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The purpose of this document is to describe an implementation path for Backpack in GHC.
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9 Open questions 34

1 What we are trying to solve

While the current ecosystem has proved itself serviceable for many years, there are a number of major
problems which causes significant headaches for many users. Here are some of them:

1.1 Package reinstalls are destructive

When attempting to install a new package, you might get an error like this:

$ cabal install hakyll

cabal: The following packages are likely to be broken by the reinstalls:

pandoc-1.9.4.5

Graphalyze-0.14.0.0

Use --force-reinstalls if you want to install anyway.

While this error message is understandable if you’re really trying to reinstall a package, it is quite
surprising that it can occur even if you didn’t ask for any reinstalls!

The underlying cause of this problem is related to an invariant Cabal currently enforces on a package
database: there can only be one instance of a package for any given package name and version. This means
that it is not possible to install a package multiple times, compiled against different dependencies. However,
sometimes, reinstalling a package with different dependencies is the only way to fulfill version bounds of a
package! For example: say we have three packages a, b and c. b-1.0 is the only version of b available, and
it has been installed and compiled against c-1.0. Later, the user installs an updated version c-1.1 and then
attempts to install a, which depends on the specific versions c-1.1 and b-1.0. We cannot use the already
installed version of b-1.0, which depends on the wrong version of c, so our only choice is to reinstall b-1.0
compiled against c-1.1. This will break any packages, e.g. d, which were built against the old version of
b-1.0.

Our solution to this problem is to abolish destructive package installs, and allow a package to be installed
multiple times with the same package name and version. However, allowing this poses some interesting user
interface problems, since package IDs are now no longer unambiguous identifiers.

1.2 Version bounds are often over/under-constrained

When attempting to install a new package, Cabal might fail in this way:

$ cabal install hledger-0.18

Resolving dependencies...

cabal: Could not resolve dependencies:

# pile of output

There are a number of possible reasons why this could occur, but usually it’s because some of the packages
involved have over-constrained version bounds, which are resulting in an unsatisfiable set of constraints (or,
at least, Cabal gave up backtracking before it found a solution.) To add insult to injury, most of the time
the bound is nonsense and removing it would result in a working compilation. In fact, this situation is so
common that Cabal has a flag --allow-newer which lets you override the package upper bounds.

However, the flip-side is when Cabal finds a satisfying set, but your compilation fails with a type error.
Here, you had an under-constrained set of version bounds which didn’t actually reflect the compatible versions
of a package, and Cabal picked a version of the package which was incompatible.

Our solution to this problem is to use signatures instead of version numbers as the primary mechanism
by which compatibility is determined: e.g., if it typechecks, it’s a valid choice. Version numbers can still be
used to reflect semantic changes not seen in the types (in particular, ruling out buggy versions of a package
is a useful operation), but these bounds are empirical observations and can be collected after-the-fact.
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1.3 It is difficult to support multiple implementations of a type

This problem is perhaps best described by referring to a particular instance of it Haskell’s ecosystem: the
String data type. Haskell, by default, implements strings as linked lists of integers (representing characters).
Many libraries use String, because it’s very convenient to program against. However, this representation
is also very slow, so there are alternative implementations such as Text which implement efficient, UTF-8
encoded packed byte arrays.

Now, suppose you are writing a library and you don’t care if the user of your library is using String or
Text. However, you don’t want to rewrite your library twice to support both data types: rather, you’d like
to rely on some common interface between the two types, and let the user instantiate the implementation.
The only way to do this in today’s Haskell is using type classes; however, this necessitates rewriting all
type signatures from a nice String -> String to StringLike s => s -> s. The result is less readable,
required a large number of trivial edits to type signatures, and might even be less efficient, if GHC does not
appropriately specialize your code written in this style.

Our solution to this problem is to introduce a new mechanism of pluggability: module holes, which let
us use types and functions from a module Data.String as before, but defer choosing what module should
be used in the implementation to some later point (or instantiate the code multiple times with different
choices.)

1.4 Fast moving APIs are difficult to develop/develop against

Most packages that are uploaded to Hackage have package authors which pay some amount of attention
to backwards compatibility and avoid making egregious breaking changes. However, a package like the
ghc-api follows a very different model: the library is a treated by its developers as an internal component
of an application (GHC), and is frequently refactored in a way that changes its outwards facing interface.

Arguably, an application like GHC should design a stable API and maintain backwards compatibility
against it. However, this is a lot of work (including refactoring) which is only being done slowly, and in the
meantime, the dump of all the modules gives users the functionality they want (even if it keeps breaking
every version.)

One could say that the core problem is there is no way for users to easily communicate to GHC authors
what parts of the API they rely on. A developer of GHC who is refactoring an interface will often rely on
the typechecker to let them know which parts of the codebase they need to follow and update, and often
could say precisely how to update code to use the new interface. User applications, which live out of tree,
don’t receive this level of attention.

Our solution is to make it possible to typecheck the GHC API against a signature. Important consumers
can publish what subsets of the GHC API they rely against, and developers of GHC, as part of their normal
build process, type-check against these signatures. If the signature breaks, a developer can either do the
refactoring differently to avoid the compatibility-break, or document how to update code to use the new
API.

2 Backpack in a nutshell

For a more in-depth tutorial about Backpack’s features, check out Section 2 of the original Backpack paper.
In this section, we briefly review the most important points of Backpack’s design.

Thinning and renaming at the module level A user can specify a build dependency which only exposes
a subset of modules (possibly under different names.) By itself, it’s a way for the user to resolve ambiguous
module imports at the package level, without having to use the PackageImports syntax extension.

Holes (abstract module definitions) The core component of Backpack’s support for separate modular
development is the ability to specify abstract module bindings, or holes, which give users of the module an
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obligation to provide an implementation which fulfills the signature of the hole. In this example:

package p where

A :: [ ... ]

B = [ import A; ... ]

p is an indefinite package, which cannot be compiled until an implementation of A is provided. However,
we can still type check B without any implementation of A, by type checking it against the signature. Holes
can be put into signature packages and included (depended upon) by other packages to reuse definitions of
signatures.

Filling in holes with an implementation A hole in an indefinite package can be instantiated in a mix-in
style: namely, if a signature and an implementation have the same name, they are linked together:

package q where

A = [ ... ]

include p -- has signature A

Renaming is often useful to rename a module (or a hole) so that a signature and implementation have the
same name and are linked together. An indefinite package can be instantiated multiple times with different
implementations: the applicativity of Backpack means that if a package is instantiated separately with the
same module, the results are type equal:

package q’ where

A = [ ... ]

include p (A, B as B1)

include p (A, B as B2)

-- B1 and B2 are equivalent

Combining signatures together Unlike implementations, it’s valid for a multiple signatures with the
same name to be in scope.

package a-sig where

A :: [ ... ]

package a-sig2 where

A :: [ ... ]

package q where

include a-sig

include a-sig2

B = [ import A; ... ]

These signatures merge together, providing the union of the functionality (assuming the types of indi-
vidual entities are compatible.) Backpack has a very simple merging algorithm: types must match exactly
to be compatible (width subtyping).
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3 Module and package identity

package p where

A :: [ data X ]

P = [ import A; data Y = Y X ]

package q where

A1 = [ data X = X1 ]

A2 = [ data X = X2 ]

include p (A as A1, P as P1)

include p (A as A2, P as P2)

package p where

A :: [ data X ]

P = [ data T = T ] -- no A import!

package q where

A1 = [ data X = X1 ]

A2 = [ data X = X2 ]

include p (A as A1, P as P1)

include p (A as A2, P as P2)

(a) Type equality must consider holes. . . (b) . . . but how do we track dependencies?

Figure 1: Two similar examples

One of the central questions one encounters when type checking Haskell code is: when are two types equal?
In ordinary Haskell, the answer is simple: “They are equal if their original names (i.e., where they were
originally defined) are the same.” However, in Backpack, the situation is murkier due to the presence of
holes. Consider the pair of examples in Figure 1. In Figure 1a, the types B1.Y and B2.Y should not be
considered equal, even though näıvely their original names are p:B.Y, since their arguments are different X’s!
On the other hand, if we instantiated p twice with the same A (e.g., change the second include to include

p (A as A1, P as P2)), we might consider the two resulting Y’s equal, an applicative semantics of identity
instantiation. In Figure 1b, we see that even though A was instantiated differently, we might reasonably
wonder if T should still be considered the same, since it has no dependence on the actual choice of A.

In fact, there are quite a few different choices that can be made here. Figures 2 and 3 summarize the
various choices on two axes: the granularity of applicativity (under what circumstances do we consider two
types equal) and the granularity of dependency (what circumstances do we consider two types not equal)?
A 4 means the design we have chosen answers the question affirmatively—6, negatively—but all of these
choices are valid points on the design space.

3.1 The granularity of applicativity

An applicative semantics of package instantiation states that if a package is instantiated with the “same
arguments”, then the resulting entities it defines should also be considered equal. Because Backpack uses
mix-in modules, it is very natural to consider the arguments of a package instantiation as the modules, as
shown in Figure 2b: the same module A is linked for both instantiations, so P1 and P2 are considered equal.

However, we consider the situation at a finer granularity, we might say, “Well, for a declaration data

Y = Y X, only the definition of type X matters. If they are the same, then Y is the same.” In that case,
we might accept that in Figure 2a, even though p is instantiated with different modules, at the end of the
day, the important component X is the same in both cases, so Y should also be the same. This is a sort of
“extreme” view of modular development, where every declaration is desugared into a separate module. In
our design, we will be a bit more conservative, and continue with module level applicativity, in the same
manner as Paper Backpack.

