% % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % \section[RnExpr]{Renaming of expressions} Basically dependency analysis. Handles @Match@, @GRHSs@, @HsExpr@, and @Qualifier@ datatypes. In general, all of these functions return a renamed thing, and a set of free variables. \begin{code} module RnExpr ( rnLExpr, rnExpr, rnStmts ) where #include "HsVersions.h" import RnSource ( rnSrcDecls, rnSplice, checkTH ) import RnBinds ( rnLocalBindsAndThen, rnValBinds, rnMatchGroup, trimWith ) import HsSyn import RnHsSyn import TcRnMonad import RnEnv import OccName ( plusOccEnv ) import RnNames ( getLocalDeclBinders, extendRdrEnvRn ) import RnTypes ( rnHsTypeFVs, rnLPat, rnOverLit, rnPatsAndThen, rnLit, mkOpFormRn, mkOpAppRn, mkNegAppRn, checkSectionPrec, dupFieldErr, checkTupSize ) import DynFlags ( DynFlag(..) ) import BasicTypes ( FixityDirection(..) ) import PrelNames ( thFAKE, hasKey, assertIdKey, assertErrorName, loopAName, choiceAName, appAName, arrAName, composeAName, firstAName, negateName, thenMName, bindMName, failMName ) #if defined(GHCI) && defined(BREAKPOINT) import PrelNames ( breakpointJumpName, undefined_RDR, breakpointIdKey ) import UniqFM ( eltsUFM ) import DynFlags ( GhcMode(..) ) import SrcLoc ( srcSpanFile, srcSpanStartLine ) import Name ( isTyVarName ) #endif import Name ( Name, nameOccName, nameIsLocalOrFrom ) import NameSet import RdrName ( RdrName, emptyGlobalRdrEnv, extendLocalRdrEnv, lookupLocalRdrEnv ) import LoadIface ( loadHomeInterface ) import UniqFM ( isNullUFM ) import UniqSet ( emptyUniqSet ) import List ( nub ) import Util ( isSingleton ) import ListSetOps ( removeDups ) import Maybes ( expectJust ) import Outputable import SrcLoc ( Located(..), unLoc, getLoc, cmpLocated ) import FastString import List ( unzip4 ) \end{code} %************************************************************************ %* * \subsubsection{Expressions} %* * %************************************************************************ \begin{code} rnExprs :: [LHsExpr RdrName] -> RnM ([LHsExpr Name], FreeVars) rnExprs ls = rnExprs' ls emptyUniqSet where rnExprs' [] acc = returnM ([], acc) rnExprs' (expr:exprs) acc = rnLExpr expr `thenM` \ (expr', fvExpr) -> -- Now we do a "seq" on the free vars because typically it's small -- or empty, especially in very long lists of constants let acc' = acc `plusFV` fvExpr in (grubby_seqNameSet acc' rnExprs') exprs acc' `thenM` \ (exprs', fvExprs) -> returnM (expr':exprs', fvExprs) -- Grubby little function to do "seq" on namesets; replace by proper seq when GHC can do seq grubby_seqNameSet ns result | isNullUFM ns = result | otherwise = result \end{code} Variables. We look up the variable and return the resulting name. \begin{code} rnLExpr :: LHsExpr RdrName -> RnM (LHsExpr Name, FreeVars) rnLExpr = wrapLocFstM rnExpr rnExpr :: HsExpr RdrName -> RnM (HsExpr Name, FreeVars) rnExpr (HsVar v) = do name <- lookupOccRn v localRdrEnv <- getLocalRdrEnv lclEnv <- getLclEnv ignore_asserts <- doptM Opt_IgnoreAsserts ignore_breakpoints <- doptM Opt_IgnoreBreakpoints let conds = [ (name `hasKey` assertIdKey && not ignore_asserts, do (e, fvs) <- mkAssertErrorExpr return (e, fvs `addOneFV` name)) #if