
System FC, as implemented in GHC1

26 May, 2020

1 Introduction

This document presents the typing system of System FC, very closely to how it is implemented in GHC. Care
is taken to include only those checks that are actually written in the GHC code. It should be maintained
along with any changes to this type system.

Who will use this? Any implementer of GHC who wants to understand more about the type system can look
here to see the relationships among constructors and the different types used in the implementation of the
type system. Note that the type system here is quite different from that of Haskell—these are the details of
the internal language, only.

At the end of this document is a hypothetical operational semantics for GHC. It is hypothetical because
GHC does not strictly implement a concrete operational semantics anywhere in its code. While all the
typing rules can be traced back to lines of real code, the operational semantics do not, in general, have as
clear a provenance.

There are a number of details elided from this presentation. The goal of the formalism is to aid in reasoning
about type safety, and checks that do not work toward this goal were omitted. For example, various scoping
checks (other than basic context inclusion) appear in the GHC code but not here.

2 Grammar

2.1 Metavariables

We will use the following metavariables:

x , c Term-level variable names
p Labels
α, β Type-level variable names
N Type-level constructor names
M Axiom rule names
i , j , k, a, b, c Indices to be used in lists

2.2 Literals

Literals do not play a major role, so we leave them abstract:

lit ::= Literals, GHC/Types/Literal.hs:Literal

We also leave abstract the function GHC/Types/Literal.hs:literalType and the judgment GHC/Core/Lint.hs:lintTyLit
(written Γ t̀ylit lit : κ).

2.3 Variables

GHC uses the same datatype to represent term-level variables and type-level variables:

z ::= Term or type name

1This document was originally prepared by Richard Eisenberg (eir@cis.upenn.edu), but it should be maintained by anyone
who edits the functions or data structures mentioned in this file. Please feel free to contact Richard for more information.

1

| α Type-level name
| x Term-level name

n, m, α, x ::= Variable names, GHC/Types/Var.hs:Var
| z τ Name, labeled with type/kind

l ::= Labels for join points, also GHC/Types/Var.hs:Var
| pτi Label with join arity and type

We sometimes omit the type/kind annotation to a variable when it is obvious from context.

2.4 Expressions

The datatype that represents expressions:

e, u ::= Expressions, GHC/Core.hs:Expr
| n Var: Variable
| lit Lit: Literal
| e1 e2 App: Application
| jump l ui

i App: Jump
| λn.e Lam: Abstraction
| let binding in e Let: Variable binding
| join jbinding in e Let: Join binding

| case e asn return τ of alti
i

Case: Pattern match
| e . γ Cast: Cast
| e{tick} Tick: Internal note
| τ Type: Type
| γ Coercion: Coercion

There are a few key invariants about expressions:

• The right-hand sides of all top-level and recursive lets must be of lifted type, with one exception:
the right-hand side of a top-level let may be of type Addr# if it’s a primitive string literal. See
#top_level_invariant# in GHC.Core.

• The right-hand side of a non-recursive let and the argument of an application may be of unlifted type,
but only if the expression is ok-for-speculation. See #let_app_invariant# in GHC.Core.

• We allow a non-recursive let for bind a type variable.

• The case for a case must come first.

• The list of case alternatives must be exhaustive.

• Types and coercions can only appear on the right-hand-side of an application.

• The τ form of an expression must not then turn out to be a coercion. In other words, the payload
inside of a Type constructor must not turn out to be built with CoercionTy.

• Join points (introduced by join expressions) follow the invariants laid out in Note [Invariants on join points]

in GHC.Core:

1. All occurrences must be tail calls. This is enforced in our typing rules using the label environment
∆.

2. Each join point has a join arity. In this document, we write each label as pτi for the name p,
the type τ , and the join arity i. The right-hand side of the binding must begin with at least i
lambdas. This is enforced implicitly in Tm JoinNonRec and Tm JoinRec by the use of split
meta-function.

2

3. If the binding is recursive, then all other bindings in the recursive group must be join points. We
enforce this in our reformulation of the grammar; in the actual AST, a join is simply a let where
each identifier is flagged as a join id, so this invariant requires that this flag must be consistent
across a recursive binding.

4. The binding’s type must not be polymorphic in its return type. This is expressed in Label Label;
see Section 4.7.

Bindings for let statements:

binding ::= Let-bindings, GHC/Core.hs:Bind
| n = e NonRec: Non-recursive binding
| recni = ei

i Rec: Recursive binding

Bindings for join statements:

jbinding ::= Join bindings, also GHC/Core.hs:Bind
| l ni

i = e NonRec: Non-recursive binding

| rec li ni j
j = ei

i
Rec: Recursive binding

Case alternatives:

alt ::= Case alternative, GHC/Core.hs:Alt
| Kni

i → e Constructor applied to fresh names

Constructors as used in patterns:

K ::= Constructors used in patterns, GHC/Core.hs:AltCon
| K DataAlt: Data constructor
| lit LitAlt: Literal (such as an integer or character)
| DEFAULT: Wildcard

Notes that can be inserted into the AST. We leave these abstract:

tick ::= Internal notes, GHC/Core.hs:Tickish

A program is just a list of bindings:

program ::= A System FC program, GHC/Core.hs:CoreProgram

| bindingi
i

List of bindings

2.5 Types

τ, κ, σ, φ ::= Types/kinds, GHC/Core/TyCo/Rep.hs:Type
| n TyVarTy: Variable
| τ1 τ2 AppTy: Application
| T τi

i TyConApp: Application of type constructor
| τ1 → τ2 FunTy: Function
| ∀n.τ ForAllTy: Type and coercion polymorphism
| lit LitTy: Type-level literal
| τ . γ CastTy: Kind cast
| γ CoercionTy: Coercion used in type

FunTy is the special case for non-dependent function type. The TyBinder in GHC.Core.TyCo.Rep distin-
guishes whether a binder is anonymous (FunTy) or named (ForAllTy). See Note [TyBinders] in GHC.Core.TyCo.Rep.

There are some invariants on types:

• The name used in a type must be a type-level name (TyVar).

3

• The type τ1 in the form τ1 τ2 must not be a type constructor T . It should be another application or a
type variable.

• The form T τi
i (TyConApp) does not need to be saturated.

• A saturated application of (→) τ1 τ2 should be represented as τ1 → τ2. This is a different point in the
grammar, not just pretty-printing. The constructor for a saturated (→) is FunTy.

• A type-level literal is represented in GHC with a different datatype than a term-level literal, but we
are ignoring this distinction here.

• A coercion used as a type should appear only in the right-hand side of an application.