Implementation considerations Compiling Figure 2b to dynamic libraries poses an interesting chal-
lenge, if every package compiles to a dynamic library. When we compile package q, the libraries we end
up producing are q and an instance of p (instantiated with q:A). Furthermore, q refers to code in p (the
import in Q), and vice versa (the usage of the instantiated hole A). When building static libraries, this
circular dependency doesn’t matter: when we link the executable, we can resolve all of the symbols in one
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package q where

A = [ data X = X ]

A1 = [ import A; x = 0 ]

A2 = [ import A; x = 1 ]

include p (A as A1, P as P1)

include p (A as A2, P as P2)

Q = [ import P1; ... ]

package q where

A = [ data X = X ]

include p (A, P as P1)

include p (A, P as P2)

Q = [ import P1; ... ]

package a where

A = [ data X = X ]

package q where

include a

include p (A, P as P1)

include p (A, P as P2)

Q = [ import P1; ... ]

(a) Declaration applicativity 6 (b) Module applicativity 4 (c) Package applicativity 4

Figure 2: Choices of granularity of applicativity on p: given data Y = Y X, is P1.Y equal to P2.Y?

package p(A,P) where

A :: [ data X ]

P = [

import A

data T = T

data Y = Y X

]

package p(A,P) where

A :: [ data X ]

B = [ data T = T ]

C = [

import A

data Y = Y X

]

P = [

import B

import C

]

package b where

B = [ data T = T ]

package c where

A :: [ data X ]

C = [

import A

data Y = Y X

]

package p(A,P) where

include b; include c

P = [ import B; import C ]

(a) Declaration granularity 6 (b) Module granularity 6 (c) Package granularity 4

Figure 3: Choices of granularity for dependency: is the identity of T independent of how A is instantiated?

go. However, when the libraries in question are dynamic libraries libHSq.so and libHSp(q:A).so, we now
have a circular dependency between the two dynamic libraries, and most dynamic linkers will not be able to
load either of these libraries.

To break the circularity in Figure 2b, we have to inline the entire module A into the instance of p. Since
the code is exactly the same, we can still consider the instance of A in q and in p type equal. However, in
Figure 2c, applicativity has been done at a coarser level: although we are using Backpack’s module mixin
syntax, morally, this example is filling in the holes with the package a (rather than a module). In this case,
we can achieve code sharing, since p can refer directly to a, breaking the circularity.

3.2 The granularity of dependency

In the previous section, we considered what entities may be considered for computing dependency; in
this section we consider which entities are actually considered as part of the dependencies for the decla-
ration/module/package we’re writing. Figure 3 contains a series of examples which exemplify the choice of
whether or not to collect dependencies on a per-declaration, per-module or per-package basis:

• Package-level granularity states that the modules in a package are considered to depend on all of the
holes in the package, even if the hole is never imported. Figure 3c is factored so that T is defined in
a distinct package b with no holes, so no matter the choice of A, B.T will be the same. On the other
hand, in Figure 3b, there is a hole in the package defining B, so the identity of T will depend on the
choice of A.
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• Module-level granularity states that each module has its own dependency, computed by looking at its
import statements. In this setting, T in Figure 3b is independent of A, since the hole is never imported
in B. But once again, in Figure 3a, there is an import in the module defining T, so the identity of T
once again depends on the choice of A.

• Finally, at the finest level of granularity, one could chop up p in Figure 3a, looking at the type
declaration-level dependency to suss out whether or not T depends on A. It doesn’t refer to anything
in A, so it is always considered the same.

It is well worth noting that the system described by Paper Backpack tracks dependencies per module;
however, we have decided that we will implement tracking per package instead: a coarser grained granularity
which accepts less programs.

Is a finer form of granularity better? Not necessarily! For one, we can always split packages into further
subpackages (as was done in Figure 3c) which better reflect the internal hole dependencies, so it is always
possible to rewrite a program to make it typecheck—just with more packages. Additionally, the finer the
granularity of dependency, the more work I have to do to understand what the identities of entities in
a module are. In Paper Backpack, I have to understand the imports of all modules in a package; with
declaration-granularity, I have to understand the entire code. This is a lot of work for the developer to think
about; a more granular model is easier to remember and reason about. Finally, package-level granularity is
much easier to implement, as it preserves the previous compilation model, one library per package. At a fine
level of granularity, we may end up repeatedly compiling a module which actually should be considered “the
same” as any other instance of it.

Nevertheless, finer granularity can be desirable from an end-user perspective. Usually, these circumstances
arise when library-writers are forced to split their components into many separate packages, when they would
much rather have written a single package. For example, if I define a data type in my library, and would like
to define a Lens instance for it, I would create a new package just for the instance, in order to avoid saddling
users who aren’t interested in lenses with an extra dependency. Another example is test suites, which have
dependencies on various test frameworks that a user won’t care about if they are not planning on testing the
code. (Cabal has a special case for this, allowing the user to write effectively multiple packages in a single
Cabal file.)

3.3 Summary

We can summarize all of the various schemes by describing the internal data types that would be defined by
GHC under each regime. First, we have the shared data structures, which correspond closely to what users
are used to seeing:

<pkg-name> ::= containers, ...

<pkg-version ::= 1.0, ...

<pkg-id> ::= <pkg-name>-<pkg-version>

<mod-name> ::= Data.Set, ...

<occ> ::= empty, ...

Changing the granularity of applicativity modifies how we represent the list of dependencies associated
with an entity. With module applicativity, we list module identities (not yet defined); with declaration
applicativity we actually list the original names (i.e., ids).

<deps> ::= <id>, ... # Declaration applicativity

<deps> ::= <module>, ... # Module applicativity

Changing the granularity of dependency affects how we compute the lists of dependencies, and what
entities are well defined:
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# Package-level granularity

<pkg-key> ::= hash(<pkg-id> + <deps for pkg>)

<module> ::= <pkg-key> : <mod-name>

<id> ::= <module> . <occ>

# Module-level granularity

<pkg-key> not defined

<module> ::= hash(<pkg-id> : <mod-name> + <deps for mod>)

<id> ::= <module-key> . <occ>

# Declaration-level granularity

<pkg-key> not defined

<module> not defined

<id> ::= hash(<pkg-id> : <mod-name> . <occ> + <deps for decl>)

Notice that as we increase the granularity, the notion of a “package” and a “module” become undefined.
This is because, for example, with module-level granularity, a single “package” may result in several modules,
each of which have different sets of dependencies. It doesn’t make much sense to refer to the package as a
monolithic entity, because the point of splitting up the dependencies was so that if a user relies only on a
single module, it has a correspondingly restricted set of dependencies.

3.4 The new scheme, formally

Package Names (PkgName) P ∈ PkgNames
Module Path Names (ModName) p ∈ ModPaths
Module Identity Vars α, β ∈ IdentVars
Package Key (PackageKey) K ::= P (p 7→ ν)
Module Identities (Module) ν ::= α | K : p
Module Identity Substs φ, θ ::= {α := ν}

Figure 4: Module Identities

In this section, we give a formal treatment of our
choice in the design space, in the same style as the
Backpack paper, but omitting mutual recursion, as
it follows straightforwardly. Physical module iden-
tities ν, the Module component of original names in
GHC, are either (1) variables α, which are used to
represent holes1 or (2) a concrete module p defined
in package P , with holes instantiated with other
module identities (might be empty)2.

As in traditional Haskell, every package contains
a number of module files at some module path p;
within a package these paths are guaranteed to be
unique.3 When we write inline module definitions, we assume that they are immediately assigned to a module
path p which is incorporated into their identity. A module identity ν simply augments this with subterms
p 7→ ν representing how all holes in the package P were instantiated.4 This naming is stable because the
current Backpack surface syntax does not allow a logical path in a package to be undefined. A package key
is P (p 7→ ν).

Here is the very first example from Section 2 of the original Backpack paper, ab-1:

package ab-1 where
A = [x = True]
B = [import A; y = not x]

1In practice, these will just be fresh paths in a special package key for variables.
2In Paper Backpack, we would refer to just P :p as the identity constructor. However, we’ve written the subterms specifically

next to P to highlight the semantic difference of these terms.
3In Paper Backpack, the module expressions themselves are used to refer to globally unique identifiers for each literal. This

makes the metatheory simpler, but for implementation purposes it is convenient to conflate the original module path that a
module is defined at with its physical identity.

4In Paper Backpack, we do not distinguish between holes/non-holes, and we consider all imports of the module, not the
package.
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The identities of A and B are ab-1:A and ab-1:B, respectively.5 In a package with holes, each hole (within
the package definition) gets a fresh variable as its identity, and all of the holes associated with package P
are recorded. Consider abcd-holes-1:

package abcd-holes-1 where
A :: [x :: Bool]
B :: [y :: Bool]
C = [x = False]

D =

[
import qualified A
import qualified C
z = A.x && C.x

]

The identities of the four modules are, in order, αa, αb, abcd-holes-1(αa, αb):C, and abcd-holes-1(αa, αb):D.6

We include both αa and αb in both C and D, regardless of the imports. When we link the package against an
implementation of the hole, these variables are replaced with the identities of the modules we linked against.

Shaping proceeds in the same way as in Paper Backpack, except that the shaping judgment must also
accept the package key P (p 7→ α) so we can create identifiers with mkident. This implies we must know
ahead of time what the holes of a package are.

A full Backpack comparison If you’re curious about how the rest of the Backpack examples translate,
look no further than this section.

First, consider the module identities in the Graph instantiations in multinst, shown in Figure 2 of the
original Backpack paper. In the definition of structures, assume that the variables for Prelude and Array are
αP and αA respectively. The identity of Graph is structures(αP , αA):Graph. Similarly, the identities of the
two array implementations are νAA = arrays-a(αP ):Array and νAB = arrays-b(αP ):Array.7

The package graph-a is more interesting because it links the packages arrays-a and structures together, with
the implementation of Array from arrays-a instantiating the hole Array from structures. This linking is reflected
in the identity of the Graph module in graph-a: whereas in structures it was νG = structures(αP , αA):Graph,
in graph-a it is νGA = νG[νAA/αA] = structures(αP , νAA):Graph. Similarly, the identity of Graph in graph-b is
νGB = νG[νAB/αA] = structures(αP , νAB):Graph. Thus, linking consists of substituting the variable identity
of a hole by the concrete identity of the module filling that hole.

