X):M.S }

requires: X -> { HOLE:X.T }

After merging this in, the final shape of q is:

provides: X -> { q():X.T } -- from shaping ’module X’

A -> { p(H -> q():X):M.S }

requires: (nothing) -- discharged by provided X

6

3.4 Merging

The shapes we’ve given for individual declarations have been quite simple. Merging combines two shapes,
filling requirements with implementations, unifying Names, and unioning requirements; it is the most com-
plicated part of the shaping process.

The best way to think about merging is that we take two packages with inputs (requirements) and outputs
(provisions) and “wiring” them up so that outputs feed into inputs. In the absence of mutual recursion,
this wiring process is directed : the provisions of the first package feed into the requirements of the second
package, but never vice versa. (With mutual recursion, things can go in the opposite direction as well.)

Suppose we are merging shape p with shape q (e.g., p; q). Merging proceeds as follows:

1. Fill every requirement of q with provided modules from p. For each requirement M of q that is provided
by p (in particular, all of its required Names are provided), substitute each Module occurrence of HOLE:M
with the provided p(M), unify the names, and remove the requirement from q. If the names of the
provision are not a superset of the required names, error.

2. If mutual recursion is supported, fill every requirement of p with provided modules from q.

3. Merge leftover requirements. For each requirement M of q that is not provided by p but required by
p, unify the names, and union them together to form the new requirement. (It’s not necessary to
substitute Modules, since they are guaranteed to be the same.)

4. Add provisions of q. Union the provisions of p and q, erroring if there is a duplicate that doesn’t have
the same identity.

To unify two sets of names, find each pair of names with matching OccNames n and m and do the following:

1. If both are from holes, pick a canonical representative m and substitute n with m.

2. If one n is from a hole, substitute n with m.

3. Otherwise, error if the names are not the same.

It is important to note that substitutions on Modules and substitutions on Names are disjoint: a substitution
from HOLE:A to HOLE:B does not substitute inside the name HOLE:A.T.

Since merging is the most complicated step of shaping, here are a big pile of examples of it in action.

3.4.1 A simple example

In the following set of packages:

package p(M) requires (A) where

signature A(T) where

data T

module M(T, S) where

import A(T)

data S = S T

package q where

module A where

data T = T

include p

When we include p, we need to merge the partial shape of q (with just provides A) with the shape of
p. Here is each step of the merging process:

7

shape 1 shape 2

--

(initial shapes)

provides: A -> THIS:A { q():A.T } M -> p(A -> HOLE:A) { HOLE:A.T, p(A -> HOLE:A).S }

requires: (nothing) A -> { HOLE:A.T }

(after filling requirements)

provides: A -> THIS:A { q():A.T } M -> p(A -> THIS:A) { q():A.T, p(A -> THIS:A).S }

requires: (nothing) (nothing)

(after adding provides)

provides: A -> THIS:A { q():A.T }

M -> p(A -> THIS:A) { q():A.T, p(A -> THIS:A).S }

requires: (nothing)

Notice that we substituted HOLE:A with THIS:A, but HOLE:A.T with q():A.T.

3.4.2 Requirements merging can affect provisions

When a merge results in a substitution, we substitute over both requirements and provisions:

signature H(T) where

data T

module A(T) where

import H(T)

module B(T) where

data T = T

-- provides: A -> THIS:A { HOLE:H.T }

-- B -> THIS:B { THIS:B.T }

-- requires: H -> { HOLE:H.T }

signature H(T, f) where

import B(T)

f :: a -> a

-- provides: A -> THIS:A { THIS:B.T } -- UPDATED

-- B -> THIS:B { THIS:B.T }

-- requires: H -> { THIS:B.T, HOLE:H.f } -- UPDATED

3.4.3 Sharing constraints

Suppose you have two signature which both independently define a type, and you would like to assert that
these two types are the same. In the ML world, such a constraint is known as a sharing constraint. Sharing
constraints can be encoded in Backpacks via clever use of reexports; they are also an instructive example
for signature merging.

signature A(T) where

data T

signature B(T) where

data T

-- requires: A -> { HOLE:A.T }

8

B -> { HOLE:B.T }

-- the sharing constraint!

signature A(T) where

import B(T)

-- (shape to merge)

-- requires: A -> { HOLE:B.T }

-- (after merge)

-- requires: A -> { HOLE:A.T }

-- B -> { HOLE:A.T }

I’m pretty sure any choice of Name is OK, since the subsequent substitution will make it alpha-equivalent.