defined(GHCI) && defined(BREAKPOINT) , (name `hasKey` breakpointIdKey && not ignore_breakpoints, do ghcMode <- getGhcMode case ghcMode of Interactive -> do let isWantedName = not.isTyVarName (e, fvs) <- mkBreakPointExpr (filter isWantedName (eltsUFM localRdrEnv)) return (e, fvs `addOneFV` name) _ -> return (HsVar name, unitFV name) ) #endif ] case lookup True conds of Just action -> action Nothing -> return (HsVar name, unitFV name) rnExpr (HsIPVar v) = newIPNameRn v `thenM` \ name -> returnM (HsIPVar name, emptyFVs) rnExpr (HsLit lit) = rnLit lit `thenM_` returnM (HsLit lit, emptyFVs) rnExpr (HsOverLit lit) = rnOverLit lit `thenM` \ (lit', fvs) -> returnM (HsOverLit lit', fvs) rnExpr (HsApp fun arg) = rnLExpr fun `thenM` \ (fun',fvFun) -> rnLExpr arg `thenM` \ (arg',fvArg) -> returnM (HsApp fun' arg', fvFun `plusFV` fvArg) rnExpr (OpApp e1 op _ e2) = rnLExpr e1 `thenM` \ (e1', fv_e1) -> rnLExpr e2 `thenM` \ (e2', fv_e2) -> rnLExpr op `thenM` \ (op'@(L _ (HsVar op_name)), fv_op) -> -- Deal with fixity -- When renaming code synthesised from "deriving" declarations -- we used to avoid fixity stuff, but we can't easily tell any -- more, so I've removed the test. Adding HsPars in TcGenDeriv -- should prevent bad things happening. lookupFixityRn op_name `thenM` \ fixity -> mkOpAppRn e1' op' fixity e2' `thenM` \ final_e -> returnM (final_e, fv_e1 `plusFV` fv_op `plusFV` fv_e2) rnExpr (NegApp e _) = rnLExpr e `thenM` \ (e', fv_e) -> lookupSyntaxName negateName `thenM` \ (neg_name, fv_neg) -> mkNegAppRn e' neg_name `thenM` \ final_e -> returnM (final_e, fv_e `plusFV` fv_neg) rnExpr (HsPar e) = rnLExpr e `thenM` \ (e', fvs_e) -> returnM (HsPar e', fvs_e) -- Template Haskell extensions -- Don't ifdef-GHCI them because we want to fail gracefully -- (not with an rnExpr crash) in a stage-1 compiler. rnExpr e@(HsBracket br_body) = checkTH e "bracket" `thenM_` rnBracket br_body `thenM` \ (body', fvs_e) -> returnM (HsBracket body', fvs_e) rnExpr e@(HsSpliceE splice) = rnSplice splice `thenM` \ (splice', fvs) -> returnM (HsSpliceE splice', fvs) rnExpr section@(SectionL expr op) = rnLExpr expr `thenM` \ (expr', fvs_expr) -> rnLExpr op `thenM` \ (op', fvs_op) -> checkSectionPrec InfixL section op' expr' `thenM_` returnM (SectionL expr' op', fvs_op `plusFV` fvs_expr) rnExpr section@(SectionR op expr) = rnLExpr op `thenM` \ (op', fvs_op) -> rnLExpr expr `thenM` \ (expr', fvs_expr) -> checkSectionPrec InfixR section op' expr' `thenM_` returnM (SectionR op' expr', fvs_op `plusFV` fvs_expr) rnExpr (HsCoreAnn ann expr) = rnLExpr expr `thenM` \ (expr', fvs_expr) -> returnM (HsCoreAnn ann expr', fvs_expr) rnExpr (HsSCC lbl expr) = rnLExpr expr `thenM` \ (expr', fvs_expr) -> returnM (HsSCC lbl expr', fvs_expr) rnExpr (HsLam matches) = rnMatchGroup LambdaExpr matches `thenM` \ (matches', fvMatch) -> returnM (HsLam matches', fvMatch) rnExpr (HsCase expr matches) = rnLExpr expr `thenM` \ (new_expr, e_fvs) -> rnMatchGroup CaseAlt matches `thenM` \ (new_matches, ms_fvs) -> returnM (HsCase new_expr new_matches, e_fvs `plusFV` ms_fvs) rnExpr (HsLet binds expr) = rnLocalBindsAndThen binds $ \ binds' -> rnLExpr expr `thenM` \ (expr',fvExpr) -> returnM (HsLet binds' expr', fvExpr) rnExpr