• If ∀n.τ is a polymorphic type over a coercion variable (i.e. n is a coercion variable), then n must
appear in τ ; otherwise it should be represented as a FunTy. See Note [Unused coercion variable

in ForAllTy] in GHC.Core.TyCo.Rep.

Note that the use of the T τi
i form and the τ1 → τ2 form are purely representational. The metatheory

would remain the same if these forms were removed in favor of τ1 τ2. Nevertheless, we keep all three forms
in this documentation to accurately reflect the implementation.

The ArgFlag field of a TyCoVarBinder (the first argument to a ForAllTy) also tracks visibility of arguments.
Visibility affects only source Haskell, and is omitted from this presentation.

We use the notation τ1
κ1∼κ2

τ2 to stand for (∼#)κ1 κ2 τ1 τ2.

2.6 Coercions

γ, η ::= Coercions, GHC/Core/TyCo/Rep.hs:Coercion
| 〈τ〉 Refl: Nominal Reflexivity
| 〈τ〉mρ GRefl: Generalized Reflexivity

| Tρ γi
i TyConAppCo: Type constructor application

| γ1 →ρ γ2 FunCo: Functions
| γ1 γ2 AppCo: Application
| ∀z :η.γ ForAllCo: Polymorphism
| n CoVarCo: Variable
| C ind γi

i AxiomInstCo: Axiom application
| prov 〈τ1, τ2〉ηρ UnivCo: Universal coercion

| sym γ SymCo: Symmetry
| γ1 # γ2 TransCo: Transitivity
| µ τi

i γj
j AxiomRuleCo: Axiom-rule application (for type-nats)

| nthiρ γ NthCo: Projection (0-indexed)
| LorR γ LRCo: Left/right projection
| γ@η InstCo: Instantiation
| kind γ KindCo: Kind extraction
| sub γ SubCo: Sub-role — convert nominal to representational

Invariants on coercions:

• 〈τ1 τ2〉 is used; never 〈τ1〉 〈τ2〉.

• If 〈T 〉 is applied to some coercions, at least one of which is not reflexive, use Tρ γi
i , never 〈T 〉 γ1 γ2

• The T in Tρ γi
i is never a type synonym, though it could be a type function.

• The name in a coercion must be a term-level name (Id).

4

• The contents of 〈τ〉 must not be a coercion. In other words, the payload in a Refl must not be built
with CoercionTy.

• If ∀z :η.γ is a polymorphic coercion over a coercion variable (i.e. z is a coercion variable), then z
can only appear in Refl and GRefl in γ. See Note [Unused coercion variable in ForAllCo] in

GHC.Core.Coercion .

• Prefer γ1 →ρ γ2 over (→)ρ γ1 γ2; that is, we use FunCo, never TyConAppCo, for coercions over saturated
uses of →.

The UnivCo constructor takes several arguments: the two types coerced between, a coercion relating these
types’ kinds, a role for the universal coercion, and a provenance. The provenance states what created the
universal coercion:

prov ::= UnivCo provenance, GHC/Core/TyCo/Rep.hs:UnivCoProvenance
| unsafe From unsafeCoerce#

| phant From the need for a phantom coercion
| irrel From proof irrelevance

Roles label what equality relation a coercion is a witness of. Nominal equality means that two types
are identical (have the same name); representational equality means that two types have the same rep-
resentation (introduced by newtypes); and phantom equality includes all types. See https://gitlab.

haskell.org/ghc/ghc/wikis/roles and http://research.microsoft.com/en-us/um/people/simonpj/

papers/ext-f/coercible.pdf for more background.

ρ ::= Roles, GHC/Core/Coercion/Axiom.hs:Role
| N Nominal
| R Representational
| P Phantom

The GRefl constructor takes an m. It wraps a kind coercion, which might be reflexive or any coercion:

m ::= A possibly reflexive coercion , GHC/Core/TyCo/Rep.hs:MCoercion
| · MRefl: A trivial reflexive coercion
| γ MCo: Other coercions

A nominal reflexive coercion is quite common, so we keep the special form Refl. Invariants on reflexive
coercions:

• Always use 〈τ〉; never 〈τ〉·N.

• All invariants on 〈τ〉 hold for 〈τ〉·ρ.

• Use 〈τ〉·R; never sub 〈τ〉.

Is it a left projection or a right projection?

LorR ::= left or right deconstructor, GHC/Core/TyCo/Rep.hs:LeftOrRight
| left CLeft: Left projection
| right CRight: Right projection

Axioms:

C ::= Axioms, GHC/Core/TyCon.hs:CoAxiom

| Tρ axBranchi
i

CoAxiom: Axiom

axBranch, b ::= Axiom branches, GHC/Core/TyCon.hs:CoAxBranch

5

https://gitlab.haskell.org/ghc/ghc/wikis/roles
https://gitlab.haskell.org/ghc/ghc/wikis/roles
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/coercible.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/coercible.pdf

| ∀niρi
i .(τj

j σ) CoAxBranch: Axiom branch

The left-hand sides τj
j of different branches of one axiom must all have the same length.

The definition for axBranch above does not include the list of incompatible branches (field cab incomps of
CoAxBranch), as that would unduly clutter this presentation. Instead, as the list of incompatible branches
can be computed at any time, it is checked for in the judgment no conflict. See Section 4.16.

Axiom rules, produced by the type-nats solver:

µ ::= CoAxiomRules, GHC/Core/Coercion/Axiom.hs:CoAxiomRule
| M(i,ρjj ,ρ′) Named rule, with parameter info

An axiom rule µ = M(i,ρjj ,ρ′) is an axiom name M , with a type arity i, a list of roles ρj
j for its coercion

parameters, and an output role ρ′. The definition within GHC also includes a field named coaxrProves which
computes the output coercion from a list of types and a list of coercions. This is elided in this presentation,
as we simply identify axiom rules by their names M . See also GHC.Builtin.Types.Literals:mkBinAxiom and
GHC.Builtin.Types.Literals:mkAxiom1.

In Co UnivCo, function compatibleUnBoxedTys stands for following checks:

• both types are unboxed;

• types should have same size;

• both types should be either integral or floating;

• coercion between vector types are not allowed;

• unboxed tuples should have same length and each element should be coercible to appropriate element
of the target tuple;

For function implementation see GHC.Core.Lint:checkTypes. For further discussion see https://gitlab.

haskell.org/ghc/ghc/wikis/bad-unsafe-coercions.