3.5 Export declarations

If an explicit export declaration is given, the final shape is the computed shape, minus any provisions not
mentioned in the list, with the appropriate renaming applied to provisions and requirements. (Requirements
are implicitly passed through if they are not named.) If no explicit export declaration is given, the final
shape is the computed shape, including only provisions which were defined in the declarations of the package.

3.6 Package key

What is THIS? It is the package name, plus for every requirement M, a mapping M -> HOLE:M. Annoyingly,
you don’t know the full set of requirements until the end of shaping, so you don’t know the package key
ahead of time; however, it can be substituted at the end easily.

9

Signature visibility, and defaulting The simplest formulation of requirements is to have them always be
visible. Signature visibility could be controlled by associating every requirement with a flag indicating if it is
importable or not: a signature declaration sets a requirement to be visible, and an explicit export list can specify
if a requirement is to be visible or not.
When an export list is absent, we have to pick a default visibility for a signature. If we use the same behavior
as with modules, a strange situation can occur:

package p where -- S is visible

signature S where

x :: True

package q where -- use defaulting

include p

signature S where

y :: True

module M where

import S

z = x && y -- OK

package r where

include q

module N where

import S

z = y -- OK

z = x -- ???

Absent the second signature declaration in q, S.x clearly should not be visible in N. However, what ought to occur
when this signature declaration is added? One interpretation is to say that only some (but not all) declarations
are provided (S.x remains invisible); another interpretation is that adding S is enough to treat the signature as
“in-line”, and all declarations are now provided (S.x is visible).
The latter interpretation avoids having to keep track of providedness per declarations, and means that you can
always express defaulting behavior by writing an explicit provides declaration on the package. However, it has
the odd behavior of making empty signatures semantically meaningful:

package q where

include p

signature S where

10

4 Type constructor exports

In the previous section, we described the Names of a module as a flat namespace; but actually, there is one
level of hierarchy associated with type-constructors. The type:

data A = B { foo :: Int }

brings three OccNames into scope, A, B and foo, but the constructors and record selectors are considered
children of A: in an import list, they can be implicitly brought into scope with A(..), or individually brought
into scope with foo or pattern B (using the new PatternSynonyms extension). Symmetrically, a module
may export only some of the constructors/selectors of a type; it may not even export the type itself!

We absolutely need this information to rename a module or signature, which means that there is a little
bit of extra information we have to collect when shaping. What is this information? If we take GHC’s
internal representation at face value, we have the more complex semantic representation seen in Figure 3:

Shape ::= provides: m -> Module {AvailInfo, . . . }; . . .
requires: m -> Module {AvailInfo, . . . }; . . .

AvailInfo ::= Name Plain identifiers
| Name {Name0, . . . ,Namen } Type constructors

Figure 3: Enriched semantic entities in Backpack

For type constructors, the outer Name identifies the parent identifier, which may not necessarily be in
scope (define this to be the availName); the inner list consists of the children identifiers that are actually in
scope. If a wildcard is written, all of the child identifiers are brought into scope. In the following examples,
we’ve ensured that types and constructors are unambiguous, although in Haskell proper they live in separate
namespaces; we’ve also elided the THIS package key from the identifiers.

module M(A(..)) where

data A = B { foo :: Int }

-- M.A{ M.A, M.B, M.foo }

module N(A) where

data A = B { foo :: Int }

-- N.A{ N.A }

module O(foo) where

data A = B { foo :: Int }

-- O.A{ O.foo }

module A where

data T = S { bar :: Int }

module B where

data T = S { baz :: Bool }

module C(bar, baz) where

import A

import B

-- A.T{ A.bar }, B.T{ B.baz }

-- NB: it would be illegal for the type constructors

-- A.T and B.T to be both exported from C!

Previously, we stated that we simply merged Names based on their OccNames. We now must consider what
it means to merge AvailInfos.

11

4.1 Algorithm

Our merging algorithm takes two sets of AvailInfos and merges them into one set. In the degenerate case
where every AvailInfo is a Name, this algorithm operates the same as the original algorithm. Merging
proceeds in two steps: unification and then simple union.

Unification proceeds as follows: for each pair of Names with matching OccNames, unify the names.
For each pair of Name {Name0, . . . ,Namen }, where there exists some pair of child names with matching
OccNames, unify the parent Names. (A single AvailInfo may participate in multiple such pairs.) A simple
identifier and a type constructor AvailInfo with overlapping in-scope names fails to unify. After unification,
the simple union combines entries with matching availNames (parent name in the case of a type constructor),
recursively unioning the child names of type constructor AvailInfos.