e@(HsDo do_or_lc stmts body _) = do { ((stmts', body'), fvs) <- rnStmts do_or_lc stmts $ rnLExpr body ; return (HsDo do_or_lc stmts' body' placeHolderType, fvs) } rnExpr (ExplicitList _ exps) = rnExprs exps `thenM` \ (exps', fvs) -> returnM (ExplicitList placeHolderType exps', fvs `addOneFV` listTyCon_name) rnExpr (ExplicitPArr _ exps) = rnExprs exps `thenM` \ (exps', fvs) -> returnM (ExplicitPArr placeHolderType exps', fvs) rnExpr e@(ExplicitTuple exps boxity) = checkTupSize tup_size `thenM_` rnExprs exps `thenM` \ (exps', fvs) -> returnM (ExplicitTuple exps' boxity, fvs `addOneFV` tycon_name) where tup_size = length exps tycon_name = tupleTyCon_name boxity tup_size rnExpr (RecordCon con_id _ rbinds) = lookupLocatedOccRn con_id `thenM` \ conname -> rnRbinds "construction" rbinds `thenM` \ (rbinds', fvRbinds) -> returnM (RecordCon conname noPostTcExpr rbinds', fvRbinds `addOneFV` unLoc conname) rnExpr (RecordUpd expr rbinds _ _) = rnLExpr expr `thenM` \ (expr', fvExpr) -> rnRbinds "update" rbinds `thenM` \ (rbinds', fvRbinds) -> returnM (RecordUpd expr' rbinds' placeHolderType placeHolderType, fvExpr `plusFV` fvRbinds) rnExpr (ExprWithTySig expr pty) = rnLExpr expr `thenM` \ (expr', fvExpr) -> rnHsTypeFVs doc pty `thenM` \ (pty', fvTy) -> returnM (ExprWithTySig expr' pty', fvExpr `plusFV` fvTy) where doc = text "In an expression type signature" rnExpr (HsIf p b1 b2) = rnLExpr p `thenM` \ (p', fvP) -> rnLExpr b1 `thenM` \ (b1', fvB1) -> rnLExpr b2 `thenM` \ (b2', fvB2) -> returnM (HsIf p' b1' b2', plusFVs [fvP, fvB1, fvB2]) rnExpr (HsType a) = rnHsTypeFVs doc a `thenM` \ (t, fvT) -> returnM (HsType t, fvT) where doc = text "In a type argument" rnExpr (ArithSeq _ seq) = rnArithSeq seq `thenM` \ (new_seq, fvs) -> returnM (ArithSeq noPostTcExpr new_seq, fvs) rnExpr (PArrSeq _ seq) = rnArithSeq seq `thenM` \ (new_seq, fvs) -> returnM (PArrSeq noPostTcExpr new_seq, fvs) \end{code} These three are pattern syntax appearing in expressions. Since all the symbols are reservedops we can simply reject them. We return a (bogus) EWildPat in each case. \begin{code} rnExpr e@EWildPat = patSynErr e rnExpr e@(EAsPat {}) = patSynErr e rnExpr e@(ELazyPat {}) = patSynErr e \end{code} %************************************************************************ %* * Arrow notation %* * %************************************************************************ \begin{code} rnExpr (HsProc pat body) = newArrowScope $ rnPatsAndThen ProcExpr [pat] $ \ [pat'] -> rnCmdTop body `thenM` \ (body',fvBody) -> returnM (HsProc pat' body', fvBody) rnExpr (HsArrApp arrow arg _ ho rtl) = select_arrow_scope (rnLExpr arrow) `thenM` \ (arrow',fvArrow) -> rnLExpr arg `thenM` \ (arg',fvArg) -> returnM (HsArrApp arrow' arg' placeHolderType ho rtl, fvArrow `plusFV` fvArg) where select_arrow_scope tc = case ho of HsHigherOrderApp -> tc HsFirstOrderApp -> escapeArrowScope tc -- infix form rnExpr (HsArrForm op (Just _) [arg1, arg2]) = escapeArrowScope (rnLExpr op) `thenM` \ (op'@(L _ (HsVar op_name)),fv_op) -> rnCmdTop arg1 `thenM` \ (arg1',fv_arg1) -> rnCmdTop arg2 `thenM` \ (arg2',fv_arg2) -> -- Deal with fixity lookupFixityRn op_name `thenM` \ fixity -> mkOpFormRn arg1' op' fixity