2.7 Type constructors

Type constructors in GHC contain lots of information. We leave most of it out for this formalism:

T ::= Type constructors, GHC/Core/TyCon.hs:TyCon
| (→) FunTyCon: Arrow
| N κ AlgTyCon, TupleTyCon, SynTyCon: algebraic, tuples, families, and synonyms
| H PrimTyCon: Primitive tycon
| ′K PromotedDataCon: Promoted data constructor

We include some representative primitive type constructors. There are many more in GHC.Builtin.Types.Prim.

H ::= Primitive type constructors, GHC.Builtin.Types.Prim:
| Int# Unboxed Int (intPrimTyCon)
| (∼#) Unboxed equality (eqPrimTyCon)
| (∼R#) Unboxed representational equality (eqReprPrimTyCon)
| ? Kind of lifted types (liftedTypeKindTyCon)
| # Kind of unlifted types (unliftedTypeKindTyCon)
| OpenKind Either ∗ or # (openTypeKindTyCon)
| Constraint Constraint (constraintTyCon)
| TYPE TYPE (tYPETyCon)

6

https://gitlab.haskell.org/ghc/ghc/wikis/bad-unsafe-coercions
https://gitlab.haskell.org/ghc/ghc/wikis/bad-unsafe-coercions

| Levity Levity (LevityTyCon)

Note that although GHC contains distinct type constructors ? and Constraint, this formalism treats only
?. These two type constructors are considered wholly equivalent. In particular the function eqType returns
True when comparing ? and Constraint. We need them both because they serve different functions in source
Haskell.

TYPE The type system is rooted at the special constant TYPE and the (quite normal) datatype data

Levity = Lifted | Unlifted. The type of TYPE is Levity → TYPE ′Lifted . The idea is that TYPE ′Lifted
classifies lifted types and TYPE ′Unlifted classifies unlifted types. Indeed ? is just a plain old type synonym
for TYPE ′Lifted , and # is just a plain old type synonym for TYPE ′Unlifted .

3 Contexts

The functions in GHC.Core.Lint use the LintM monad. This monad contains a context with a set of bound
variables Γ and a set of bound labels ∆. The formalism treats Γ and ∆ as ordered lists, but GHC uses sets
as its representation.

Γ ::= List of bindings, GHC/Core/Lint.hs:LintM
| n Single binding

| Γi
i

Context concatenation

∆ ::= List of join bindings, GHC/Core/Lint.hs:LintM
| l Single binding

| ∆i
i

Context concatenation

We assume the Barendregt variable convention that all new variables and labels are fresh in the context.
In the implementation, of course, some work is done to guarantee this freshness. In particular, adding a
new type variable to the context sometimes requires creating a new, fresh variable name and then applying
a substitution. We elide these details in this formalism, but see GHC/Core/Type.hs:substTyVarBndr for
details.

4 Typing judgments

The following functions are used from GHC. Their names are descriptive, and they are not formalized here:
GHC/Core/TyCon.hs:tyConKind, GHC/Core/TyCon.hs:tyConArity, GHC/Core/DataCon.hs:dataConTyCon,
GHC/Core/TyCon.hs:isNewTyCon, GHC/Core/DataCon.hs:dataConRepType.

4.1 Program consistency

Check the entire bindings list in a context including the whole list. We extract the actual variables (with
their types/kinds) from the bindings, check for duplicates, and then check each binding.

p̀rog program Program typing, GHC/Core/Lint.hs:lintCoreBindings

Γ = vars of bindingi
i

no duplicates bindingi
i

Γ b̀ind bindingi
i

p̀rog bindingi
i Prog CoreBindings

7

Here is the definition of vars of , taken from GHC/Core.hs:bindersOf:

vars of n = e = n
vars of recni = ei

i = ni
i

Here is the definition of split, which has no direct analogue in the source but simplifies the presentation here:

split0 τ = τ
splitn(σ → τ) = σ (splitn−1 τ)
splitn(∀ακ.τ) = κ (splitn−1 τ)

The idea is simply to peel off the leading i argument types (which may be kinds for type arguments) from
a given type and return them in a sequence, with the return type (given i arguments) as the final element
of the sequence.

4.2 Binding consistency

Γ b̀ind binding Binding typing, GHC/Core/Lint.hs:lint bind

Γ s̀bind n ← e

Γ b̀ind n = e
Binding NonRec

Γ, ni
i

s̀bind ni ← ei
i

Γ b̀ind recni = ei
i Binding Rec

Γ s̀bind n ← e Single binding typing, GHC/Core/Lint.hs:lintSingleBinding

Γ; · t̀m e : τ
Γ ǹ z

τ ok
mi

i = fv(τ)

mi ∈ Γ
i

Γ s̀bind z τ ← e
SBinding SingleBinding

Γ; ∆ s̀jbind l vars ← e : τ Single join binding typing, GHC/Core/Lint.hs:lintSingleBinding

Γ′j
j

= inits (nj
j)

Γ, nj
j ; ∆ t̀m e : τ

Γ l̀abel p
σ
i ok

Γ,Γ′j ǹ nj ok
j

mj
j = fv(σ)

mj ∈ Γ
j

spliti σ = σj
j τ

Γ; ∆ s̀jbind pσi nj
j ← e : τ

SJBinding SingleBinding

8

In the GHC source, this function contains a number of other checks, such as for strictness and exportability.
See the source code for further information.

4.3 Expression typing

Γ; ∆ t̀m e : τ Expression typing, GHC/Core/Lint.hs:lintCoreExpr

x τ ∈ Γ
¬ (∃τ1, τ2, κ1, κ2 s.t. τ = τ1

κ1∼κ2

τ2)

Γ; ∆ t̀m x τ : τ
Tm Var

τ = literalType lit

Γ; ∆ t̀m lit : τ
Tm Lit

Γ; · t̀m e : σ
Γ c̀o γ : σ κ1∼κ2

R τ
κ2 ∈ {? ,# }
Γ; ∆ t̀m e . γ : τ

Tm Cast

Γ; · t̀m e : τ

Γ; ∆ t̀m e{tick} : τ
Tm Tick

Γ′ = Γ, ακ

Γ k̀ κ ok
Γ′ s̀ubst α

κ 7→ σ ok
Γ′; ∆ t̀m e [ακ 7→ σ] : τ

Γ; ∆ t̀m letακ = σ in e : τ
Tm LetTyKi

Γ s̀bind x
σ ← u

Γ t̀y σ : κ
κ = ? ∨ κ = #
Γ, xσ; ∆ t̀m e : τ

Γ; ∆ t̀m let xσ = u in e : τ
Tm LetNonRec

Γ′i
i

= inits (ziσi
i
)