Unification of Names results in a substitution, and a Name substitution on AvailInfo is a little un-
conventional. Specifically, substitution on Name {Name0, . . . ,Namen } proceeds specially: a substitution
from Name to Name ′ induces a substitution from Module to Module′ (as the OccNames of the Names
are guaranteed to be equal), so for each child Namei, perform the Module substitution. So for exam-
ple, the substitution HOLE:A.T to THIS:A.T takes the AvailInfo HOLE:A.T { HOLE:A.B, HOLE:A.foo } to
THIS:A.T { THIS:A.B, THIS:A.foo }. In particular, substitution on children Names is only carried out
by substituting on the outer name; we will never directly substitute children.

4.2 Examples

Unfortunately, there are a number of tricky scenarios:

Merging when type constructors are not in scope

signature A1(foo) where

data A = A { foo :: Int, bar :: Bool }

signature A2(bar) where

data A = A { foo :: Int, bar :: Bool }

If we merge A1 and A2, are we supposed to conclude that the types A1.A and A2.A (not in scope!) are the
same? The answer is no! Consider these implementations:

module A1(A(..)) where

data A = A { foo :: Int, bar :: Bool }

module A2(A(..)) where

data A = A { foo :: Int, bar :: Bool }

module A(foo, bar) where

import A1

import A2

Here, module A1 implements signature A1, module A2 implements signature A2, and module A im-
plements signature A1 and signature A2 individually and should certainly implement their merge. This
is why we cannot simply merge type constructors based on the OccName of their top-level type; merging
only occurs between in-scope identifiers.

Does merging a selector merge the type constructor?

signature A1(A(..)) where

data A = A { foo :: Int, bar :: Bool }

12

signature A2(A(..)) where

data A = A { foo :: Int, bar :: Bool }

signature A2(foo) where

import A1(foo)

Does the last signature, which is written in the style of a sharing constraint on foo, also cause bar and the
type and constructor A to be unified? Because a merge of a child name results in a substitution on the parent
name, the answer is yes.

Incomplete data declarations

signature A1(A(foo)) where

data A = A { foo :: Int }

signature A2(A(bar)) where

data A = A { bar :: Bool }

Should A1 and A2 merge? If yes, this would imply that data definitions in signatures could only be partial
specifications of their true data types. This seems complicated, which suggests this should not be supported;
however, in fact, this sort of definition, while disallowed during type checking, should be allowed during
shaping. The reason that the shape we abscribe to the signatures A1 and A2 are equivalent to the shapes for
these which should merge:

signature A1(A(foo)) where

data A = A { foo :: Int, bar :: Bool }

signature A2(A(bar)) where

data A = A { foo :: Int, bar :: Bool }

4.3 Subtyping record selectors as functions

signature H(foo) where

data A

foo :: A -> Int

module M(foo) where

data A = A { foo :: Int, bar :: Bool }

Does M successfully fill H? If so, it means that anywhere a signature requests a function foo, we can instead
validly provide a record selector. This capability seems quite attractive but actually it is quite complicated,
because we can no longer assume that every child name is associated with a parent name.

As a workaround, H can equivalently be written as:

signature H(foo) where

data A = A { foo :: Int, bar :: Bool }

This is suboptimal, however, as the otherwise irrelevant bar must be mentioned in the definition.
So what if we actually want to write the original signature H? The technical difficulty is that we now need

to unify a plain identifier AvailInfo (from the signature) with a type constructor AvailInfo (from a module.)
It is not clear what this should mean. Consider this situation:

package p where

13

signature H(A, foo, bar) where

data A

foo :: A -> Int

bar :: A -> Bool

module X(A, foo) where

import H

package q where

include p

signature H(bar) where

data A = A { foo :: Int, bar :: Bool }

module Y where

import X(A(..)) -- ???

Should the wildcard import on X be allowed? Probably not? How about this situation:

package p where

-- define without record selectors

signature X1(A, foo) where

data A

foo :: A -> Int

module M1(A, foo) where

import X1

package q where

-- define with record selectors (X1s unify)

signature X1(A(..)) where

data A = A { foo :: Int, bar :: Bool }

signature X2(A(..)) where

data A = A { foo :: Int, bar :: Bool }

-- export some record selectors

signature Y1(bar) where

import X1

signature Y2(bar) where

import X2

package r where

include p

include q

-- sharing constraint

signature Y2(bar) where

import Y1(bar)

-- the payload

module Test where

import M1(foo)

import X2(foo)

... foo ... -- conflict?

Without the sharing constraint, the foos from M1 and X2 should conflict. With it, however, we should
conclude that the foos are the same, even though the foo from M1 is not considered a child of A, and even
though in the sharing constraint we only unified bar (and its parent A). To know that foo from M1 should also

14

be unified, we have to know a bit more about A when the sharing constraint performs unification; however,
the AvailInfo will only tell us about what is in-scope, which is not enough information.

