% % (c) The University of Glasgow 2000 % \section[ByteCodeItbls]{Generate infotables for interpreter-made bytecodes} \begin{code} {-# OPTIONS -optc-DNON_POSIX_SOURCE #-} module ByteCodeItbls ( ItblEnv, ItblPtr, mkITbls ) where #include "HsVersions.h" import Name ( Name, getName ) import NameEnv import SMRep ( typeCgRep ) import DataCon ( DataCon, dataConRepArgTys ) import TyCon ( TyCon, tyConFamilySize, isDataTyCon, tyConDataCons ) import Constants ( mIN_PAYLOAD_SIZE, wORD_SIZE ) import CgHeapery ( mkVirtHeapOffsets ) import FastString ( FastString(..) ) import Util ( lengthIs, listLengthCmp ) import Foreign import Foreign.C import DATA_BITS ( Bits(..), shiftR ) import GHC.Exts ( Int(I#), addr2Int# ) #if __GLASGOW_HASKELL__ < 503 import Ptr ( Ptr(..) ) #else import GHC.Ptr ( Ptr(..) ) #endif \end{code} %************************************************************************ %* * \subsection{Manufacturing of info tables for DataCons} %* * %************************************************************************ \begin{code} type ItblPtr = Ptr StgInfoTable type ItblEnv = NameEnv (Name, ItblPtr) -- We need the Name in the range so we know which -- elements to filter out when unloading a module mkItblEnv :: [(Name,ItblPtr)] -> ItblEnv mkItblEnv pairs = mkNameEnv [(n, (n,p)) | (n,p) <- pairs] -- Make info tables for the data decls in this module mkITbls :: [TyCon] -> IO ItblEnv mkITbls [] = return emptyNameEnv mkITbls (tc:tcs) = do itbls <- mkITbl tc itbls2 <- mkITbls tcs return (itbls `plusNameEnv` itbls2) mkITbl :: TyCon -> IO ItblEnv mkITbl tc | not (isDataTyCon tc) = return emptyNameEnv | dcs `lengthIs` n -- paranoia; this is an assertion. = make_constr_itbls dcs where dcs = tyConDataCons tc n = tyConFamilySize tc #include "../includes/ClosureTypes.h" cONSTR :: Int -- Defined in ClosureTypes.h cONSTR = CONSTR -- Assumes constructors are numbered from zero, not one make_constr_itbls :: [DataCon] -> IO ItblEnv make_constr_itbls cons | listLengthCmp cons 8 /= GT -- <= 8 elements in the list = do is <- mapM mk_vecret_itbl (zip cons [0..]) return (mkItblEnv is) | otherwise = do is <- mapM mk_dirret_itbl (zip cons [0..]) return (mkItblEnv is) where mk_vecret_itbl (dcon, conNo) = mk_itbl dcon conNo (vecret_entry conNo) mk_dirret_itbl (dcon, conNo) = mk_itbl dcon conNo stg_interp_constr_entry mk_itbl :: DataCon -> Int -> Ptr () -> IO (Name,ItblPtr) mk_itbl dcon conNo entry_addr = let rep_args = [ (typeCgRep arg,arg) | arg <- dataConRepArgTys dcon ] (tot_wds, ptr_wds, _) = mkVirtHeapOffsets False{-not a THUNK-} rep_args ptrs = ptr_wds nptrs = tot_wds - ptr_wds nptrs_really | ptrs + nptrs >= mIN_PAYLOAD_SIZE = nptrs | otherwise = mIN_PAYLOAD_SIZE - ptrs itbl = StgInfoTable { ptrs = fromIntegral ptrs, nptrs = fromIntegral nptrs_really, tipe = fromIntegral cONSTR, srtlen = fromIntegral conNo, code = code } -- Make a piece of code to jump to "entry_label". -- This is the only arch-dependent bit. code = mkJumpToAddr entry_addr in do addr <- malloc_exec (sizeOf itbl) --putStrLn ("SIZE of itbl is " ++ show (sizeOf itbl)) --putStrLn ("# ptrs of itbl is " ++ show ptrs) --putStrLn ("# nptrs of itbl is " ++ show nptrs_really) poke addr itbl return (getName dcon, addr `plusPtr` (2 * wORD_SIZE)) -- Make code which causes a jump to the given address. This is the -- only arch-dependent bit of the itbl story. The returned list is -- itblCodeLength elements (bytes) long. -- For sparc_TARGET_ARCH, i386_TARGET_ARCH, etc. #include "nativeGen/NCG.h" itblCodeLength :: Int itblCodeLength = length (mkJumpToAddr undefined) mkJumpToAddr :: Ptr () -> [ItblCode] ptrToInt (Ptr a#) = I# (addr2Int# a#) #if sparc_TARGET_ARCH -- After some consideration, we'll try this, where -- 0x55555555 stands in for the address to jump to. -- According to ghc/includes/MachRegs.h, %g3 is very -- likely indeed to be baggable. -- -- 0000 07155555 sethi %hi(0x55555555), %g3 -- 0004 8610E155 or %g3, %lo(0x55555555), %g3 -- 0008 81C0C000 jmp %g3 -- 000c 01000000 nop type ItblCode = Word32 mkJumpToAddr a = let w32 = fromIntegral (ptrToInt a) hi22, lo10 :: Word32 -> Word32 lo10 x = x .&. 0x3FF hi22 x = (x `shiftR` 10) .&. 0x3FFFF in [ 0x07000000 .|. (hi22 w32), 0x8610E000 .|. (lo10 w32), 0x81C0C000, 0x01000000 ] #elif powerpc_TARGET_ARCH -- We'll use r12, for no particular reason. -- 0xDEADBEEF stands for the adress: -- 3D80DEAD lis r12,0xDEAD -- 618CBEEF ori r12,r12,0xBEEF -- 7D8903A6 mtctr r12 -- 4E800420 bctr type ItblCode = Word32 mkJumpToAddr a = let w32 = fromIntegral (ptrToInt a) hi16 x = (x `shiftR` 16) .&. 0xFFFF lo16 x = x .&. 0xFFFF in [ 0x3D800000 .|. hi16 w32, 0x618C0000 .|. lo16 w32, 0x7D8903A6, 0x4E800420 ] #elif i386_TARGET_ARCH -- Let the address to jump to be 0xWWXXYYZZ. -- Generate movl $0xWWXXYYZZ,%eax ; jmp *%eax -- which is -- B8 ZZ YY XX WW FF E0 type ItblCode = Word8 mkJumpToAddr a = let w32 = fromIntegral (ptrToInt a) :: Word32 insnBytes :: [Word8] insnBytes = [0xB8, byte0 w32, byte1 w32, byte2 w32, byte3 w32, 0xFF, 0xE0] in insnBytes #elif x86_64_TARGET_ARCH -- Generates: -- jmpq *.L1(%rip) -- .align 8 -- .L1: -- .quad -- -- We need a full 64-bit pointer (we can't assume the info table is -- allocated in low memory). Assuming the info pointer is aligned to -- an 8-byte boundary, the addr will also be aligned. type ItblCode = Word8 mkJumpToAddr a = let w64 = fromIntegral (ptrToInt a) :: Word64 insnBytes :: [Word8] insnBytes = [0xff, 0x25, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, byte0 w64, byte1 w64, byte2 w64, byte3 w64, byte4 w64, byte5 w64, byte6 w64, byte7 w64] in insnBytes #elif alpha_TARGET_ARCH type ItblCode = Word32 mkJumpToAddr a = [ 0xc3800000 -- br at, .+4 , 0xa79c000c -- ldq at, 12(at) , 0x6bfc0000 -- jmp (at) # with zero hint -- oh well , 0x47ff041f -- nop , fromIntegral (w64 .&. 0x0000FFFF) , fromIntegral ((w64 `shiftR` 32) .&. 0x0000FFFF) ] where w64 = fromIntegral (ptrToInt a) :: Word64 #else type ItblCode = Word32 mkJumpToAddr a = undefined #endif byte0, byte1, byte2, byte3, byte4, byte5, byte6, byte7 :: (Integral w, Bits w) => w -> Word8 byte0 w = fromIntegral w byte1 w = fromIntegral (w `shiftR` 8) byte2 w = fromIntegral (w `shiftR` 16) byte3 w = fromIntegral (w `shiftR` 24) byte4 w = fromIntegral (w `shiftR` 32) byte5 w = fromIntegral (w `shiftR` 40) byte6 w = fromIntegral (w `shiftR` 48) byte7 w = fromIntegral (w `shiftR` 56) vecret_entry 0 = stg_interp_constr1_entry vecret_entry 1 = stg_interp_constr2_entry vecret_entry 2 = stg_interp_constr3_entry vecret_entry 3 = stg_interp_constr4_entry vecret_entry 4 = stg_interp_constr5_entry vecret_entry 5 = stg_interp_constr6_entry vecret_entry 6 = stg_interp_constr7_entry vecret_entry 7 = stg_interp_constr8_entry #ifndef __HADDOCK__ -- entry point for direct returns for created constr itbls foreign import ccall "&stg_interp_constr_entry" stg_interp_constr_entry :: Ptr () -- and the 8 vectored ones foreign import ccall "&stg_interp_constr1_entry" stg_interp_constr1_entry :: Ptr () foreign import ccall "&stg_interp_constr2_entry" stg_interp_constr2_entry :: Ptr () foreign import ccall "&stg_interp_constr3_entry" stg_interp_constr3_entry :: Ptr () foreign import ccall "&stg_interp_constr4_entry" stg_interp_constr4_entry :: Ptr () foreign import ccall "&stg_interp_constr5_entry" stg_interp_constr5_entry :: Ptr () foreign import ccall "&stg_interp_constr6_entry" stg_interp_constr6_entry :: Ptr () foreign import ccall "&stg_interp_constr7_entry" stg_interp_constr7_entry :: Ptr () foreign import ccall "&stg_interp_constr8_entry" stg_interp_constr8_entry :: Ptr () #endif -- Ultra-minimalist version specially for constructors #if SIZEOF_VOID_P == 8 type HalfWord = Word32 #else type HalfWord = Word16 #endif data StgInfoTable = StgInfoTable { ptrs :: HalfWord, nptrs :: HalfWord, tipe :: HalfWord, srtlen :: HalfWord, code :: [ItblCode] } instance Storable StgInfoTable where sizeOf itbl = sum [fieldSz ptrs itbl, fieldSz nptrs itbl, fieldSz tipe itbl, fieldSz srtlen itbl, fieldSz (head.code) itbl * itblCodeLength] alignment itbl = SIZEOF_VOID_P poke a0 itbl = runState (castPtr a0) $ do store (ptrs itbl) store (nptrs itbl) store (tipe itbl) store (srtlen itbl) sequence_ (map store (code itbl)) peek a0 = runState (castPtr a0) $ do ptrs <- load nptrs <- load tipe <- load srtlen <- load code <- sequence (replicate itblCodeLength load) return StgInfoTable { ptrs = ptrs, nptrs = nptrs, tipe = tipe, srtlen = srtlen, code = code } fieldSz :: (Storable a, Storable b) => (a -> b) -> a -> Int fieldSz sel x = sizeOf (sel x) newtype State s m a = State (s -> m (s, a)) instance Monad m => Monad (State s m) where return a = State (\s -> return (s, a)) State m >>= k = State (\s -> m s >>= \(s', a) -> case k a of State n -> n s') fail str = State (\s -> fail str) class (Monad m, Monad (t m)) => MonadT t m where lift :: m a -> t m a instance Monad m => MonadT (State s) m where lift m = State (\s -> m >>= \a -> return (s, a)) runState :: (Monad m) => s -> State s m a -> m a runState s (State m) = m s >>= return . snd type PtrIO = State (Ptr Word8) IO advance :: Storable a => PtrIO (Ptr a) advance = State adv where adv addr = case castPtr addr of { addrCast -> return (addr `plusPtr` sizeOfPointee addrCast, addrCast) } sizeOfPointee :: (Storable a) => Ptr a -> Int sizeOfPointee addr = sizeOf (typeHack addr) where typeHack = undefined :: Ptr a -> a store :: Storable a => a -> PtrIO () store x = do addr <- advance lift (poke addr x) load :: Storable a => PtrIO a load = do addr <- advance lift (peek addr) foreign import ccall unsafe "stgMallocBytesRWX" _stgMallocBytesRWX :: CInt -> IO (Ptr a) malloc_exec :: Int -> IO (Ptr a) malloc_exec bytes = _stgMallocBytesRWX (fromIntegral bytes) \end{code}