Lastly, multinst makes use of both of these Graph modules, under the aliases GA and GB, respectively.
Consequently, in the Client module, GA.G and GB.G will be correctly viewed as distinct types since they
originate in modules with distinct identities.

As multinst illustrates, module identities effectively encode dependency graphs at the package level.8

Like in Paper Backpack, we have an applicative semantics of instantiation, and the applicativity example in
Figure 3 of the Backpack paper still type checks. However, because we are operating at a coarser granularity,
modules may have spurious dependencies on holes that they don’t actually depend on, which means less type
equalities may hold.

3.5 Cabal dependency resolution

Currently, when we compile a Cabal package, Cabal goes ahead and resolves build-depends entries with
actual implementations, which we compile against. The package key, independently of Backpack, records
the transitive dependency tree selected during this dependency resolution process, so that we can install
libfoo-1.0 twice compiled against different versions of its dependencies. What is the relationship to this

5In Paper Backpack, the identity for B records its import of A, but since it is definite, this is strictly redundant.
6In Paper Backpack, the granularity is at the module level, so the subterms of C and D can differ.
7Notice that the subterms coincide with Paper Backpack! A sign that module level granularity is not necessary for many

use-cases.
8In Paper Backpack, module identities encode dependency graphs at the module level. In both cases, however, what is being

depended on is always a module.
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transitive dependency tree of packages, with the subterms of our package identities which are modules? Does
one subsume the other? In fact, these are separate mechanisms—two levels of indirections, so to speak.

To illustrate, suppose I write a Cabal file with build-depends: foobar. A reasonable assumption is that
this translates into a Backpack package which has include foobar. However, this is not actually a Paper
Backpack package: Cabal’s dependency solver has to rewrite all of these package references into versioned
references include foobar-0.1. For example, this is a pre-package:

package foo where

include bar

and this is a Paper Backpack package:

package foo-0.3[bar-0.1[baz-0.2]] where

include bar-0.1[baz-0.2]

This tree is very similar to the one tracking dependencies for holes, but we must record this tree even
when our package has no holes.

Linker symbols As we increase the amount of information in PackageId, it’s important to be careful about
the length of these IDs, as they are used for exported linker symbols (e.g. base_TextziReadziLex_zdwvalDig_info).
Very long symbol names hurt compile and link time, object file sizes, GHCi startup time, dynamic linking,
and make gdb hard to use. As such, we’ve done away with full package names and versions; instead, there
is simply a base-62 encoded hash, with the first five characters of the package name for user-friendliness.

3.6 Package selection

When I fire up ghci with no arguments, GHC somehow creates out of thin air some consistent set of packages,
whose modules I can load using :m. This functionality is extremely handy for exploratory work, but actually
GHC has to work quite hard in order to generate this set of packages, the contents of which are all dumped
into a global namespace. For example, GHC doesn’t have access to Cabal’s dependency solver, nor does
it know which packages the user is going to ask for, so it can’t just run a constraint solver, get a set of
consistent packages to offer and provide them to the user.9

To make matters worse, while in the current design of the package database, a package is uniquely
identified by its package name and version, in the Backpack design, it is mandatory that we support mul-
tiple packages installed in the database with the same package name and version, and this can result in
complications in the user model. This further complicates GHC’s default package selection algorithm.

In this section, we describe how the current algorithm operates (including what invariants it tries to
uphold and where it goes wrong), and how to replace the algorithm to handle generalization to multiple
instances in the package database. We’ll also try to tease apart the relationship between package keys and
installed package IDs in the database.

The current algorithm Abstractly, GHC’s current package selection algorithm operates as follows. For
every package name, select the package with the latest version (recall that this is unique) which is also valid.
A package is valid if:

• It exists in the package database,

• All of its dependencies are valid,

9Some might argue that depending on a global environment in this fashion is wrong, because when you perform a build in
this way, you have absolutely no ideas what dependencies you actually ended up using. But the fact remains that for end users,
this functionality is very useful.

10



• It is not shadowed by a package with the same package ID10 in another package database (unless it is
in the transitive closure of a package named by -package-id), and

• It is not ignored with -ignore-package.

Package validity is probably the minimal criterion for to GHC to ensure that it can actually use a
package. If the package is missing, GHC can’t find the interface files or object code associated with the
package. Ignoring packages is a way of pretending that a package is missing from the database.

Package validity is also a very weak criterion. Another criterion we might hope holds is consistency :
when we consider the transitive closure of all selected packages, for any given package name, there should
only be one instance providing that package. It is trivially easy to break this property: suppose that I have
packages a-1.0, b-1.0 compiled against a-1.0, and a-1.1. GHC will happily load b-1.0 and a-1.1 together in
the same interactive session (they are both valid and the latest versions), even though b-1.0’s dependency
is inconsistent with another package that was loaded. The user will notice if they attempt to treat entities
from a reexported by b-1.0 and entities from a-1.1 as type equal. Here is one user who had this problem:
http://stackoverflow.com/questions/12576817/. In some cases, the problem is easy to work around
(there is only one offending package which just needs to be hidden), but if the divergence is deep in two
separate dependency hierarchies, it is often easier to just blow away the package database and try again.

Perversely, destructive reinstallation helps prevent these sorts of inconsistent databases. While incon-
sistencies can arise when multiple versions of a package are installed, multiple versions will frequently lead
to the necessity of reinstalls. In the previous example, if a user attempts to Cabal install a package which
depends on a-1.1 and b-1.0, Cabal’s dependency solver will propose reinstalling b-1.0 compiled against a-1.1,
in order to get a consistent set of dependencies. If this reinstall is accepted, we invalidate all packages in
the database which were previously installed against b-1.0 and a-1.0, excluding them from GHC’s selection
process and making it more likely that the user will see a consistent view of the database.

Enforcing consistent dependencies From the user’s perspective, it would be desirable if GHC never
loaded a set of packages whose dependencies were inconsistent. There are two ways we can go about doing
this. First, we can improve GHC’s logic so that it doesn’t pick an inconsistent set. However, as a point of
design, we’d like to keep whatever resolution GHC does as simple as possible (in an ideal world, we’d skip the
validity checks entirely, but they ended up being necessary to prevent broken database from stopping GHC
from starting up at all). In particular, GHC should not learn how to do backtracking constraint solving:
that’s in the domain of Cabal. Second, we can modify the logic of Cabal to enforce that the package database
is always kept in a consistent state, similar to the consistency check Cabal applies to sandboxes, where it
refuses to install a package to a sandbox if the resulting dependencies would not be consistent.

The second alternative is a appealing, but Cabal sandboxes are currently designed for small, self-contained
single projects, as opposed to the global “universe” that a default environment is intended to provide. For
example, with a Cabal sandbox environment, it’s impossible to upgrade a dependency to a new version
without blowing away the sandbox and starting again. To support upgrades, Cabal needs to do some work:
when a new version is put in the default set, all of the reverse-dependencies of the old version are now
inconsistent. Cabal should offer to hide these packages or reinstall them compiled against the latest version.
Furthermore, because we in general may not have write access to all visible package databases, this visibility
information must be independent of the package databases themselves.

As a nice bonus, Cabal should also be able to snapshot the older environment which captures the state
of the universe prior to the installation, in case the user wants to revert back.

Modifying the default environment Currently, after GHC calculates the default package environment,
a user may further modify the environment by passing package flags to GHC, which can be used to explicitly
hide or expose packages. How do these flags interact with our Cabal-managed environments? Hiding packages
is simple enough, but exposing packages is a bit dicier. If a user asks for a different version of a package

10Recall that currently, a package ID uniquely identifies a package in the package database
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than in the default set, it will probably be inconsistent with the rest of the dependencies. Cabal would have
to be consulted to figure out a maximal set of consistent packages with the constraints given. Alternatively,
we could just supply the package with no claims of consistency.

However, this use-case is rare. Usually, it’s not because they want a specific version: the package is
hidden simply because we’re not interested in loading it by default (ghc-api is the canonical example, since
it dumps a lot of modules in the top level namespace). If we distinguish packages which are consistent but
hidden, their loads can be handled appropriately.

Consistency in Backpack We have stated as an implicit assumption that if we have both foo-1.0 and
foo-1.1 available, only one should be loaded at a time. What are the consequences if both of these packages
are loaded at the same time? An import of Data.Foo provided by both packages would be ambiguous and
the user might find some type equalities they expect to hold would not. However, the result is not unsound :
indeed, we might imagine a user purposely wanting two different versions of a library in the same program,
renaming the modules they provided so that they could be referred to unambiguously. As another example,
suppose that we have an indefinite package with a hole that is instantiated multiple times. In this case, a
user absolutely may want to refer to both instantiations, once again renaming modules so that they have
unique names.

There are two consequences of this. First, while the default package set may enforce consistency, a user
should still be able to explicitly ask for a package instance, renamed so that its modules don’t conflict, and
then use it in their program. Second, instantiated indefinite packages should never be placed in the default
set, since it’s impossible to know which instantiation is the one the user prefers. A definite package can
reexport an instantiated module under an unambiguous name if the user so pleases.

Shadowing, installed package IDs, ABI hashes and package keys Shadowing plays an important
role for maintaining the soundness of compilation; call this the compatibility of the package set. The problem
it addresses is when there are two distinct implementations of a module, but because their package ID (or
package key, in the new world order) are the same, they are considered type equal. It is absolutely wrong
for a single program to include both implementations simultaneously (the symbols would conflict and GHC
would incorrectly conclude things were type equal when they’re not), so shadowing ’s job is to ensure that
only one instance is picked, and all the other instances considered invalid (and their reverse-dependencies,
etc.) Recall that in current GHC, within a package database, a package instance is uniquely identified by its
package ID; thus, shadowing only needs to take place between package databases. An interesting corner case
is when the same package ID occurs in both databases, but the installed package IDs are the same. Because
the installed package ID is currently simply an ABI hash, we skip shadowing, because the packages are—in
principle—interchangeable.