5 Type checking

PkgType ::= ModIface0; . . . ;ModIfacen

Module interface
ModIface ::= module Module (mi exports) where

mi decls
mi insts
dep orphs

mi exports ::= AvailInfo0, . . . ,AvailInfon Export list
mi decls ::= IfaceDecl0; . . . ; IfaceDecln Defined declarations
mi insts ::= IfaceClsInst0; . . . ; IfaceClsInstn Defined instances

dep orphs ::= Module0; . . . ;Modulen Transitive orphan dependencies

Interface declarations
IfaceDecl ::= OccName :: IfaceId

| data OccName = IfaceData
| . . .

IfaceClsInst A type-class instance
IfaceId Interface of top-level binder

IfaceData Interface of type constructor

Figure 4: Module interfaces in GHC

In general terms, type checking an indefinite package (a package with holes) involves calculating, for
every module, a ModIface representing the type/interface of the module in question (which is serialized to
disk). The general form of these interface files are described in Figure 4; notably, the interfaces IfaceId ,
IfaceData, etc. contain Name references, which must be resolved by looking up a ModIface corresponding to
the Module associated with the Name. (We will say more about this lookup process shortly.) For example,
given:

package p where

signature H where

data T

module A(S, T) where

import H

data S = S T

the PkgType is:

module HOLE:H (HOLE:H.T) where

data T -- abstract type constructor

module THIS:A (THIS:A.S, HOLE:H.T) where

data S = S HOLE:H.T

-- where THIS = p(H -> HOLE:H)

However, while it is true that the ModIface is the final result of type checking, we actually are conflating
two distinct concepts: the user-visible notion of a ModuleName, which, when imported, brings some Names

15

into scope (or could trigger a deprecation warning, or pull in some orphan instances. . .), versus the actual
declarations, which, while recorded in the ModIface, have an independent existence: even if a declaration
is not visible for an import, we may internally refer to its Name, and need to look it up to find out type
information. (A simple case when this can occur is if a module exports a function with type T -> T, but
doesn’t export T).

ModDetails ::= 〈md types; md insts〉
md types ::= TyThing0, . . . ,TyThingn

md insts ::= ClsInst0, . . . ,ClsInstn

Type-checked declarations
TyThing Type-checked thing with a Name

ClsInst Type-checked type class instance

Figure 5: Semantic objects in GHC

Thus, a ModIface can be type-checked into a ModDetails, described in Figure 5. Notice that a ModDetails
is just a bag of type-checkable entities which GHC knows about. We define the external package state (EPT)
to simply be the union of the ModDetails of all external modules.

Type checking is a delicate balancing act between module interfaces and our semantic objects. A ModIface
may get type-checked multiple times with different hole instantiations to provide multiple ModDetails. Fur-
thermore complicating matters is that GHC does this resolution lazily : a ModIface is only converted to a
ModDetails when we are looking up the type of a Name that is described by the interface; thus, unlike usual
theoretical treatments of type checking, we can’t eagerly go ahead and perform substitutions on ModIfaces
when they get included.

In a separate compiler like GHC, there are two primary functions we must provide:

ModuleName to ModIface Given a ModuleName which was explicitly imported by a user, we must
produce a ModIface that, among other things, specifies what Names are brought into scope. This is used
by the renamer to resolve plain references to identifiers to real Names. (By the way, if shaping produced
renamed trees, it would not be necessary to do this step!)

Module to ModDetails/EPT Given a Module which may be a part of a Name, we must be able to type
check it into a ModDetails (usually by reading and typechecking the ModIface associated with the Module,
but this process is involved). This is used by the type checker to find out type information on things.

There are two points in the type checker where these capabilities are exercised:

Source-level imports When a user explicitly imports a module, the ModuleName is mapped to a ModIface
to find out what exports are brought into scope (mi exports) and what orphan instances must be loaded
(dep orphs). Additionally, the Module is loaded to the EPT to bring instances from the module into scope.

Internal name lookup During type checking, we may have a Name for which we need type information
(TyThing). If it’s not already in the EPT, we type check and load into the EPT the ModDetails of the
Module in the Name, and then check the EPT again. (importDecl)

5.1 ModName to ModIface

In all cases, the mi exports can be calculated directly from the shaping process, which specifies exactly for
each ModName in scope what will be brought into scope.

Modules Modules are straightforward, as for any Module there is only one possibly ModIface associated
with it (the ModIface for when we type-checked the (unique) module declaration.)