Γ,Γ′i t̀y σi : κi
i

κi = ? ∨ κi = #
i

no duplicates zi
i

Γ′ = Γ, ziσi
i

Γ′ s̀bind ziσi ← ui
i

Γ′; ∆ t̀m e : τ

Γ; ∆ t̀m let rec ziσi = ui
i
in e : τ

Tm LetRec

9

Γ; ∆ s̀jbind l ni
i ← u : τ

Γ; ∆, l t̀m e : τ

Γ; ∆ t̀m join l ni
i = u in e : τ

Tm JoinNonRec

no duplicates li
i

∆′ = ∆, li
i

Γ; ∆′ s̀jbind l nj
j ← ui : τ

i

Γ; ∆′ t̀m e : τ

Γ; ∆ t̀m join rec li nj
j = ui

i
in e : τ

Tm JoinRec

Γ; · t̀m e : ∀ακ.τ
Γ s̀ubst α

κ 7→ σ ok

Γ; ∆ t̀m e σ : τ [ακ 7→ σ]
Tm AppType

¬ (∃τ s.t. e2 = τ)
Γ; · t̀m e1 : τ1 → τ2
Γ; · t̀m e2 : τ1

Γ; ∆ t̀m e1 e2 : τ2
Tm AppExpr

pσi ∈ ∆
spliti σ = σj

j τ

Γ; · t̀m ej : σj
j

Γ; ∆ t̀m jump pσi ej
j : τ

Tm Jump

¬ (∃τ1, τ2, κ1, κ2 s.t. κ = τ1
κ1∼κ2

τ2)

Γ t̀y τ : κ
Γ, x τ ; t̀m e : σ

Γ; ∆ t̀m λx τ .e : τ → σ
Tm LamId

Γ k̀ κ ok
Γ, ακ; t̀m e : τ

Γ; ∆ t̀m λακ.e : ∀ακ.τ
Tm LamTy

φ = σ1
κ1∼κ2

σ2
Γ k̀ φ ok
Γ, cφ; t̀m e : τ

Γ; ∆ t̀m λcφ.e : ∀cφ.τ
Tm LamCo

10

Γ; · t̀m e : σ
σ = ? ∨ σ = #
Γ t̀y τ : TYPEσ2

Γ, zσ; ∆;σ àlt alti : τ
i

Γ; ∆ t̀m case e as zσ return τ of alti
i

: τ
Tm Case

Γ c̀o γ : τ1
κ1∼κ2

N τ2

Γ; ∆ t̀m γ : τ1 κ1∼κ2

τ2
Tm Coercion

Γ c̀o γ : τ1
κ1∼κ2

R τ2

Γ; ∆ t̀m γ : (∼R#)κ1 κ2 τ1 τ2
Tm CoercionRep

• Some explication of Tm LetRec is helpful: The idea behind the second premise (Γ,Γ′i t̀y σi : κi
i
)

is that we wish to check each substituted type σ′i in a context containing all the types that come
before it in the list of bindings. The Γ′i are contexts containing the names and kinds of all type
variables (and term variables, for that matter) up to the ith binding. This logic is extracted from
GHC/Core/Lint.hs:lintAndScopeIds.

• The GHC source code checks all arguments in an application expression all at once using GHC/Core.hs:collectArgs
and GHC/Core/Lint.hs:lintCoreArgs. The operation has been unfolded for presentation here.

• If a tick contains breakpoints, the GHC source performs additional (scoping) checks.

• The rule for case statements also checks to make sure that the alternatives in the case are well-formed
with respect to the invariants listed above. These invariants do not affect the type or evaluation of the
expression, so the check is omitted here.

• The GHC source code for Tm Var contains checks for a dead id and for one-tuples. These checks are
omitted here.

4.4 Kinding

Γ t̀y τ : κ Kinding, GHC/Core/Lint.hs:lintType

zκ ∈ Γ

Γ t̀y zκ : κ
Ty TyVarTy

Γ t̀y τ1 : κ1
Γ t̀y τ2 : κ2
Γ àpp (τ2 : κ2) : κ1 κ

Γ t̀y τ1 τ2 : κ
Ty AppTy

11

Γ t̀y τ1 : κ1
Γ t̀y τ2 : κ2
Γ →̀ κ1 → κ2 : κ

Γ t̀y τ1 → τ2 : κ
Ty FunTy

¬ (isUnLiftedTyConT) ∨ length τi
i = tyConArityT

Γ t̀y τi : κi
i

Γ àpp (τi : κi)
i

: tyConKind T κ

Γ t̀y T τi
i : κ

Ty TyConApp

Γ k̀ κ1 ok
Γ, ακ1

t̀y τ : TYPEσ
¬ (α ∈ fv(σ))

Γ t̀y ∀ακ1 .τ : TYPEσ
Ty ForAllTy Tv

φ = σ1
κ1∼κ2

σ2
Γ k̀ φ ok
Γ, xφ t̀y τ : TYPEσ
x ∈ fv(τ)

Γ t̀y ∀xφ.τ : ?
Ty ForAllTy Cv

Γ t̀ylit lit : κ

Γ t̀y lit : κ
Ty LitTy

Γ t̀y τ : κ1
Γ c̀o γ : κ1

?∼?N κ2
Γ t̀y τ . γ : κ2

Ty CastTy

Γ c̀o γ : τ1
κ1∼κ2

N τ2

Γ t̀y γ : τ1 κ1∼κ2

τ2
Ty CoercionTy Nom

Γ c̀o γ : τ1
κ1∼κ2

R τ2

Γ t̀y γ : (∼R#)κ1 κ2 τ1 τ2
Ty CoercionTy Repr

Note the contrast between Ty ForAllTy Tv and Ty ForAllTy Cv. The former checks type abstrac-
tions, which are erased at runtime. Thus, the kind of the body must be the same as the kind of the ∀-type
(as these kinds indicate the runtime representation). The latter checks coercion abstractions, which are
not erased at runtime. Accordingly, the kind of a coercion abstraction is ?. The Ty ForAllTy Cv rule
also asserts that the bound variable x is actually used in τ : this is to uphold a representation invariant,
documented with the grammar for types, Section 2.5.

12

4.5 Kind validity

Γ k̀ κ ok Kind validity, GHC/Core/Lint.hs:lintKind

Γ t̀y κ : ?

Γ k̀ κ ok
K Star

Γ t̀y κ : #

Γ k̀ κ ok
K Hash

4.6 Coercion typing

In the coercion typing judgment, the # marks are left off the equality operators to reduce clutter. This is
not actually inconsistent, because the GHC function that implements this check, lintCoercion, actually
returns five separate values (the two kinds, the two types, and the role), not a type with head (∼#) or (∼R#).
Note that the difference between these two forms of equality is interpreted in the rules Co CoVarCoNom
and Co CoVarCoRepr.