arg2' `thenM` \ final_e -> returnM (final_e, fv_arg1 `plusFV` fv_op `plusFV` fv_arg2) rnExpr (HsArrForm op fixity cmds) = escapeArrowScope (rnLExpr op) `thenM` \ (op',fvOp) -> rnCmdArgs cmds `thenM` \ (cmds',fvCmds) -> returnM (HsArrForm op' fixity cmds', fvOp `plusFV` fvCmds) rnExpr other = pprPanic "rnExpr: unexpected expression" (ppr other) -- DictApp, DictLam, TyApp, TyLam \end{code} %************************************************************************ %* * Arrow commands %* * %************************************************************************ \begin{code} rnCmdArgs [] = returnM ([], emptyFVs) rnCmdArgs (arg:args) = rnCmdTop arg `thenM` \ (arg',fvArg) -> rnCmdArgs args `thenM` \ (args',fvArgs) -> returnM (arg':args', fvArg `plusFV` fvArgs) rnCmdTop = wrapLocFstM rnCmdTop' where rnCmdTop' (HsCmdTop cmd _ _ _) = rnLExpr (convertOpFormsLCmd cmd) `thenM` \ (cmd', fvCmd) -> let cmd_names = [arrAName, composeAName, firstAName] ++ nameSetToList (methodNamesCmd (unLoc cmd')) in -- Generate the rebindable syntax for the monad lookupSyntaxTable cmd_names `thenM` \ (cmd_names', cmd_fvs) -> returnM (HsCmdTop cmd' [] placeHolderType cmd_names', fvCmd `plusFV` cmd_fvs) --------------------------------------------------- -- convert OpApp's in a command context to HsArrForm's convertOpFormsLCmd :: LHsCmd id -> LHsCmd id convertOpFormsLCmd = fmap convertOpFormsCmd convertOpFormsCmd :: HsCmd id -> HsCmd id convertOpFormsCmd (HsApp c e) = HsApp (convertOpFormsLCmd c) e convertOpFormsCmd (HsLam match) = HsLam (convertOpFormsMatch match) convertOpFormsCmd (OpApp c1 op fixity c2) = let arg1 = L (getLoc c1) $ HsCmdTop (convertOpFormsLCmd c1) [] placeHolderType [] arg2 = L (getLoc c2) $ HsCmdTop (convertOpFormsLCmd c2) [] placeHolderType [] in HsArrForm op (Just fixity) [arg1, arg2] convertOpFormsCmd (HsPar c) = HsPar (convertOpFormsLCmd c) -- gaw 2004 convertOpFormsCmd (HsCase exp matches) = HsCase exp (convertOpFormsMatch matches) convertOpFormsCmd (HsIf exp c1 c2) = HsIf exp (convertOpFormsLCmd c1) (convertOpFormsLCmd c2) convertOpFormsCmd (HsLet binds cmd) = HsLet binds (convertOpFormsLCmd cmd) convertOpFormsCmd (HsDo ctxt stmts body ty) = HsDo ctxt (map (fmap convertOpFormsStmt) stmts) (convertOpFormsLCmd body) ty -- Anything else is unchanged. This includes HsArrForm (already done), -- things with no sub-commands, and illegal commands (which will be -- caught by the type checker) convertOpFormsCmd c = c convertOpFormsStmt (BindStmt pat cmd _ _) = BindStmt pat (convertOpFormsLCmd cmd) noSyntaxExpr noSyntaxExpr convertOpFormsStmt (ExprStmt cmd _ _) = ExprStmt (convertOpFormsLCmd cmd) noSyntaxExpr placeHolderType convertOpFormsStmt (RecStmt stmts lvs rvs es binds) = RecStmt (map (fmap convertOpFormsStmt) stmts) lvs rvs es binds convertOpFormsStmt stmt = stmt convertOpFormsMatch (MatchGroup ms ty) = MatchGroup (map (fmap convert) ms) ty where convert (Match pat mty grhss) = Match pat mty (convertOpFormsGRHSs grhss) convertOpFormsGRHSs (GRHSs grhss binds) = GRHSs (map convertOpFormsGRHS grhss) binds convertOpFormsGRHS = fmap convert where convert (GRHS stmts cmd) = GRHS stmts (convertOpFormsLCmd cmd) --------------------------------------------------- type