There are currently a number of proposed changes to this state of affairs:

• Change installed package IDs to not be based on ABI hashes. ABI hashes have a number of dis-
advantages as identifiers for packages in the database. First, they cannot be computed until after
compilation, which gave the multi-instance GSoC project a few years some headaches. Second, it’s not
really true that programs with identical ABI hashes are interchangeable: a new package may be ABI
compatible but have different semantics. Thus, installed package IDs are a poor unique identifier for
packages in the package database. However, because GHC does not give ABI stability guarantees, it
would not be possible to assume from here that packages with the same installed package ID are ABI
compatible.

• Relaxing the uniqueness constraint on package IDs. There are actually two things that could be done
here. First, since we have augmented package IDs with dependency resolution information to form
package keys, we could simply state that package keys uniquely identify a package in a database.
Shadowing rules can be implemented in the same way as before, by preferring the instance topmost
on the stack. Second, we could also allow same-database shadowing: that is, not even package keys
are guaranteed to be unique in a database: instead, installed package IDs are the sole unique identifier
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of a package. This architecture is Nix inspired, as the intent is to keep all package information in a
centralized database.

Without mandatory package environments, same-database shadowing is a bad idea, because GHC now
has no idea how to resolve shadowing. Conflicting installed package IDs can be simulated by placing them
in multiple package databases (in principle, the databases can be concatenated together and treated as a
single monolitic database.)

4 Shapeless Backpack

Backpack as currently defined always requires a shaping pass, which calculates the shapes of all modules
defined in a package. The shaping pass is critical to the solution of the double-vision problem in recursive
module linking, but it also presents a number of unpalatable implementation problems:

• Shaping is a lot of work. A module shape specifies the providence of all data types and identifiers
defined by a module. To calculate this, we must preprocess and parse all modules, even before we do
the type-checking pass. (Fortunately, shaping doesn’t require a full parse of a module, only enough to
get identifiers. However, it does have to understand import statements at the same level of detail as
GHC’s renamer.)

• Shaping must be done upfront. In the current Backpack design, all shapes must be computed before
any typechecking can occur. While performing the shaping pass upfront is necessary in order to solve
the double vision problem (where a module identity may be influenced by later definitions), it means
that GHC must first do a shaping pass, and then revisit every module and compile them proper. Nor
is it (easily) possible to skip the shaping pass when it is unnecessary, as one might expect to be the
case in the absence of mutual recursion. Shaping is not a “pay as you go” language feature.

• GHC can’t compile all programs shaping accepts. Shaping accepts programs that GHC, with its current
hs-boot mechanism, cannot compile. In particular, GHC requires that any data type or function in a
signature actually be defined in the module corresponding to that file (i.e., an original name can be
assigned to these entities immediately.) Shaping permits unrestricted exports to implement modules;
this shows up in the formalism as β module variables.

• Shaping encourages inefficient program organization. Shaping is designed to enable mutually recursive
modules, but as currently implemented, mutual recursion is less efficient than code without recursive
dependencies. Programmers should avoid this code organization, except when it is absolutely necessary.

• GHC is architecturally ill-suited for directly implementing shaping. Shaping implies that GHC’s internal
concept of an “original name” be extended to accommodate module variables. This is an extremely
invasive change to all aspects of GHC, since the original names assumption is baked quite deeply into
the compiler. Plausible implementations of shaping requires all these variables to be skolemized outside
of GHC.

To be clear, the shaping pass is fundamentally necessary for some Backpack packages. Here is the example
which convinced Simon:

package p where

A :: [data T; f :: T -> T]

B = [export T(MkT), h; import A(f); data T = MkT; h x = f MkT]

A = [export T(MkT), f, h; import B; f MkT = MkT]

The key to this example is that B may or may not typecheck depending on the definition of A. Because
A reexports B’s definition T, B will typecheck; but if A defined T on its own, B would not typecheck. Thus,
we cannot typecheck B until we have done some analysis of A (the shaping analysis!)
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Thus, it is beneficial (from an optimization point of view) to consider a subset of Backpack for which
shaping is not necessary. Here is a programming discipline which does just that, which we will call the
linking restriction: Module implementations must be declared before signatures. Formally, this restriction
modifies the rule for merging polarized module shapes (τ̃m1

1 ⊕ τ̃m2
2 ) so that τ̃−1 ⊕ τ̃

+
2 is always undefined.11

Here is an example of the linking restriction. Consider these two packages:

package random where

System.Random = [ ... ].hs

package monte-carlo where

System.Random :: ...

System.MonteCarlo = [ ... ].hs

Here, random is a definite package which may have been compiled ahead of time; monte-carlo is an
indefinite package with a dependency on any package which provides System.Random.

Now, to link these two applications together, only one ordering is permissible:

package myapp where

include random

include monte-carlo

If myapp wants to provide its own random implementation, it can do so:

package myapp2 where

System.Random = [ ... ].hs

include monte-carlo

In both cases, all of monte-carlo’s holes have been filled in by the time it is included. The alternate
ordering is not allowed.

Why does this discipline prevent mutually recursive modules? Intuitively, a hole is the mechanism by
which we can refer to an implementation before it is defined; otherwise, we can only refer to definitions
which preceed our definition. If there are never any holes which get filled, implementation links can only go
backwards, ruling out circularity.

It’s easy to see how mutual recursion can occur if we break this discipline:

package myapp2 where

include monte-carlo

System.Random = [ import System.MonteCarlo ].hs

4.1 Typechecking of definite modules without shaping

If we are not carrying out a shaping pass, we need to be able to calculate Ξ̃pkg on the fly. In the case
that we are compiling a package—there will be no holes in the final package—we can show that shaping is
unnecessary quite easily, since with the linking restriction, everything is definite from the get-go.

Observe the following invariant: at any given step of the module bindings, the physical context Φ̃ contains
no holes. We can thus conclude that there are no module variables in any type shapes. As the only time a
previously calculated package shape can change is due to unification, the incrementally computed shape is
in fact the true one.

As far as the implementation is concerned, we never have to worry about handling module variables; we
only need to do extra typechecks against (renamed) interface files.
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Algorithm 1 Compilation of definite packages (assume -hide-all-packages on all ghc invocations)

procedure Compile(package P where B, H, db) . H maps hole module names to identities
flags:= ∅
K := Hash(P +H)
In-place register the package K in db
for B in B do

case “p = p.hs”
Exec(ghc -c p.hs -package-db db -this-package-key K flags)

case “p :: p.hsig”
Exec(ghc -c p.hsig -package-db db -sig-of H(p) flags)

case “p = p′”
flags := flags -alias p p′

case “include P ′ 〈pH 7→ p′H , p 7→ p′〉”
let H ′(pH) = ResolveModule(p′H)
K′:= Compile(P ′, H ′, db) . Nota bene: not flags
flags := flags -package K′ 〈p 7→ p′〉

end for
Remove K from db
Install the complete package K to the global database
return K

end procedure

4.2 Compiling definite packages

The full recursive procedure for compiling a Backpack package using one-shot compilation is given in Figure 1.
We recursively walk through Backpack descriptions, processing each line by invoking GHC and/or modifying
our package state. Here is a more in-depth description of the algorithm, line-by-line:

The parameters To compile a package description for package P , we need to know H, the mapping of
holes pH in package P to physical module identities ν which are implementing them; this mapping is used to
calculate the package key K for the package in question. Furthermore, we have an inplace package database
db in which we will register intermediate build results, including partially compiled parent packages which
may provide implementations of holes for packages they include.

4.3 Compiling implementations

We compile modules in the same way we do today, but with some extra package visibility flags, which let
GHC know how to resolve imports and look up original names. We’ll describe what the new flags are and
also discuss some subtleties with module lookup.

In-place registration Perhaps surprisingly, we start compilation by registering the (uncompiled) package
in the in-place package database. This registration does not expose packages, and is purely intended to inform
the compilation of subpackages where to find modules that are provided by the parent (in-progress) package,
as well as provide auxiliary information, e.g., such as the package name and version for error reporting. The
pre-registration trick is an old one used by the GHC build system; the key invariant to look out for is that we
shouldn’t reference original names in modules that haven’t been built yet. This is enforced by our manual
tracking of holes in H: a module can’t occur in H unless it’s already been compiled!

11This seemed to be the crispest way of defining the restriction, although this means an error happens a bit later than I’d
like it to: I’d prefer if we errored while merging logical contexts, but we don’t know what is a hole at that point.
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New package resolution algorithm Currently, invocations of -package and similar flags have the result
of hiding other exposed packages with the same name. However, this is not going to work for Backpack: an
indefinite package may get loaded multiple times with different instantiations, and it might even make sense
to load multiple versions of the same package simultaneously, as long as their modules are renamed to not
conflict.

Thus, we impose the following behavior change: when -hide-all-packages is specified, we do not
automatically hide packages with the same name as a package specified by -package (or a similar flag): they
are all included, even if there are conflicts. To deal with conflicts, we augment the syntax of -package to also
accept a list of thinnings and renamings, e.g. -package containers 〈Data.Set,Data.Map 7→ Map〉 says to make
visible for import Data.Set and Map (which is Data.Map renamed.) This means that -package containers-
0.9 〈Data.Set 7→ Set09〉 -package containers-0.8 〈Data.Set 7→ Set08〉 now uses both packages concurrently
(previously, GHC would hide one of them.)