Γ c̀o γ : τ1
κ1∼κ2

ρ τ2 Coercion typing, GHC/Core/Lint.hs:lintCoercion

Γ t̀y τ : κ

Γ c̀o 〈τ〉 : τ κ∼κN τ
Co Refl

Γ t̀y τ : κ

Γ c̀o 〈τ〉·ρ : τ κ∼κρ τ
Co GReflMRefl

Γ t̀y τ : κ1
Γ c̀o γ : κ1

?∼?N κ2
Γ c̀o 〈τ〉γρ : τ κ1∼κ2

ρ (τ . γ)
Co GReflMCo

Γ c̀o γ1 : σ1
κ1∼κ

′
1
ρ τ1

Γ c̀o γ2 : σ2
κ2∼κ

′
2
ρ τ2

Γ →̀ κ1 → κ2 : κ
Γ →̀ κ′1 → κ′2 : κ′

Γ c̀o γ1 →ρ γ2 : (σ1 → σ2) κ∼κ′
ρ (τ1 → τ2)

Co FunCo

T 6= (→)
ρi

i = take(length γi
i , tyConRolesX ρT)

Γ c̀o γi : σi κ
′
i∼κi

ρi τi
i

Γ àpp (σi : κ′i)
i

: tyConKind T κ′

Γ àpp (τi : κi)
i

: tyConKind T κ

Γ c̀o Tρ γi
i : T σi

i κ′∼κρ T τi
i Co TyConAppCo

13

Γ c̀o γ1 : σ1
κ1∼κ2

ρ σ2

Γ c̀o γ2 : τ1
κ′
1∼κ

′
2

N τ2
Γ àpp (τ1 : κ′1) : κ1 κ3
Γ àpp (τ2 : κ′2) : κ2 κ4

Γ c̀o γ1 γ2 : (σ1 τ1) κ3∼κ4
ρ (σ2 τ2)

Co AppCo

Γ c̀o γ1 : σ1
κ1∼κ2

P σ2

Γ c̀o γ2 : τ1
κ′
1∼κ

′
2

P τ2
Γ àpp (τ1 : κ′1) : κ1 κ3
Γ àpp (τ2 : κ′2) : κ2 κ4

Γ c̀o γ1 γ2 : (σ1 τ1) κ3∼κ4

P (σ2 τ2)
Co AppCoPhantom

Γ c̀o η : κ1
?∼?N κ2

Γ, ακ1
c̀o γ : τ1

κ3∼κ4
ρ τ2

Γ c̀o ∀α:η.γ : (∀ακ1 .τ1) κ3∼κ4
ρ (∀ακ2 .(τ2 [α 7→ ακ2 . sym η]))

Co ForAllCo Tv

Γ c̀o η : κ1
?∼?N κ2

Γ, xκ1
c̀o γ : τ1

TYPEσ1∼TYPEσ2
ρ τ2

ρ2 = coercionRole xκ1

η′ = downgradeRole ρ2 η
η1 = nth2

ρ2 η
′

η2 = nth3
ρ2 η
′

almostDevoid x γ

Γ c̀o ∀x :η.γ : (∀xκ1 .τ1) ?∼?ρ (∀xκ2 .(τ2 [x 7→ η1 # xκ2 # sym η2]))
Co ForAllCo Cv

zφ ∈ Γ
φ = τ1

κ1∼κ2

τ2

Γ c̀o zφ : τ1 κ1∼κ2

N τ2
Co CoVarCoNom

zφ ∈ Γ
φ = τ1

κ1∼κ2

R# τ2

Γ c̀o zφ : τ1 κ1∼κ2

R τ2
Co CoVarCoRepr

Γ c̀o η : κ1
?∼?N κ2

Γ t̀y τ1 : κ1
Γ t̀y τ2 : κ2
ρ ≤ P ∨ ¬ (classifiesTypeWithValuesκ1)∨
¬ (classifiesTypeWithValuesκ2) ∨ compatibleUnBoxedTys τ1 τ2

Γ c̀o unsafe〈τ1, τ2〉ηρ : τ1 κ1∼κ2
ρ τ2

Co UnivCoUnsafe

14

Γ c̀o η : κ1
?∼?N κ2

Γ t̀y τ1 : κ1
Γ t̀y τ2 : κ2

Γ c̀o phant〈τ1, τ2〉ηP : τ1 κ1∼κ2

P τ2
Co UnivCoPhantom

Γ c̀o η : φ1
?∼?N φ2

Γ t̀y γ1 : φ1
Γ t̀y γ2 : φ2

Γ c̀o irrel〈γ1, γ2〉ηρ : γ1 φ1∼φ2
ρ γ2

Co UnivCoProofIrrel

Γ c̀o γ : τ1
κ1∼κ2

ρ τ2

Γ c̀o sym γ : τ2 κ2∼κ1
ρ τ1

Co SymCo

Γ c̀o γ1 : τ1
κ1∼κ2

ρ τ2
Γ c̀o γ2 : τ2

κ2∼κ3
ρ τ3

Γ c̀o γ1 # γ2 : τ1 κ1∼κ3
ρ τ3

Co TransCo

Γ c̀o γ : (T σj
j) κ1∼κ

′
1
ρ (T τj

j)
lengthσj

j = length τj
j

i < lengthσj
j

Γ t̀y σi : κ2
Γ t̀y τi : κ′2
¬ (∃γ s.t. σi = γ)
¬ (∃γ s.t. τi = γ)
ρ′ = (tyConRolesX ρT)[i]

Γ c̀o nthi
ρ′ γ : σi κ2∼κ

′
2

ρ′ τi
Co NthCoTyCon

Γ c̀o γ : (∀z1κ1 .τ1) κ3∼κ4
ρ (∀z2κ2 .τ2)

Γ c̀o nth0
N γ : κ1 ?∼?N κ2

Co NthCoForAll

Γ c̀o γ : (σ1 σ2) κ∼κ′

N (τ1 τ2)
Γ t̀y σ1 : κ1
Γ t̀y τ1 : κ′1

Γ c̀o left γ : σ1 κ1∼κ
′
1

N τ1
Co LRCoLeft

Γ c̀o γ : (σ1 σ2) κ∼κ′

N (τ1 τ2)
Γ t̀y σ2 : κ2
Γ t̀y τ2 : κ′2
¬ (∃γ s.t. σ2 = γ)
¬ (∃γ s.t. τ2 = γ)

Γ c̀o right γ : σ2 κ2∼κ
′
2

N τ2
Co LRCoRight

15

Γ c̀o γ : (∀z1κ1 .τ1) κ3∼κ4
ρ (∀z2κ2 .τ2)