CmdNeeds = FreeVars -- Only inhabitants are -- appAName, choiceAName, loopAName -- find what methods the Cmd needs (loop, choice, apply) methodNamesLCmd :: LHsCmd Name -> CmdNeeds methodNamesLCmd = methodNamesCmd . unLoc methodNamesCmd :: HsCmd Name -> CmdNeeds methodNamesCmd cmd@(HsArrApp _arrow _arg _ HsFirstOrderApp _rtl) = emptyFVs methodNamesCmd cmd@(HsArrApp _arrow _arg _ HsHigherOrderApp _rtl) = unitFV appAName methodNamesCmd cmd@(HsArrForm {}) = emptyFVs methodNamesCmd (HsPar c) = methodNamesLCmd c methodNamesCmd (HsIf p c1 c2) = methodNamesLCmd c1 `plusFV` methodNamesLCmd c2 `addOneFV` choiceAName methodNamesCmd (HsLet b c) = methodNamesLCmd c methodNamesCmd (HsDo sc stmts body ty) = methodNamesStmts stmts `plusFV` methodNamesLCmd body methodNamesCmd (HsApp c e) = methodNamesLCmd c methodNamesCmd (HsLam match) = methodNamesMatch match methodNamesCmd (HsCase scrut matches) = methodNamesMatch matches `addOneFV` choiceAName methodNamesCmd other = emptyFVs -- Other forms can't occur in commands, but it's not convenient -- to error here so we just do what's convenient. -- The type checker will complain later --------------------------------------------------- methodNamesMatch (MatchGroup ms ty) = plusFVs (map do_one ms) where do_one (L _ (Match pats sig_ty grhss)) = methodNamesGRHSs grhss ------------------------------------------------- -- gaw 2004 methodNamesGRHSs (GRHSs grhss binds) = plusFVs (map methodNamesGRHS grhss) ------------------------------------------------- methodNamesGRHS (L _ (GRHS stmts rhs)) = methodNamesLCmd rhs --------------------------------------------------- methodNamesStmts stmts = plusFVs (map methodNamesLStmt stmts) --------------------------------------------------- methodNamesLStmt = methodNamesStmt . unLoc methodNamesStmt (ExprStmt cmd _ _) = methodNamesLCmd cmd methodNamesStmt (BindStmt pat cmd _ _) = methodNamesLCmd cmd methodNamesStmt (RecStmt stmts _ _ _ _) = methodNamesStmts stmts `addOneFV` loopAName methodNamesStmt (LetStmt b) = emptyFVs methodNamesStmt (ParStmt ss) = emptyFVs -- ParStmt can't occur in commands, but it's not convenient to error -- here so we just do what's convenient \end{code} %************************************************************************ %* * Arithmetic sequences %* * %************************************************************************ \begin{code} rnArithSeq (From expr) = rnLExpr expr `thenM` \ (expr', fvExpr) -> returnM (From expr', fvExpr) rnArithSeq (FromThen expr1 expr2) = rnLExpr expr1 `thenM` \ (expr1', fvExpr1) -> rnLExpr expr2 `thenM` \ (expr2', fvExpr2) -> returnM (FromThen expr1' expr2', fvExpr1 `plusFV` fvExpr2) rnArithSeq (FromTo expr1 expr2) = rnLExpr expr1 `thenM` \ (expr1', fvExpr1) -> rnLExpr expr2 `thenM` \ (expr2', fvExpr2) -> returnM (FromTo expr1' expr2', fvExpr1 `plusFV` fvExpr2) rnArithSeq (FromThenTo expr1 expr2 expr3) = rnLExpr expr1 `thenM` \ (expr1', fvExpr1) -> rnLExpr expr2 `thenM` \ (expr2', fvExpr2) -> rnLExpr expr3 `thenM` \ (expr3', fvExpr3) -> returnM (FromThenTo expr1' expr2' expr3', plusFVs [fvExpr1, fvExpr2, fvExpr3]) \end{code} %************************************************************************ %* * \subsubsection{@Rbinds@s