Additionally, it’s important to note that two packages exporting the same module do not necessarily cause
a conflict; the modules may be linkable. For example, -package containers 〈Data.Set〉 -package containers
〈Data.Set〉 is fine, because precisely the same implementation of Data.Set is loaded in both cases. A similar
situation can occur with signatures:

package p where

A :: [ x :: Int ]

package q

include p

A :: [ y :: Int ]

B = [ import A; z = x + y ] -- *

package r where

A = [ x = 0; y = 0 ]

include q

Here, both p and q are visible when compiling the starred module, which compiles with the flags -package
p, but there are two interface files available: one available locally, and one from p. Both of these interface
files are forwarding to the original implementation r (more on this in the “Compiling signatures” file), so
rather than reporting an ambiguous import, we instead have to merge the two interface files together. This is
done by simulating multiple imports: one to each interface file. This works because GHC does not consider
symbols with equal original names as conflicting.

Note that we do not need to merge signatures with an implementation, in such cases, we should just use
the implementation interface. E.g.

package p where

A :: ...

package q where

A = ...

include p

B = [ import A ] -- *

Here, A is available both from p and q, but the use in the starred module should be done with respect to
the full implementation.

The -alias flag We introduce a new flag -alias for aliasing modules. Aliasing is analogous to the
merging that can occur when we include packages, but it also applies to modules which are locally defined.
When we alias a module p with p′, we require that p′ exists in the current module mapping, and then we
attempt to add an entry for it at entry p. If there is no mapping for p, this succeeds; otherwise, we apply
the same conflict resolution algorithm.
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4.4 Compiling signatures

Signature compilation is triggered when we compile a signature file. This mode similar to how we process
hs-boot files, except we pass an extra flag -sig-of which specifies what the identity of the actual imple-
mentation of the signature is (according to our H mapping). This is guaranteed to exist, due to the linking
restriction, although it may be in a partially registered package in db. If the module is not currently available
under the same name of the hsig file, we output an hi file which, for all declarations the signature exposes,
forwards their definitions to the original implementation file. The intent is that any code in the current
package which compiles against this signature will use this signature hi file, not the original one hi file. For
example, the hi file produced when compiling the starred interface points to the implementation in package
q.

package p where

A :: ... -- *

B = [ import A; ... ]

package q where

A = [ ... ]

include p

Sometimes hi is unnecessary In the following package:

package p where

P = ...

P :: ...

Paper Backpack specifies that we check the signature P against implementation P, but otherwise no
changes are made (i.e., the signature does not narrow the implementation.) In this case, it is not necessary
to generate an hi file; the original interface file suffices.

Multiple signatures As a simplification, we assume that there is only one signature per logical name in
a package. (This prevents us from expressing mutual recursion in signatures, but let’s not worry about it
for now.)

Restricted recursive modules ala hs-boot When we compile an hsig file without any -sig-of flag
(because no implementation is known), we fall back to old-style GHC mutual recursion. Näıvely, a shaping
pass would be necessary; so we adopt an existing constraint that already applies to hs-boot files: at the
time we define a signature, we must know what the original name for all data types is. In practice, GHC
enforces this by stating that: (1) an hs-boot file must be accompanied with an implementation, and (2)
the implementation must in fact define (and not reexport) all of the declarations in the signature. We can
discover if a signature is intended to break a recursive module loop when we discover that p /∈ flagsH ; in
this case, we fallback to the old hs-boot behavior. (Alternatively, the user can explicitly ask for it.)

Why does this not require a shaping pass? The reason is that the signature is not really polymorphic:
we require that the α module variable be resolved to a concrete module later in the same package, and that
all the β module variables be unified with α. Thus, we know ahead of time the original names and don’t
need to deal with any renaming.12

Compiling packages in this way gives the tantalizing possibility of true separate compilation: the only
thing we don’t know is what the actual package name of an indefinite package will be, and what the correct
references to have are. This is a very minor change to the assembly, so one could conceive of dynamically
rewriting these references at the linking stage. But separate compilation achieved in this fashion would not
be able to take advantage of cross-module optimizations.

12This strategy doesn’t completely resolve the problem of cross-package mutual recursion, because we need to first compile a
bit of the first package (signatures), then the second package, and then the rest of the first package.
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4.5 Compiling includes

Includes are the most interesting part of the compilation process, as we have calculate how the holes of the
subpackage we are filling in are compiled H ′ and modify our flags to make the exports of the include visible
to subsequently compiled modules. We consider the case with renaming, since includes with no renaming
are straightforward.

First, we assume that we know a priori what the holes of a package pH are (either by some sort of
pre-pass, or explicit declaration.) For each of their renamed targets p′H , we determine what the original
module associated with the p′H is, based off of the package database that we have been manipulating. For
example:

package p where

A :: ...

...

package q where

A = [ ... ]

B = [ ... ]

include p (A as B)

When computing the entry H(A), we determine what the original module for B is.
Next, we recursively call Compile with the computed H ′. Note that the entries in H may refer to

modules which would not be picked up by flags, but they will be registered in the inplace package database
db. For example, in this situation:

package p where

B :: ...

C = [ import B; ... ]

package q where

A = [ ... ]

B = [ import A; ... ]

include p

D = [ import C; ... ]

When we recursively process package p, H will refer to q:B, and we need to know where to find it (q is
only partially processed and so is in the inplace package database.) Furthermore, the interface file for B may
refer to q:A, and thus we likewise need to know how to find its interface file.

Note that the inplace package database is not expected to expose intermediate packages. Otherwise, this
example would improperly compile:

package p where

B = [ import A; ... ]

package q where

A = ...

include p

p does not compile on its own, so it should not compile if it is recursively invoked from q. However, if
we exposed the modules of the partially registered package q, A is now suddenly resolvable.

Finally, once the subpackage is compiled, we can add it to our flags so later modules we compile see its
(appropriately thinned and renamed) modules, and like aliasing.

Absence of an hi file It is important that when we resolve a module, we look up the implementor of a
module, and not just a signature which is providing it at some name. Sometimes, it can be a bit indirect,
for example:
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package p where

A :: [ y :: Int ]

package q where

A :: [ x :: Int ]

include p -- *

package r where

A = [ x = 0; y = 1 ]

include q

When computing H ′ for the starred include, our flags only include -package-dir r cwdr 〈〉: with a
thinning that excludes all modules! The only interface file we can pick up with these flags is the local
definition of A. However, we absolutely should set H ′(A) = q : A; if we do so, then we will incorrectly
conclude when compiling the signature in p that the implementation doesn’t export enough identifiers to
fulfill the signature (y is not available from just the signature in q). Instead, we have to look up the original
implementor of A in r, and use that in H ′. If you maintain the invariant that you always know what the
original implementor is of all modules in scope, it’s easy enough to figure this out.

4.6 Commentary

Just because it compiled, doesn’t mean the individual packages type check The compilation
mechanism described is slightly more permissive than vanilla Backpack. Here is a simple example:

package p where

A :: [ data T = T ]

B :: [ data T = T ]

C = [

import A

import B

x = A.T :: B.T

]

package q where

A = [ data T = T ]

B = A

include p

Here, we incorrectly decide A.T and B.T are type equal when typechecking C, because the hisig files
we generate for them all point to the same original implementation. However, p should not typecheck.

The problem here is that type checking asks “does it compile with respect to all possible instantiations of
the holes”, whereas compilation asks “does it compile with respect to this particular instantiation of holes.”
In the absence of a shaping pass, this problem is unavoidable.

5 Shaped Backpack

Despite the simplicity of shapeless Backpack with the linking restriction in the absence of holes, we will find
that when we have holes, it will be very difficult to do type-checking without some form of shaping. This
section is very much a work in progress, but the ability to typecheck against holes, even with the linking
restriction, is a very important part of modular separate development, so we will need to support it at some
point.

5.1 Efficient shaping

(These are Edward’s opinion, he hasn’t convinced other folks that this is the right way to do it.)
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In this section, I want to argue that, although shaping constitutes a pre-pass which must be run before
compilation in earnest, it is only about as bad as the dependency resolution analysis that GHC already does
in ghc -M or ghc --make.

In Paper Backpack, what information does shaping compute? It looks at exports, imports, data decla-
rations and value declarations (but not the actual expressions associated with these values.) As a matter of
fact, GHC already must look at the imports associated with a package in order to determine the dependency
graph, so that it can have some order to compile modules in. There is a specialized parser which just parses
these statements, and then ignores the rest of the file.

A bit of background: the renamer is responsible for resolving imports and figuring out where all of these
entities actually come from. SPJ would really like to avoid having to run the renamer in order to perform a
shaping pass.

Is it necessary to run the Renamer to do shaping? Edward and Scott believe the answer is no, well,
partially. Shaping needs to know the original names of all entities exposed by a module/signature. Then
it needs to know (a) which entities a module/signature defines/declares locally and (b) which entities that
module/signature exports. The former, (a), can be determined by a straightforward inspection of a parse
tree of the source file.13 The latter, (b), is a bit trickier. Right now it’s the Renamer that interprets imports
and exports into original names, so we would still rely on that implementation. However, the Renamer does
other, harder things that we don’t need, so ideally we could factor out the import/export resolution from
the Renamer for use in shaping.

Unfortunately the Renamer’s import resolution analyzes .hi files, but for local modules, which haven’t
yet been typechecked, we don’t have those. Instead, we could use a new file format, .hsi files, to store the
shape of a locally defined module. (Defined packages are bundled with their shapes, so included modules
have .hsi files as well.) (What about the logical vs. physical distinction in file names?) If we refactor the
import/export resolution code, could we rewrite it to generically operate on both .hi files and .hsi files?

Alternatively, rather than storing shapes on a per-source basis, we could store (in memory) the entire
package shape. Similarly, included packages could have a single shape file for the entire package. Although
this approach would make shaping non-incremental, since an entire package’s shape would be recomputed
any time a constituent module’s shape changes, we do not expect shaping to be all that expensive.