Γ c̀o η : σ1
κ1∼κ2

N σ2

Γ c̀o γ@η : (τ1[z1κ1 7→ σ1]) κ3∼κ4
ρ (τ2[z2κ2 7→ σ2])

Co InstCo

C = Tρ0 axBranchk
k

0 ≤ ind < length axBranchk
k

∀ni ρi i .(σ1 j
j τ1) = (axBranchk

k
)[ind]

Γ àxk [niρi
i 7→ γi

i] (subst1, subst2)

σ2 j = subst1(σ1 j)
j

no conflict(C , σ2 j
j , ind , ind − 1)

τ2 = subst2(τ1)
σ2 = T σ2 j

j

Γ t̀y σ2 : κ
Γ t̀y τ2 : κ′

Γ c̀o C ind γi
i : σ2 κ∼κ′

ρ0 τ2
Co AxiomInstCo

Γ c̀o γ : τ1
κ1∼κ2

ρ τ2

Γ c̀o kind γ : κ1 ?∼?N κ2
Co KindCo

Γ c̀o γ : σ κ
′∼κN τ

Γ c̀o sub γ : σ κ′∼κR τ
Co SubCo

µ = M(i,ρj j ,ρ′)

Γ t̀y τi : κi
i

Γ c̀o γj : σj
κ′′
j ∼κ

′
j
ρj σ

′
j

j

Just (τ ′1, τ
′
2) = coaxrProvesµ τi

i (σj , σ′j)
j

Γ t̀y τ
′
1 : κ0

Γ t̀y τ
′
2 : κ′0

Γ c̀o µ τi
i γj

j : τ ′1
κ0∼κ

′
0

ρ′ τ
′
2

Co AxiomRuleCo

See Section 4.15 for more information about tyConRolesX, and see Section 2.6 for more information about
coaxrProves.

The downgradeRole ρ γ function returns a new coercion that relates the same types as γ but with role ρ. It
assumes that the role of γ is a sub-role (≤) of ρ.

The almostDevoid x γ function makes sure that, if x appears at all in γ, it appears only within a Refl

or GRefl node. See Section 5.8.5.2 of Richard Eisenberg’s thesis for the details, or the ICFP’17 paper “A
Specification for Dependently-Typed Haskell”. (Richard’s thesis uses a technical treatment of this idea that’s
very close to GHC’s implementation. The ICFP’17 paper approaches the same restriction in a different way,
by using available sets ∆, as explained in Section 4.2 of that paper. We believe both technical approaches
are equivalent in what coercions they accept.)

16

4.7 Name consistency

There are three very similar checks for names, two performed as part of GHC/Core/Lint.hs:lintSingleBinding:

Γ ǹ n ok Name consistency check, GHC/Core/Lint.hs:lintSingleBinding#lintBinder

Γ t̀y τ : κ
κ = ? ∨ κ = #

Γ ǹ x τ ok
Name Id

Γ ǹ ακ ok
Name TyVar

Γ l̀abel l ok Label consistency check, GHC/Core/Lint.hs:lintSingleBinding#lintBinder

Γ t̀y τ : κ
κ = ? ∨ κ = #
spliti τ = σi

i τ ′

Γ t̀y τ
′ : κ′

κ′ = ? ∨ κ′ = #

Γ l̀abel pτi ok
Label Label

The point of the extra checks on τ ′ is that a join point’s type cannot be polymorphic in its return type; see
Note [The polymorphism rule of join points] in GHC.Core.

Γ b̀nd n ok Binding consistency, GHC/Core/Lint.hs:lintBinder

Γ t̀y τ : κ
κ = ? ∨ κ = #

Γ b̀nd x τ ok
Binding Id

Γ k̀ κ ok

Γ b̀nd ακ ok
Binding TyVar

4.8 Substitution consistency

Γ s̀ubst n 7→ τ ok Substitution consistency, GHC/Core/Lint.hs:lintTyKind

Γ t̀y τ : κ

Γ s̀ubst zκ 7→ τ ok
Subst Type

17

4.9 Case alternative consistency

Γ; ∆;σ àlt alt : τ Case alternative consistency, GHC/Core/Lint.hs:lintCoreAlt

Γ; ∆ t̀m e : τ

Γ; ∆;σ àlt → e : τ
Alt DEFAULT

σ = literalType lit
Γ; ∆ t̀m e : τ

Γ; ∆;σ àlt lit → e : τ
Alt LitAlt

T = dataConTyConK
¬ (isNewTyConT)
τ1 = dataConRepTypeK
τ2 = τ1{σj j }
Γ b̀nd ni ok

i

Γ′ = Γ, ni
i

Γ′ àltbnd ni
i : τ2 T σj

j

Γ′; ∆ t̀m e : τ

Γ; ∆;T σj
j

àlt K ni
i → e : τ

Alt DataAlt

4.10 Telescope substitution

τ ′ = τ{σi i } Telescope substitution, GHC/Core/Type.hs:applyTys

τ = τ{ }
ApplyTys Empty

τ ′ = τ{σi i }
τ ′′ = τ ′[n 7→ σ]

τ ′′ = (∀n.τ){σ, σi i }
ApplyTys Ty

4.11 Case alternative binding consistency

Γ àltbnd vars : τ1 τ2 Case alternative binding consistency, GHC/Core/Lint.hs:lintAltBinders

Γ àltbnd · : τ τ
AltBinders Empty

Γ s̀ubst β
κ′ 7→ ακ ok

Γ àltbnd ni
i : τ [βκ

′ 7→ ακ] σ

Γ àltbnd ακ, ni
i : (∀βκ′ .τ) σ

AltBinders TyVar

18

Γ àltbnd ni
i : τ [zφ 7→ cφ] σ

Γ àltbnd cφ, ni
i : (∀zφ.τ) σ

AltBinders IdCoercion

Γ àltbnd ni
i : τ2 σ

Γ àltbnd x τ1 , ni
i : (τ1 → τ2) σ

AltBinders IdTerm

4.12 Arrow kinding

Γ →̀ κ1 → κ2 : κ Arrow kinding, GHC/Core/Lint.hs:lintArrow

κ1 ∈ {? ,# }
κ2 = TYPEσ

Γ →̀ κ1 → κ2 : ?
Arrow Kind

4.13 Type application kinding

Γ àpp (σi : κi)
i

: κ1 κ2 Type application kinding, GHC/Core/Lint.hs:lint app

Γ àpp · : κ κ
App Empty

Γ àpp (τi : κi)
i

: κ2 κ′

Γ àpp (τ : κ1), (τi : κi)
i

: (κ1 → κ2) κ′
App FunTy

Γ àpp (τi : κi)
i

: κ2[zκ1 7→ τ] κ′

Γ àpp (τ : κ1), (τi : κi)
i

: (∀zκ1 .κ2) κ′
App ForAllTy

4.14 Axiom argument kinding

Γ àxk [niρi
i 7→ γ] (subst1, subst2) Axiom argument kinding, GHC/Core/Lint.hs:lintCoercion#check ki