16

Does hiding a signature hide its orphans. Suppose that we have extended Backpack to allow hiding
signatures from import.

package p requires (H) where -- H is hidden from import

module A where

instance Eq (a -> b) where -- orphan

signature H {-# DEPRECATED "Don’t use me" #-} where

import A

package q where

include p

signature H where

data T

module M where

import H -- warn deprecated?

instance Eq (a -> b) -- overlap?

It is probably the most consistent to not pull in orphan instances and not give the deprecated warning: this
corresponds to merging visible ModIfaces, and ignoring invisible ones.

Signatures For signatures, there may be multiple ModIfaces associated with a ModName in scope, e.g. in
this situation:

package p where

signature S where

data A

package q where

include p

signature S where

data B

module M where

import S

Each literal signature has a ModIface associated with it; and the import of S in M, we want to see the
merged ModIfaces. We can determine the mi exports from the shape, but we also need to pull in orphan
instances for each signature, and produce a warning for each deprecated signature.

5.2 Module to ModDetails

Modules For modules, we have a Module of the form p(m -> Module, . . .), and we also have a unique
ModIface, where each hole instantiation is HOLE:m.

To generate the ModDetails associated with the specific instantiation, we have to type-check the ModIface
with the following adjustments:

1. Perform a Module substitution according to the instantiation of the ModIface’s Module. (NB: we do
substitute HOLE:A.x to HOLE:B.x if we instantiated A -> HOLE:B, unlike the disjoint substitutions
applied by shaping.)

2. Perform a Name substitution as follows: for any name with a package key that is a HOLE, substitute
with the recorded Name in the requirements of the shape. Otherwise, look up the (unique) ModIface
for the Module, and subsitute with the corresponding Name in the mi exports.

17

Signatures For signatures, we have a Module of the form HOLE:m. Unlike modules, there are multiple
ModIfaces associated with a hole. We distinguish each separate ModIface by considering the full PkgKey
it was defined in, e.g. p(A -> HOLE:C, B -> q():B); call this the hole’s defining package key ; the set of
ModIfaces for a hole and their defining package keys can easily be calculated during shaping.

To generate the ModDetails associated with a hole, we type-check each ModIface, with the following
adjustments:

1. Perform a Module substitution according to the instantiation of the defining package key. (NB: This
may rename the hole itself!)

2. Perform a Name substitution as follows, in the same manner as would be done in the case of modules.

3. When these ModDetails are merged into the EPT, some merging of duplicate types may occur; a type
may be defined multiple times, in which case we check that each definition is compatible with the
previous ones. A concrete type is always compatible with an abstract type.

Invariants When we perform Name substitutions, we must be sure that we can always find out the correct
Name to substitute to. This isn’t obviously true, consider:

package p where

signature S(foo) where

data T

foo :: T

module M(bar) where

import S

bar = foo

package q where

module A(T(..)) where

data T = T

foo = T

module S(foo) where

import A

include p

module A where

import M

... bar ...

When we type check p, we get the ModIfaces:

module HOLE:S(HOLE:S.foo) where

data T

foo :: HOLE:S.T

module THIS:M(THIS:M.bar) where

bar :: HOLE:S.T

Now, when we type check A, we pull on the Name p(S -> q():S):M.bar, which means we have to type check
the ModIface for p(S -> q():S):M. The un-substituted type of bar has a reference to HOLE:S.T; this should
be substituted to q():S.T. But how do we discover this? We know that HOLE:S was instantiated to q():S,
so we might try and look for q():S.T. However, this Name does not exist because the module S reexports
the selector from A! Nor can we consult the (unique) ModIface for the module, as it doesn’t reexport the
relevant type.

The conclusion, then, is that a module written this way should be disallowed. Specifically, the correctness
condition for a signature is this: Any Name mentioned in the ModIface of a signature must either be from
an external module, or be exported by the signature.

18

Special case export rule for record selectors. Here is the analogous case for record selectors:

package p where

signature S(foo) where

data T = T { foo :: Int }

module M(bar) where

import S

bar = foo

package q where

module A(T(..)) where

data T = T { foo :: Int }

module S(foo) where

import A

include p

module A where

import M

... bar ...

We could reject this, but technically we can find the right substitution for T, because the export of foo is an
AvailTC which does mention T.

19

	Changelog
	Front-end syntax
	Shaping
	module M
	signature M
	include pkg (X) requires (Y)
	Merging
	A simple example
	Requirements merging can affect provisions
	Sharing constraints

	Export declarations
	Package key

	Type constructor exports
	Algorithm
	Examples
	Subtyping record selectors as functions

	Type checking
	ModName to ModIface
	Module to ModDetails