5.2 Typechecking of indefinite modules

Recall in our argument in the definite case, where we showed there are no holes in the physical context. With
indefinite modules, this is no longer true. While (with the linking restriction) these holes will never be linked
against a physical implementation, they may be linked against other signatures. (Note: while disallowing
signature linking would solve our problem, it would disallow a wide array of useful instances of signature
reuse, for example, a package mylib that implements both mylib-1x-sig and mylib-2x-sig.)

With holes, we must handle module variables, and we sometimes must unify them:

package p where

A :: [ data A ]

package q where

A :: [ data A ]

package r where

include p

include q

In this package, it is not possible to a priori assign original names to module A in p and q, because in
package r, they should have the same original name. When signature linking occurs, unification may occur,
which means we have to rename all relevant original names. (A similar situation occurs when a module is
typechecked against a signature.)

13Note that no expression or type parsing is necessary. We only need names of local values, data types, and data constructors.
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An invariant which would be nice to have is this: when typechecking a signature or including a package,
we may apply renaming to the entities being brought into context. But once we’ve picked an original name
for our entities, no further renaming should be necessary. (Formally, in the unification for semantic object
shapes, apply the unifier to the second shape, but not the first one.)

However, there are plenty of counterexamples here:

package p where

A :: [ data A ]

B :: [ data A ]

M = ...

A = B

In this package, does module M know that A.A and B.A are type equal? In fact, the shaping pass will
have assigned equal module identities to A and B, so M equates these types, despite the aliasing occurring
after the fact.

We can make this example more sophisticated, by having a later subpackage which causes the aliasing;
now, the decision is not even a local one (on the other hand, the equality should be evident by inspection of
the package interface associated with q):

package p where

A :: [ data A ]

B :: [ data A ]

package q where

A :: [ data A ]

B = A

package r where

include p

include q

Another possibility is that it might be acceptable to do a mini-shaping pass, without parsing modules or
signatures, simply looking at names and aliases. But logical names are not the only mechanism by which
unification may occur:

package p where

C :: [ data A ]

A = [ data A = A ]

B :: [ import A(A) ]

C = B

It is easy to conclude that the original names of C and B are the same. But more importantly, C.A must
be given the original name of p:A.A. This can only be discovered by looking at the signature definition for
B. In any case, it is worth noting that this situation parallels the situation with hs-boot files (although there
is no mutual recursion here).

The conclusion is that you will probably, in fact, have to do real shaping in order to typecheck all of
these examples.

Hey, these signature imports are kind of tricky. . . When signatures and modules are interleaved,
the interaction can be complex. Here is an example:

package p where

C :: [ data A ]

M = [ import C; ... ]

A = [ import M; data A = A ]

C :: [ import A(A) ]
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Here, the second signature for C refers to a module implementation A (this is permissible: it simply
means that the original name for p:C.A is p:A.A). But wait! A relies on M, and M relies on C. Circularity?
Fortunately not: a client of package p will find it impossible to have the hole C implemented in advance,
since they will need to get their hands on module A. . . but it will not be defined prior to package p.

In any case, however, it would be good to emit a warning if a package cannot be compiled without mutual
recursion.

5.3 Rename on entry

Consider the following example:

package p where

A :: [ data T = T ]

B = [ import A; x = T ]

package q where

C :: ...

A = [ data T = T ]

include p

D = [

import qualified A

import qualified B

import C

x = B.T :: A.T

]

We are interested in type-checking q, which is an indefinite package on account of the uninstantiated
hole C. Furthermore, let’s suppose that p has already been independently typechecked, and its interface files
installed in some global location with αA used as the module identity of A. (To simplify this example, we’ll
assume βAT = αA.)

The first three lines of q type check in the normal way, but D now poses a problem: if we load the
interface file for B the normal way, we will get a reference to type T with the original name αA.T, whereas
from A we have an original name q:A.T.

Let’s suppose that we already have the result of a shaping pass, which maps our identity variables to
their true identities. Let’s consider the possible options here:

• We could re-typecheck p, feeding it the correct instantiations for its variables. However, this seems
wasteful: we typechecked the package already, and up-to-renaming, the interface files are exactly what
we need to type check our application.

• We could make copies of all the interface files, renamed to have the right original names. This also
seems wasteful: why should we have to create a new copy of every interface file in a library we depend
on?

• When reading in the interface file to GHC, we could apply the renaming according to the shaping pass
and store that in memory.

That last solution is pretty appealing, however, there are still circumstances we need to create new
interface files; these exactly mirror the cases described in Section 4.2.

5.4 Incremental typechecking

We want to typecheck modules incrementally, i.e., when something changes in a package, we only want
to re-typecheck the modules that care about that change. GHC already does this today.14 Is the same

14https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/RecompilationAvoidance
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mechanism sufficient for Backpack? Edward and Scott think that it is, mostly. Our conjecture is that a
module should be re-typechecked if the existing mechanism says it should or if the logical shape context
(which maps logical names to physical names) has changed. The latter condition is due to aliases that affect
typechecking of modules.

Let’s look again at an example from before:

package p where

A :: [ data A ]

B :: [ data A ]

M = [ import A; import B; ... ]

Let’s say that M is typechecked successfully. Now we add an alias binding at the end of the package, A = B.
Does M need to be re-typechecked? Yes! (Well, it seems so, but let’s just assert “yes” for now. Certainly
in the reverse case—if we remove the alias and then ask—this is true, since M might have depended on the
two A types being the same.) The logical shape context changed to say that A and B now map to the same
physical module identity. But does the existing recompilation avoidance mechanism say that M should be
re-typechecked? It’s unclear. The .hi file for M records that it imported A and B with particular ABIs, but
does it also know about the physical module identities (or rather, original module names) of these modules?

Scott thinks this highlights the need for us to get our story straight about the connection between logical
names, physical module identities, and file names!

5.5 Installing indefinite packages

If an indefinite package contains no code at all, we only need to install the interface file for the signatures.
However, if they include code, we must provide all of the ingredients necessary to compile them when the
holes are linked against actual implementations. (Figure ??)

Source tarball or preprocessed source? What is the representation of the source that is saved is.
There are a number of possible choices:

• The original tarballs downloaded from Hackage,

• Preprocessed source files,

• Some sort of internal, type-checked representation of Haskell code (maybe the output of the desugarer).

Storing the tarballs is the simplest and most straightforward mechanism, but we will have to be very
certain that we can recompile the module later in precisely the same we compiled it originally, to ensure the
hi files match up (fortunately, it should be simple to perform an optional sanity check before proceeding.)
The appeal of saving preprocessed source, or even the IRs, is that this is conceptually this is exactly what an
indefinite package is: we have paused the compilation process partway, intending to finish it later. However,
our compilation strategy for definite packages requires us to run this step using a different choice of original
names, so it’s unclear how much work could actually be reused.

Sources in sandboxes Another nice way to implement indefinite packages is to register them as source
packages in a Cabal sandbox, and then teach Cabal how to build them multiple times in the compile process.
Perhaps the global package database should be extended with a directory of source packages in order to
support indefinite packages.

6 Surface syntax

In the Backpack paper, a brand new module language is presented, with syntax for inline modules and
signatures. This syntax is probably worth implementing, because it makes it easy to specify compatibility
packages, whose module definitions in general may be very short:
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package ishake-0.12-shake-0.13 where

include shake-0.13

Development.Shake.Sys = Development.Shake.Cmd

Development.Shake = [ (**>) = (&>) ; (*>>) = (|*>)]

Development.Shake.Rule = [ defaultPriority = rule . priority 0.5 ]

include ishake-0.12

However, there are a few things that are less than ideal about the surface syntax proposed by Paper
Backpack:

• It’s completely different from the current method users specify packages. There’s nothing wrong with
this per se (one simply needs to support both formats) but the smaller the delta, the easier the new
packaging format is to explain and implement.

• Sometimes order matters (relative ordering of signatures and module implementations), and other
times it does not (aliases). This can be confusing for users.

• Users have to order module definitions topologically, whereas in current Cabal modules can be listed
in any order, and GHC figures out an appropriate order to compile them.

Here is an alternative proposal, closely based on Cabal syntax. Given the following Backpack definition:

package libfoo(A, B, C, Foo) where

include base

-- renaming and thinning

include libfoo (Foo, Bar as Baz)

-- holes

A :: [ a :: Bool ].hsig

A2 :: [ b :: Bool ].hsig

-- normal module

B = [

import {-# SOURCE #-} A

import Foo

import Baz

...

].hs

-- recursively linked pair of modules, one is private

C :: [ data C ].hsig

D = [ import {-# SOURCE #-} C; data D = D C ].hs

C = [ import D; data C = C D ].hs

-- alias

A = A2

We can write the following Cabal-like syntax instead (where all of the signatures and modules are placed
in appropriately named files):

package: libfoo

...

build-depends: base, libfoo (Foo, Bar as Baz)

required-signatures: A A2 -- deferred for now

exposed-modules: Foo B C

aliases: A = A2

other-modules: D
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Notably, all of these lists are insensitive to ordering! The key idea is use of the {-# SOURCE #-} pragma,
which is enough to solve the important ordering constraint between signatures and modules.

Here is how the elaboration works. For simplicity, in this algorithm description, we assume all packages
being compiled have no holes (including build-depends packages). Later, we’ll discuss how to extend the
algorithm to handle holes in both subpackages and the main package itself.

1. At the top-level with package p and exposed-modules ms, record package p (ms) where

2. For each package p with thinning/renaming ms in build-depends, record a include p (ms) in the
Backpack package. The ordering of these includes does not matter, since none of these packages have
holes.