Γ àxk [· 7→ ·] (·, ·)
AxiomKind Empty

19

Γ àxk [niρi
i 7→ γ] (subst1, subst2)

n = zκ

Γ c̀o γ0 : τ1
subst1(κ)∼subst2(κ)

ρ τ2

Γ àxk [niρi
i,nρ 7→ γ, γ0] (subst1 [n 7→ τ1], subst2 [n 7→ τ2])

AxiomKind Arg

4.15 Roles

During type-checking, role inference is carried out, assigning roles to the arguments of every type constructor.
The function tyConRoles extracts these roles. Also used in other judgments is tyConRolesX, which is the same
as tyConRoles, but with an arbitrary number of N at the end, to account for potential oversaturation.

The checks encoded in the following judgments are run from GHC/Tc/TyCl.hs:checkValidTyCon when
-dcore-lint is set.

validRolesT Type constructor role validity, GHC/Tc/TyCl.hs:checkValidRoles

Ki
i

= tyConDataConsT
ρj

j = tyConRolesT

validDcRoles ρj
j Ki

i

validRolesT
Cvr DataCons

validDcRoles ρa
aK Data constructor role validity, GHC/Tc/TyCl.hs:check dc roles

∀na a .∀mb
b .τc

c → T na
a = dataConRepTypeK

na : ρa
a,mb : N

b
c̀tr τc : R

c

validDcRoles ρa
aK

Cdr Args

In the following judgment, the role ρ is an input, not an output. The metavariable Ω denotes a role context,
as shown here:

Ω ::= Mapping from type variables to roles
| ni : ρi

i List of bindings

Ω c̀tr τ : ρ Type role validity, GHC/Tc/TyCl.hs:check ty roles

Ω(n) = ρ′

ρ′ ≤ ρ
Ω c̀tr n : ρ

Ctr TyVarTy

ρi
i = tyConRolesT

ρi ∈ {N,R} =⇒ Ω c̀tr τi : ρi
i

Ω c̀tr T τi
i : R

Ctr TyConAppRep

20

Ω c̀tr τi : N
i

Ω c̀tr T τi
i : N

Ctr TyConAppNom

Ω c̀tr τ1 : ρ
Ω c̀tr τ2 : N

Ω c̀tr τ1 τ2 : ρ
Ctr AppTy

Ω c̀tr τ1 : ρ
Ω c̀tr τ2 : ρ

Ω c̀tr τ1 → τ2 : ρ
Ctr FunTy

Ω,n : N c̀tr τ : ρ

Ω c̀tr ∀n.τ : ρ
Ctr ForAllTy

Ω c̀tr lit : ρ
Ctr LitTy

Ω c̀tr τ : ρ

Ω c̀tr τ . γ : ρ
Ctr CastTy

Ω c̀tr γ : P
Ctr CoercionTy

These judgments depend on a sub-role relation:

ρ1 ≤ ρ2 Sub-role relation, GHC/Core/Coercion.hs:ltRole

N ≤ ρ
Rlt Nominal

ρ ≤ P
Rlt Phantom

ρ ≤ ρ
Rlt Refl

21

4.16 Branched axiom conflict checking

The following judgment is used within Co AxiomInstCo to make sure that a type family application cannot
unify with any previous branch in the axiom. The actual code scans through only those branches that are
flagged as incompatible. These branches are stored directly in the axBranch. However, it is cleaner in this
presentation to simply check for compatibility here.

no conflict(C , σj
j , ind1, ind2)

Branched axiom conflict checking, GHC/Core/Coercion/Opt.hs:checkAxInstCo
and GHC/Core/FamInstEnv.hs:compatibleBranches

no conflict(C , σi
i , ind ,−1)

NoConflict NoBranch

C = Tρ axBranchk
k

∀niρi i .(τj j τ ′) = (axBranchk
k

)[ind2]
apart (σj

j , τj
j)

no conflict(C , σj
j , ind1, ind2 − 1)

no conflict(C , σj
j , ind1, ind2)

NoConflict Incompat

C = Tρ axBranchk
k

∀niρi i .(τj j σ) = (axBranchk
k

)[ind1]

∀n ′iρ′i
i
.(τ ′j

j
 σ′) = (axBranchk

k
)[ind2]

apart (τj
j , τ ′j

j
)

no conflict(C , σj
j , ind1, ind2 − 1)

no conflict(C , σj
j , ind1, ind2)

NoConflict CompatApart

C = Tρ axBranchk
k

∀niρi i .(τj j σ) = (axBranchk
k

)[ind1]

∀n ′iρ′i
i
.(τ ′j

j
 σ′) = (axBranchk

k
)[ind2]

unify (τj
j , τ ′j

j
) = subst

subst(σ) = subst(σ′)

no conflict(C , σj
j , ind1, ind2)

NoConflict CompatCoincident

The judgment apart checks to see whether two lists of types are surely apart. apart (τi
i , σi

i), where τi
i

is a list of types and σi
i is a list of type patterns (as in a type family equation), first flattens the τi

i

using GHC/Core/FamInstEnv.hs:flattenTys and then checks to see if GHC/Core/Unify.hs:tcUnifyTysFG
returns SurelyApart. Flattening takes all type family applications and replaces them with fresh variables,
taking care to map identical type family applications to the same fresh variable.

The algorithm unify is implemented in GHC/Core/Unify.hs:tcUnifyTys. It performs a standard unification,
returning a substitution upon success.

