{-# LANGUAGE CPP, FlexibleInstances, UnboxedTuples, MagicHash #-} {-# OPTIONS_GHC -fno-cse -fno-warn-orphans #-} -- -fno-cse is needed for GLOBAL_VAR's to behave properly ----------------------------------------------------------------------------- -- -- Monadery code used in InteractiveUI -- -- (c) The GHC Team 2005-2006 -- ----------------------------------------------------------------------------- module GhciMonad ( GHCi(..), startGHCi, GHCiState(..), setGHCiState, getGHCiState, modifyGHCiState, GHCiOption(..), isOptionSet, setOption, unsetOption, Command(..), BreakLocation(..), TickArray, getDynFlags, runStmt, runDecls, resume, timeIt, recordBreak, revertCAFs, printForUser, printForUserPartWay, prettyLocations, initInterpBuffering, turnOffBuffering, turnOffBuffering_, flushInterpBuffers, mkEvalWrapper ) where #include "HsVersions.h" import qualified GHC import GhcMonad hiding (liftIO) import Outputable hiding (printForUser, printForUserPartWay) import qualified Outputable import DynFlags import FastString import HscTypes import SrcLoc import Module import GHCi import GHCi.RemoteTypes import Exception import Numeric import Data.Array import Data.IORef import System.CPUTime import System.Environment import System.IO import Control.Monad import System.Console.Haskeline (CompletionFunc, InputT) import qualified System.Console.Haskeline as Haskeline import Control.Monad.Trans.Class import Control.Monad.IO.Class ----------------------------------------------------------------------------- -- GHCi monad data GHCiState = GHCiState { progname :: String, args :: [String], evalWrapper :: ForeignHValue, -- IO a -> IO a prompt :: String, prompt2 :: String, editor :: String, stop :: String, options :: [GHCiOption], line_number :: !Int, -- input line break_ctr :: !Int, breaks :: ![(Int, BreakLocation)], tickarrays :: ModuleEnv TickArray, -- tickarrays caches the TickArray for loaded modules, -- so that we don't rebuild it each time the user sets -- a breakpoint. -- available ghci commands ghci_commands :: [Command], -- ":" at the GHCi prompt repeats the last command, so we -- remember it here: last_command :: Maybe Command, cmdqueue :: [String], remembered_ctx :: [InteractiveImport], -- the imports that the user has asked for, via import -- declarations and :module commands. This list is -- persistent over :reloads (but any imports for modules -- that are not loaded are temporarily ignored). After a -- :load, all the home-package imports are stripped from -- this list. -- See bugs #2049, #1873, #1360 transient_ctx :: [InteractiveImport], -- An import added automatically after a :load, usually of -- the most recently compiled module. May be empty if -- there are no modules loaded. This list is replaced by -- :load, :reload, and :add. In between it may be modified -- by :module. ghc_e :: Bool, -- True if this is 'ghc -e' (or runghc) -- help text to display to a user short_help :: String, long_help :: String, lastErrorLocations :: IORef [(FastString, Int)], -- hFlush stdout; hFlush stderr in the interpreter flushStdHandles :: ForeignHValue, -- hSetBuffering NoBuffering for stdin/stdout/stderr noBuffering :: ForeignHValue } type TickArray = Array Int [(BreakIndex,SrcSpan)] -- | A GHCi command data Command = Command { cmdName :: String -- ^ Name of GHCi command (e.g. "exit") , cmdAction :: String -> InputT GHCi Bool -- ^ The 'Bool' value denotes whether to exit GHCi , cmdHidden :: Bool -- ^ Commands which are excluded from default completion -- and @:help@ summary. This is usually set for commands not -- useful for interactive use but rather for IDEs. , cmdCompletionFunc :: CompletionFunc GHCi -- ^ 'CompletionFunc' for arguments } data GHCiOption = ShowTiming -- show time/allocs after evaluation | ShowType -- show the type of expressions | RevertCAFs -- revert CAFs after every evaluation | Multiline -- use multiline commands deriving Eq data BreakLocation = BreakLocation { breakModule :: !GHC.Module , breakLoc :: !SrcSpan , breakTick :: {-# UNPACK #-} !Int , onBreakCmd :: String } instance Eq BreakLocation where loc1 == loc2 = breakModule loc1 == breakModule loc2 && breakTick loc1 == breakTick loc2 prettyLocations :: [(Int, BreakLocation)] -> SDoc prettyLocations [] = text "No active breakpoints." prettyLocations locs = vcat $ map (\(i, loc) -> brackets (int i) <+> ppr loc) $ reverse $ locs instance Outputable BreakLocation where ppr loc = (ppr $ breakModule loc) <+> ppr (breakLoc loc) <+> if null (onBreakCmd loc) then Outputable.empty else doubleQuotes (text (onBreakCmd loc)) recordBreak :: BreakLocation -> GHCi (Bool{- was already present -}, Int) recordBreak brkLoc = do st <- getGHCiState let oldActiveBreaks = breaks st -- don't store the same break point twice case [ nm | (nm, loc) <- oldActiveBreaks, loc == brkLoc ] of (nm:_) -> return (True, nm) [] -> do let oldCounter = break_ctr st newCounter = oldCounter + 1 setGHCiState $ st { break_ctr = newCounter, breaks = (oldCounter, brkLoc) : oldActiveBreaks } return (False, oldCounter) newtype GHCi a = GHCi { unGHCi :: IORef GHCiState -> Ghc a } reflectGHCi :: (Session, IORef GHCiState) -> GHCi a -> IO a reflectGHCi (s, gs) m = unGhc (unGHCi m gs) s reifyGHCi :: ((Session, IORef GHCiState) -> IO a) -> GHCi a reifyGHCi f = GHCi f' where -- f' :: IORef GHCiState -> Ghc a f' gs = reifyGhc (f'' gs) -- f'' :: IORef GHCiState -> Session -> IO a f'' gs s = f (s, gs) startGHCi :: GHCi a -> GHCiState -> Ghc a startGHCi g state = do ref <- liftIO $ newIORef state; unGHCi g ref instance Functor GHCi where fmap = liftM instance Applicative GHCi where pure a = GHCi $ \_ -> pure a (<*>) = ap instance Monad GHCi where (GHCi m) >>= k = GHCi $ \s -> m s >>= \a -> unGHCi (k a) s class HasGhciState m where getGHCiState :: m GHCiState setGHCiState :: GHCiState -> m () modifyGHCiState :: (GHCiState -> GHCiState) -> m () instance HasGhciState GHCi where getGHCiState = GHCi $ \r -> liftIO $ readIORef r setGHCiState s = GHCi $ \r -> liftIO $ writeIORef r s modifyGHCiState f = GHCi $ \r -> liftIO $ modifyIORef r f instance (MonadTrans t, Monad m, HasGhciState m) => HasGhciState (t m) where getGHCiState = lift getGHCiState setGHCiState = lift . setGHCiState modifyGHCiState = lift . modifyGHCiState liftGhc :: Ghc a -> GHCi a liftGhc m = GHCi $ \_ -> m instance MonadIO GHCi where liftIO = liftGhc . liftIO instance HasDynFlags GHCi where getDynFlags = getSessionDynFlags instance GhcMonad GHCi where setSession s' = liftGhc $ setSession s' getSession = liftGhc $ getSession instance HasDynFlags (InputT GHCi) where getDynFlags = lift getDynFlags instance GhcMonad (InputT GHCi) where setSession = lift . setSession getSession = lift getSession instance ExceptionMonad GHCi where gcatch m h = GHCi $ \r -> unGHCi m r `gcatch` (\e -> unGHCi (h e) r) gmask f = GHCi $ \s -> gmask $ \io_restore -> let g_restore (GHCi m) = GHCi $ \s' -> io_restore (m s') in unGHCi (f g_restore) s instance Haskeline.MonadException Ghc where controlIO f = Ghc $ \s -> Haskeline.controlIO $ \(Haskeline.RunIO run) -> let run' = Haskeline.RunIO (fmap (Ghc . const) . run . flip unGhc s) in fmap (flip unGhc s) $ f run' instance Haskeline.MonadException GHCi where controlIO f = GHCi $ \s -> Haskeline.controlIO $ \(Haskeline.RunIO run) -> let run' = Haskeline.RunIO (fmap (GHCi . const) . run . flip unGHCi s) in fmap (flip unGHCi s) $ f run' instance ExceptionMonad (InputT GHCi) where gcatch = Haskeline.catch gmask f = Haskeline.liftIOOp gmask (f . Haskeline.liftIOOp_) isOptionSet :: GHCiOption -> GHCi Bool isOptionSet opt = do st <- getGHCiState return (opt `elem` options st) setOption :: GHCiOption -> GHCi () setOption opt = do st <- getGHCiState setGHCiState (st{ options = opt : filter (/= opt) (options st) }) unsetOption :: GHCiOption -> GHCi () unsetOption opt = do st <- getGHCiState setGHCiState (st{ options = filter (/= opt) (options st) }) printForUser :: GhcMonad m => SDoc -> m () printForUser doc = do unqual <- GHC.getPrintUnqual dflags <- getDynFlags liftIO $ Outputable.printForUser dflags stdout unqual doc printForUserPartWay :: SDoc -> GHCi () printForUserPartWay doc = do unqual <- GHC.getPrintUnqual dflags <- getDynFlags liftIO $ Outputable.printForUserPartWay dflags stdout (pprUserLength dflags) unqual doc -- | Run a single Haskell expression runStmt :: String -> GHC.SingleStep -> GHCi (Maybe GHC.ExecResult) runStmt expr step = do st <- getGHCiState GHC.handleSourceError (\e -> do GHC.printException e; return Nothing) $ do let opts = GHC.execOptions { GHC.execSourceFile = progname st , GHC.execLineNumber = line_number st , GHC.execSingleStep = step , GHC.execWrap = \fhv -> EvalApp (EvalThis (evalWrapper st)) (EvalThis fhv) } Just <$> GHC.execStmt expr opts runDecls :: String -> GHCi (Maybe [GHC.Name]) runDecls decls = do st <- getGHCiState reifyGHCi $ \x -> withProgName (progname st) $ withArgs (args st) $ reflectGHCi x $ do GHC.handleSourceError (\e -> do GHC.printException e; return Nothing) $ do r <- GHC.runDeclsWithLocation (progname st) (line_number st) decls return (Just r) resume :: (SrcSpan -> Bool) -> GHC.SingleStep -> GHCi GHC.ExecResult resume canLogSpan step = do st <- getGHCiState reifyGHCi $ \x -> withProgName (progname st) $ withArgs (args st) $ reflectGHCi x $ do GHC.resumeExec canLogSpan step -- -------------------------------------------------------------------------- -- timing & statistics timeIt :: (a -> Maybe Integer) -> InputT GHCi a -> InputT GHCi a timeIt getAllocs action = do b <- lift $ isOptionSet ShowTiming if not b then action else do time1 <- liftIO $ getCPUTime a <- action let allocs = getAllocs a time2 <- liftIO $ getCPUTime dflags <- getDynFlags liftIO $ printTimes dflags allocs (time2 - time1) return a printTimes :: DynFlags -> Maybe Integer -> Integer -> IO () printTimes dflags mallocs psecs = do let secs = (fromIntegral psecs / (10^(12::Integer))) :: Float secs_str = showFFloat (Just 2) secs putStrLn (showSDoc dflags ( parens (text (secs_str "") <+> text "secs" <> comma <+> case mallocs of Nothing -> empty Just allocs -> text (separateThousands allocs) <+> text "bytes"))) where separateThousands n = reverse . sep . reverse . show $ n where sep n' | length n' <= 3 = n' | otherwise = take 3 n' ++ "," ++ sep (drop 3 n') ----------------------------------------------------------------------------- -- reverting CAFs revertCAFs :: GHCi () revertCAFs = do liftIO rts_revertCAFs s <- getGHCiState when (not (ghc_e s)) turnOffBuffering -- Have to turn off buffering again, because we just -- reverted stdout, stderr & stdin to their defaults. foreign import ccall "revertCAFs" rts_revertCAFs :: IO () -- Make it "safe", just in case ----------------------------------------------------------------------------- -- To flush buffers for the *interpreted* computation we need -- to refer to *its* stdout/stderr handles -- | Compile "hFlush stdout; hFlush stderr" once, so we can use it repeatedly initInterpBuffering :: Ghc (ForeignHValue, ForeignHValue) initInterpBuffering = do nobuf <- GHC.compileExprRemote $ "do { System.IO.hSetBuffering System.IO.stdin System.IO.NoBuffering; " ++ " System.IO.hSetBuffering System.IO.stdout System.IO.NoBuffering; " ++ " System.IO.hSetBuffering System.IO.stderr System.IO.NoBuffering }" flush <- GHC.compileExprRemote $ "do { System.IO.hFlush System.IO.stdout; " ++ " System.IO.hFlush System.IO.stderr }" return (nobuf, flush) -- | Invoke "hFlush stdout; hFlush stderr" in the interpreter flushInterpBuffers :: GHCi () flushInterpBuffers = do st <- getGHCiState hsc_env <- GHC.getSession liftIO $ evalIO hsc_env (flushStdHandles st) -- | Turn off buffering for stdin, stdout, and stderr in the interpreter turnOffBuffering :: GHCi () turnOffBuffering = do st <- getGHCiState turnOffBuffering_ (noBuffering st) turnOffBuffering_ :: GhcMonad m => ForeignHValue -> m () turnOffBuffering_ fhv = do hsc_env <- getSession liftIO $ evalIO hsc_env fhv mkEvalWrapper :: GhcMonad m => String -> [String] -> m ForeignHValue mkEvalWrapper progname args = GHC.compileExprRemote $ "\\m -> System.Environment.withProgName " ++ show progname ++ "(System.Environment.withArgs " ++ show args ++ " m)"