3. Take all modules m in other-modules and exposed-modules which were not exported by build depen-
dencies, and create a directed graph where hs and hs-boot files are nodes and imports are edges (the
target of an edge is an hs file if it is a normal import, and an hs-boot file if it is a SOURCE import).
Topologically sort this graph, erroring if this graph contains cycles (even with recursive modules, the
cycle should have been broken by an hs-boot file). For each node, in this order, record M = [ ... ] or
M :: [ ... ] depending on whether or not it is an hs or hs-boot. If possible, sort signatures before
implementations when there is no constraint otherwise.

Here is a simple example which shows how SOURCE can be used to disambiguate between two important
cases. Suppose we have these modules:

-- A1.hs

import {-# SOURCE #-} B

-- A2.hs

import B

-- B.hs

x = True

-- B.hs-boot

x :: Bool

Then we translate the following packages as follows:

exposed-modules: A1 B

-- translates to

B :: [ x :: Bool ]

A1 = [ import B ]

B = [ x = True ]

but

exposed-modules: A2 B

-- translates to

B = [ x = True ]

B :: [ x :: Bool ]

A2 = [ import B ]

The import controls placement between signature and module, and in A1 it forces B’s signature to be
sorted before B’s implementation (whereas in the second section, there is no constraint so we preferentially
place the B’s implementation first)
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Holes in the database In the presence of holes, build-depends resolution becomes more complicated.
First, let’s consider the case where the package we are building is definite, but the package database contains
indefinite packages with holes. In order to maintain the linking restriction, we now have to order packages
from step (2) of the previous elaboration. We can do this by creating a directed graph, where nodes are
packages and edges are from holes to the package which implements them. If there is a cycle, this indicates a
mutually recursive package. In the absence of cycles, a topological sorting of this graph preserves the linking
invariant.

One subtlety to consider is the fact that an entry in build-depends can affect how a hole is instantiated
by another entry. This might be a bit weird to users, who might like to explicitly say how holes are filled
when instantiating a package. Food for thought, surface syntax wise.

Holes in the package Actually, this is quite simple: the ordering of includes goes as before, but some
indefinite packages in the database are less constrained as they’re “dependencies” are fulfilled by the holes
at the top-level of this package. It’s also worth noting that some dependencies will go unresolved, since the
following package is valid:

package a where

A :: ...

package b where

include a

Multiple signatures In Backpack syntax, it’s possible to define a signature multiple times, which is
necessary for mutually recursive signatures:

package a where

A :: [ data A ]

B :: [ import A; data B = B A ]

A :: [ import B; data A = A B ]

Critically, notice that we can see the constructors for both module B and A after the signatures are linked
together. This is not possible in GHC today, but could be possible by permitting multiple hs-boot files. Now
the SOURCE pragma indicating an import must disambiguate which hs-boot file it intends to include. This
might be one way of doing it:

-- A.hs-boot2

data A

-- B.hs-boot

import {-# SOURCE hs-boot2 #-} A

-- A.hs-boot

import {-# SOURCE hs-boot #-} B

Explicit or implicit reexports One annoying property of this proposal is that, looking at the exposed-modules
list, it is not immediately clear what source files one would expect to find in the current package. It’s not
obvious what the proper way to go about doing this is.

Better syntax for SOURCE If we enshrine the SOURCE import as a way of solving Backpack ordering
problems, it would be nice to have some better syntax for it. One possibility is:

abstract import Data.Foo
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which makes it clear that this module is pluggable, typechecking against a signature. Note that this only
indicates how type checking should be done: when actually compiling the module we will compile against
the interface file for the true implementation of the module.

It’s worth noting that the SOURCE annotation was originally made a pragma because, in principle, it
should have been possible to compile some recursive modules without needing the hs-boot file at all. But if
we’re moving towards boot files as signatures, this concern is less relevant.

7 Type classes and type families

7.1 Background

Before we talk about how to support type classes in Backpack, it’s first worth talking about what we are
trying to achieve in the design. Most would agree that type safety is the cardinal law that should be preserved
(in the sense that segfaults should not be possible), but there are many instances of “bad behavior” (top
level mutable state, weakening of abstraction guarantees, ambiguous instance resolution, etc) which various
Haskellers may disagree on the necessity of ruling out.

With this in mind, it is worth summarizing what kind of guarantees are presently given by GHC with
regards to type classes and type families, as well as characterizing the cultural expectations of the Haskell
community.

Type classes When discussing type class systems, there are several properties that one may talk about.
A set of instances is confluent if, no matter what order constraint solving is performed, GHC will terminate
with a canonical set of constraints that must be satisfied for any given use of a type class. In other words,
confluence says that we won’t conclude that a program doesn’t type check just because we swapped in a
different constraint solving algorithm.

Confluence’s closely related twin is coherence (defined in “Type classes: exploring the design space”).
This property states that “every different valid typing derivation of a program leads to a resulting program
that has the same dynamic semantics.” Why could differing typing derivations result in different dynamic
semantics? The answer is that context reduction, which picks out type class instances, elaborates into
concrete choices of dictionaries in the generated code. Confluence is a prerequisite for coherence, since one
can hardly talk about the dynamic semantics of a program that doesn’t type check.

In the vernacular, confluence and coherence are often incorrectly used to refer to another related property:
global uniqueness of instances, which states that in a fully compiled program, for any type, there is at most
one instance resolution for a given type class. Languages with local type class instances such as Scala
generally do not have this property, and this assumption is frequently used for abstraction.

So, what properties does GHC enforce, in practice? In the absence of any type system extensions, GHC’s
employs a set of rules (described in “Exploring the design space”) to ensure that type class resolution is conflu-
ent and coherent. Intuitively, it achieves this by having a very simple constraint solving algorithm (generate
wanted constraints and solve wanted constraints) and then requiring the set of instances to be nonoverlap-
ping, ensuring there is only ever one way to solve a wanted constraint. Overlap is a more stringent restriction
than either confluence or coherence, and via the OverlappingInstances and IncoherentInstances, GHC
allows a user to relax this restriction “if they know what they’re doing.”

Surprisingly, however, GHC does not enforce global uniqueness of instances. Imported instances are not
checked for overlap until we attempt to use them for instance resolution. Consider the following program:

-- T.hs

data T = T

-- A.hs

import T

instance Eq T where

-- B.hs
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import T

instance Eq T where

-- C.hs

import A

import B

When compiled with one-shot compilation, C will not report overlapping instances unless we actually
attempt to use the Eq instance in C.15 This is by design16: ensuring that there are no overlapping instances
eagerly requires eagerly reading all the interface files a module may depend on.

We might summarize these three properties in the following manner. Culturally, the Haskell community
expects global uniqueness of instances to hold: the implicit global database of instances should be confluent
and coherent. GHC, however, does not enforce uniqueness of instances: instead, it merely guarantees that
the subset of the instance database it uses when it compiles any given module is confluent and coherent. GHC
does do some tests when an instance is declared to see if it would result in overlap with visible instances, but
the check is by no means perfect17; truly, type-class constraint resolution has the final word. One mitigating
factor is that in the absence of orphan instances, GHC is guaranteed to eagerly notice when the instance
database has overlap.18

Clearly, the fact that GHC’s lazy behavior is surprising to most Haskellers means that the lazy check is
mostly good enough: a user is likely to discover overlapping instances one way or another. However, it is
relatively simple to construct example programs which violate global uniqueness of instances in an observable
way:

-- A.hs

module A where

data U = X | Y deriving (Eq, Show)

-- B.hs

module B where

import Data.Set

import A

instance Ord U where

compare X X = EQ

compare X Y = LT

compare Y X = GT

compare Y Y = EQ

ins :: U -> Set U -> Set U

ins = insert

-- C.hs

module C where

import Data.Set

import A

instance Ord U where

compare X X = EQ

15When using batch compilation, GHC reuses the instance database and is actually able to detect the duplicated instance
when compiling B. But if you run it again, recompilation avoidance skips A, and it finishes compiling! See this bug: https:

//ghc.haskell.org/trac/ghc/ticket/5316
16https://ghc.haskell.org/trac/ghc/ticket/2356
17https://ghc.haskell.org/trac/ghc/ticket/9288
18Assuming that the instance declaration checks actually worked. . .
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compare X Y = GT

compare Y X = LT

compare Y Y = EQ

ins’ :: U -> Set U -> Set U

ins’ = insert

-- D.hs

module Main where

import Data.Set

import A

import B

import C

test :: Set U

test = ins’ X $ ins X $ ins Y $ empty

main :: IO ()

main = print test

-- OUTPUT

$ ghc -Wall -XSafe -fforce-recomp --make D.hs

[1 of 4] Compiling A ( A.hs, A.o )

[2 of 4] Compiling B ( B.hs, B.o )

B.hs:5:10: Warning: Orphan instance: instance [safe] Ord U

[3 of 4] Compiling C ( C.hs, C.o )

C.hs:5:10: Warning: Orphan instance: instance [safe] Ord U

[4 of 4] Compiling Main ( D.hs, D.o )

Linking D ...

$ ./D

fromList [X,Y,X]

Locally, all type class resolution was coherent: in the subset of instances each module had visible, type
class resolution could be done unambiguously. Furthermore, the types of ins and ins’ discharge type class
resolution, so that in D when the database is now overlapping, no resolution occurs, so the error is never
found.

It is easy to dismiss this example as an implementation wart in GHC, and continue pretending that global
uniqueness of instances holds. However, the problem with global uniqueness of instances is that they are
inherently nonmodular: you might find yourself unable to compose two components because they accidentally
defined the same type class instance, even though these instances are plumbed deep in the implementation
details of the components.

As it turns out, there is already another feature in Haskell which must enforce global uniqueness, to
prevent segfaults. We now turn to type classes’ close cousin: type families.