4.17 Axioms

After type-checking the type and class declarations of a file, the axioms in the file are optionally linted. This
is done from GHC/Tc/Types.hs:lintGblEnv, which calls GHC/Core/Lint.hs:lintAxioms. That function

22

ensures the following judgement on each axiom:

àxiom C ok Coercion axiom linting, GHC/Core/Lint.hs:lint axiom

isNewTyConT
ρi

i = tyConRolesT

αi
κi

i
t̀y T αi

i : κ0
αi
κi

i
t̀y σ : κ0

àxiom TR ∀αi
κiρi

i
.(αi

i σ) ok
Ax Newtype

isOpenTypeFamilyTyConT
T b̀ranch b ok

àxiom TN b ok
Ax OpenTypeFamily

isClosedTypeFamilyTyConT

T b̀ranch bi ok
i

àxiom TN bi
i

ok
Ax ClosedTypeFamily

isDataFamilyTyConT
T b̀ranch b ok

àxiom TR b ok
Ax DataFamily

T b̀ranch b ok Type family branch linting, GHC/Core/Lint.hs:lint family branch

ρi = N
i

isTyFamFree τj
j

fv(τj
j) = αi

i

αi
κi

i
t̀y T τj

j : κ0
αi
κi

i
t̀y σ : κ0

T b̀ranch ∀αi
κiρi

i
.(τj

j σ) ok
Br OK

In addition to these checks, the linter will also check several other conditions:

• Every CoAxBranch has a cab cvs field. This is unused currently and should always be empty.

• Every CoAxBranch has a cab eta tvs field. This is used only for data family instances, but is not
involved in type correctness. (It is used for pretty-printing.) The implemented linter checks to make
sure this field is empty for axioms that are not associated with data family instances.

• Every CoAxBranch has a cab incomps field that stores a list of incompatible branches. The imple-
mented linter checks that these branches are indeed incompatible with the current one.

• The linter checks that newtypes are associated with exactly one axiom, as are closed type families.

• The linter checks that all instances of the same open family are compatible.

A nice summary of the required checks is in Section F.1 of the Safe Coercions paper (JFP’16).

23

5 Operational semantics

5.1 Disclaimer

GHC does not implement an operational semantics in any concrete form. Most of the rules below are implied
by algorithms in, for example, the simplifier and optimizer. Yet, there is no one place in GHC that states
these rules, analogously to GHC/Core/Lint.hs. Nevertheless, these rules are included in this document to
help the reader understand System FC.

Also note that this semantics implements call-by-name, not call-by-need. So while it describes the operational
meaning of a term, it does not describe what subexpressions are shared, and when.

5.2 Join points

Dealing with join points properly here would be cumbersome and pointless, since by design they work no
differently than functions as far as FC is concerned. Reading join as let and jump as application should
tell you all need to know.

5.3 Operational semantics rules

e −→ e ′ Single step semantics

e1 −→ e ′1
e1 e2 −→ e ′1 e2

S App

(λn.e1) e2 −→ e1 [n 7→ e2]
S Beta

γ0 = sym (nth2
R γ)

γ1 = nth3
R γ

¬∃τ s.t. e2 = τ
¬∃γ s.t. e2 = γ

((λn.e1) . γ) e2 −→ (λn.e1 . γ1) (e2 . γ0)
S Push

γ′ = sym (nth0
N γ)

τ ′ = τ . γ′

((λn.e) . γ) τ −→ ((λn.e) τ ′) . (γ@(sym 〈τ〉γ
′

N))
S TPush

ρ = coercionRole γ′

γ0 = nth2
ρ (nth2

R γ)

γ1 = sym (nth3
ρ (nth2

R γ))

γ2 = nth3
R γ

((λn.e) . γ) γ′ −→ (λn.e . γ2) (γ0 # γ′ # γ1)
S CPush

24

(e . γ1) . γ2 −→ e . (γ1 # γ2)
S Trans

e −→ e ′

e . γ −→ e ′ . γ
S Cast

e −→ e ′

e{tick} −→ e ′{tick}
S Tick

e −→ e ′

case e asn return τ of alti
i −→ case e ′ asn return τ of alti

i S Case

altj = K αb
κb
b
xcτc

c → u

e = K τ ′a
a
σb

b ec
c

u ′ = u [n 7→ e] [αb
κb 7→ σb]

b
[xcτc 7→ ec]

c

case e asn return τ of alti
i −→ u ′

S MatchData

altj = lit → u

case litasn return τ of alti
i −→ u [n 7→ lit]

S MatchLit

altj = → u
no other case matches

case e asn return τ of alti
i −→ u [n 7→ e]

S MatchDefault

T τa
a κ′∼κR# T τ ′a

a
= coercionKind γ

ρa
a = tyConRolesT

∀αa
κa
a
.∀βbκ

′
b

b

.τ1 c
c → T αa

κa
a

= dataConRepTypeK

e ′c = ec . (τ1 c [αa
κa 7→ nthaρa γ]

a
[βb

κ′
b 7→ 〈σb〉]

b

)

c

case (K τa
a σb

b ec
c) . γ asn return τ2 of alti

i −→
caseK τ ′a

a
σb

b e ′c
c
asn return τ2 of alti

i

S CasePush

letn = e1 in e2 −→ e2 [n 7→ e1]
S LetNonRec

let recni = ei
i in u −→ u [ni 7→ let recni = ei

i in ei]
i S LetRec

25

5.4 Notes

• In the case rules, a constructor K is written taking three lists of arguments: two lists of types and a
list of terms. The types passed in are the universally and, respectively, existentially quantified type
variables to the constructor. The terms are the regular term arguments stored in an algebraic datatype.
Coercions (say, in a GADT) are considered term arguments.

• The rule S CasePush is the most complex rule.

– The logic in this rule is implemented in GHC/Core/Subst.hs:exprIsConApp maybe.

– The coercionKind function (GHC/Core/Coercion.hs:coercionKind) extracts the two types (and
their kinds) from a coercion. It does not require a typing context, as it does not check the coercion,
just extracts its types.

– The dataConRepType function (GHC/Core/DataCon.hs:dataConRepType) extracts the full type
of a data constructor. Following the notation for constructor expressions, the parameters to the
constructor are broken into three groups: universally quantified types, existentially quantified
types, and terms.

– The substitutions in the last premise to the rule are unusual: they replace type variables with coer-
cions. This substitution is called lifting and is implemented in GHC/Core/Coercion.hs:liftCoSubst.
The notation is essentially a pun on the fact that types and coercions have such similar structure.
This operation is quite non-trivial. Please see System FC with Explicit Kind Equality for details.

– Note that the types σb
b—the existentially quantified types—do not change during this step.

26

	Introduction
	Grammar
	Metavariables
	Literals
	Variables
	Expressions
	Types
	Coercions
	Type constructors

	Contexts
	Typing judgments
	Program consistency
	Binding consistency
	Expression typing
	Kinding
	Kind validity
	Coercion typing
	Name consistency
	Substitution consistency
	Case alternative consistency
	Telescope substitution
	Case alternative binding consistency
	Arrow kinding
	Type application kinding
	Axiom argument kinding
	Roles
	Branched axiom conflict checking
	Axioms

	Operational semantics
	Disclaimer
	Join points
	Operational semantics rules
	Notes