Type families With type families, confluence is the primary property of interest. (Coherence is not
of much interest because type families are elaborated into coercions, which don’t have any computational
content.) Rather than considering what the set of constraints we reduce to, confluence for type families
considers the reduction of type families. The overlap checks for type families can be quite sophisticated,
especially in the case of closed type families.
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Unlike type classes, however, GHC does check the non-overlap of type families eagerly. The analogous
program does not type check:

-- F.hs

type family F a :: *

-- A.hs

import F

type instance F Bool = Int

-- B.hs

import F

type instance F Bool = Bool

-- C.hs

import A

import B

The reason is that it is unsound to ever allow any overlap (unlike in the case of type classes where it
just leads to incoherence.) Thus, whereas one might imagine dropping the global uniqueness of instances
invariant for type classes, it is absolutely necessary to perform global enforcement here. There’s no way
around it!

7.2 Local type classes

Here, we say NO to global uniqueness.
This design is perhaps best discussed in relation to modular type classes, which shares many similar

properties. Instances are now treated as first class objects (in MTCs, they are simply modules)—we may
explicitly hide or include instances for type class resolution (in MTCs, this is done via the using top-level
declaration). This is essentially what was sketched in Section 5 of the original Backpack paper. As a simple
example:

package p where

A :: [ data T = T ]

B = [ import A; instance Eq T where ... ]

package q where

A = [ data T = T; instance Eq T where ... ]

include p

Here, B does not see the extra instance declared by A, because it was thinned from its signature of A
(and thus never declared canonical.) To declare an instance without making it canonical, it must placed in
a separate (unimported) module.

Like modular type classes, Backpack does not give rise to incoherence, because instance visibility can only
be changed at the top level module language, where it is already considered best practice to provide explicit
signatures. Here is the example used in the Modular Type Classes paper to demonstrate the problem:

structure A = using EqInt1 in

struct ...fun f x = eq(x,x)... end

structure B = using EqInt2 in

struct ...val y = A.f(3)... end

Is the type of f int -> bool, or does it have a type-class constraint? Because type checking proceeds
over the entire program, ML could hypothetically pick either. However, ported to Haskell, the example looks
like this:
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EqInt1 :: [ instance Eq Int ]

EqInt2 :: [ instance Eq Int ]

A = [

import EqInt1

f x = x == x

]

B = [

import EqInt2

import A hiding (instance Eq Int)

y = f 3

]

There may be ambiguity, yes, but it can be easily resolved by the addition of a top-level type signature
to f, which is considered best-practice anyway. Additionally, Haskell users are trained to expect a particular
inference for f in any case (the polymorphic one).

Here is another example which might be considered surprising:

package p where

A :: [ data T = T ]

B :: [ data T = T ]

C = [

import qualified A

import qualified B

instance Show A.T where show T = "A"

instance Show B.T where show T = "B"

x :: String

x = show A.T ++ show B.T

]

In the original Backpack paper, it was implied that module C should not type check if A.T = B.T (failing
at link time). However, if we set aside, for a moment, the issue that anyone who imports C in such a
context will now have overlapping instances, there is no reason in principle why the module itself should be
problematic. Here is the example in MTCs, which I have good word from Derek does type check.

signature SIG = sig

type t

val mk : t

end

signature SHOW = sig

type t

val show : t -> string

end

functor Example (A : SIG) (B : SIG) =

let structure ShowA : SHOW = struct

type t = A.t

fun show _ = "A"

end in

let structure ShowB : SHOW = struct

type t = B.t

fun show _ = "B"

end in

using ShowA, ShowB in

struct

31



val x = show A.mk ++ show B.mk

end : sig val x : string end

The moral of the story is, even though in a later context the instances are overlapping, inside the functor,
the type-class resolution is unambiguous and should be done (so x = "AB").

Up until this point, we’ve argued why MTCs and this Backpack design are similar. However, there is an
important sociological difference between modular type-classes and this proposed scheme for Backpack. In
the presentation “Why Applicative Functors Matter”, Derek mentions the canonical example of defining a
set:

signature ORD = sig type t; val cmp : t -> t -> bool end

signature SET = sig type t; type elem;

val empty : t;

val insert : elem -> t -> t ...

end

functor MkSet (X : ORD) :> SET where type elem = X.t

= struct ... end

This is actually very different from how sets tend to be defined in Haskell today. If we directly encoded
this in Backpack, it would look like this:

package mk-set where

X :: [

data T

cmp :: T -> T-> Bool

]

Set :: [

data Set

empty :: Set

insert :: T -> Set -> Set

]

Set = [

import X

...

]

It’s also informative to consider how MTCs would encode set as it is written today in Haskell:

signature ORD = sig type t; val cmp : t -> t -> bool end

signature SET = sig type ’a t;

val empty : ’a t;

val insert : (X : ORD) => X.t -> X.t t -> X.t t

end

struct MkSet :> SET = struct ... end

Here, it is clear to see that while functor instantiation occurs for implementation, it is not occuring for
types. This is a big limitation with the Haskell approach, and it explains why Haskellers, in practice, find
global uniqueness of instances so desirable.

Implementation-wise, this requires some subtle modifications to how we do type class resolution. Type
checking of indefinite modules works as before, but when go to actually compile them against explicit
implementations, we need to “forget” that two types are equal when doing instance resolution. This could
probably be implemented by associating type class instances with the original name that was utilized when
typechecking, so that we can resolve ambiguous matches against types which have the same original name
now that we are compiling.

As we’ve mentioned previously, this strategy is unsound for type families.
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7.3 Globally unique

Here, we say YES to global uniqueness.
When we require the global uniqueness of instances (either because that’s the type class design we chose,

or because we’re considering the problem of type families), we will need to reject declarations like the one
cited above when A.T = B.T:

A :: [ data T ]

B :: [ data T ]

C :: [

import qualified A

import qualified B

instance Show A.T where show T = "A"

instance Show B.T where show T = "B"

]

The paper mentions that a link-time check is sufficient to prevent this case from arising. While in the
previous section, we’ve argued why this is actually unnecessary when local instances are allowed, the link-
time check is a good match in the case of global instances, because any instance must be declared in the
signature. The scheme proceeds as follows: when some instances are typechecked initially, we type check
them as if all of variable module identities were distinct. Then, when we perform linking (we include or we
unify some module identities), we check again if to see if we’ve discovered some instance overlap. This linking
check is akin to the eager check that is performed today for type families; it would need to be implemented
for type classes as well: however, there is a twist: we are redoing the overlap check now that some identities
have been unified.

As an implementation trick, one could deferring the check until C is compiled, keeping in line with GHC’s
lazy “don’t check for overlap until the use site.” (Once again, unsound for type families.)

What about module inequalities? An older proposal was for signatures to contain “module inequali-
ties”, i.e., assertions that two modules are not equal. (Technically: we need to be able to apply this assertion
to β module variables, since A != B while A.T = B.T). Currently, Edward thinks that module inequalities
are only marginal utility with local instances (i.e., not enough to justify the implementation cost) and not
useful at all in the world of global instances!

With local instances, module inequalities could be useful to statically rule out examples like show A.T ++ show B.T.
Because such uses are not necessarily reflected in the signature, it would be a violation of separate module
development to try to divine the constraint from the implementation itself. I claim this is of limited utility,
however, because, as we mentioned earlier, we can compile these “incoherent” modules perfectly coherently.
With global instances, all instances must be in the signature, so while it might be aesthetically displeasing
to have the signature impose extra restrictions on linking identities, we can carry this out without violating
the linking restriction.

7.4 Orphans

Controlling instance visibility via signature problems poses an implementation challenge similar to that of
orphan instances. To describe this problem, we first have to describe how instance resolution works for
orphans and non-orphans in GHC today.

Type information for already compiled code in other packages is cached on disk using interface files. For
efficiency reasons, it’s desirable to avoid loading interface file until absolutely necessary: if we don’t use any
of the identifiers for a file, it should not be necessary to load the interface. Among other things, type class
instances are stored in interface files.

Signatures and hs-boot files notwithstanding, non-orphan instance resolution is achieved through a (some-
what) astonishing coincidence: at the point when a type class is resolved, we are guaranteed to have loaded
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the interfaces for all of the names involved in the type class instantiation. This means that if there is a type
class, we will have seen it; conversely, it means that non-orphan instances are a closed world: if we load all
these interfaces and see no non-orphan instance, we know there never be a non-orphan instance.

Things are a bit worse for orphans: these instances are an open world, and so the only way to tell if an
orphan instance is in scope is by consulting the transitive closure of module imports.

8 Bits and bobs

8.1 Abstract type synonyms

In Paper Backpack, abstract type synonyms are not permitted, because GHC doesn’t understand how to deal
with them. The purpose of this section is to describe one particularly nastiness of abstract type synonyms,
by way of the occurs check:

A :: [ type T ]

B :: [ import qualified A; type T = [A.T] ]

At this point, it is illegal for A = B, otherwise this type synonym would fail the occurs check. This seems
like pretty bad news, since every instance of the occurs check in the type-checker could constitute a module
inequality.

9 Open questions

Here are open problems about the implementation which still require hashing out.

• In Section 4, we argued that we could implement Backpack without needing a shaping pass. We’re
pretty certain that this will work for typechecking and compiling fully definite packages with no recur-
sive linking, but in Section 5.2, we described some of the prevailing difficulties of supporting signature
linking. Renaming is not an insurmountable problem, but backwards flow of shaping information can
be, and it is unclear how best to accommodate this. This is probably the most important problem to
overcome.

• In Section 5.5, a few choices for how to store source code were pitched, however, there is not consensus
on which one is best.

• What is the impact of the multiplicity of PackageIds on dependency solving in Cabal? Old questions of
what to prefer when multiple package-versions are available (Cabal originally only needed to solve this
between different versions of the same package, preferring the oldest version), but with signatures, there
are more choices. Should there be a complex solver that does all signature solving, or a preprocessing
step that puts things back into the original Cabal version. Authors may want to suggest policy for
what packages should actually link against signatures (so a crypto library doesn’t accidentally link
against a null cipher package).
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