and @Rpats@s: in record expressions} %* * %************************************************************************ \begin{code} rnRbinds str rbinds = mappM_ field_dup_err dup_fields `thenM_` mapFvRn rn_rbind rbinds `thenM` \ (rbinds', fvRbind) -> returnM (rbinds', fvRbind) where (_, dup_fields) = removeDups cmpLocated [ f | (f,_) <- rbinds ] field_dup_err dups = mappM_ (\f -> addLocErr f (dupFieldErr str)) dups rn_rbind (field, expr) = lookupLocatedGlobalOccRn field `thenM` \ fieldname -> rnLExpr expr `thenM` \ (expr', fvExpr) -> returnM ((fieldname, expr'), fvExpr `addOneFV` unLoc fieldname) \end{code} %************************************************************************ %* * Template Haskell brackets %* * %************************************************************************ \begin{code} rnBracket (VarBr n) = do { name <- lookupOccRn n ; this_mod <- getModule ; checkM (nameIsLocalOrFrom this_mod name) $ -- Reason: deprecation checking asumes the do { loadHomeInterface msg name -- home interface is loaded, and this is the ; return () } -- only way that is going to happen ; returnM (VarBr name, unitFV name) } where msg = ptext SLIT("Need interface for Template Haskell quoted Name") rnBracket (ExpBr e) = do { (e', fvs) <- rnLExpr e ; return (ExpBr e', fvs) } rnBracket (PatBr p) = do { (p', fvs) <- rnLPat p ; return (PatBr p', fvs) } rnBracket (TypBr t) = do { (t', fvs) <- rnHsTypeFVs doc t ; return (TypBr t', fvs) } where doc = ptext SLIT("In a Template-Haskell quoted type") rnBracket (DecBr group) = do { gbl_env <- getGblEnv ; let gbl_env1 = gbl_env { tcg_mod = thFAKE } -- Note the thFAKE. The top-level names from the bracketed -- declarations will go into the name cache, and we don't want them to -- confuse the Names for the current module. -- By using a pretend module, thFAKE, we keep them safely out of the way. ; names <- getLocalDeclBinders gbl_env1 group ; rdr_env' <- extendRdrEnvRn emptyGlobalRdrEnv names -- Furthermore, the names in the bracket shouldn't conflict with -- existing top-level names E.g. -- foo = 1 -- bar = [d| foo = 1|] -- But both 'foo's get a LocalDef provenance, so we'd get a complaint unless -- we start with an emptyGlobalRdrEnv ; setGblEnv (gbl_env { tcg_rdr_env = tcg_rdr_env gbl_env1 `plusOccEnv` rdr_env', tcg_dus = emptyDUs }) $ do -- Notice plusOccEnv, not plusGlobalRdrEnv. In this situation we want -- to *shadow* top-level bindings. (See the 'foo' example above.) -- If we don't shadow, we'll get an ambiguity complaint when we do -- a lookupTopBndrRn (which uses lookupGreLocalRn) on the binder of the 'foo' -- -- Furthermore, arguably if the splice does define foo, that should hide -- any foo's further out -- -- The emptyDUs is so that we just collect uses for this group alone { (tcg_env, group') <- rnSrcDecls group -- Discard the tcg_env; it contains only extra info about fixity ; return (DecBr group', allUses (tcg_dus tcg_env)) } } \end{code} %************************************************************************ %* * \subsubsection{@Stmt@s: in @do@ expressions} %* * %************************************************************************ \begin{code} rnStmts :: HsStmtContext Name -> [LStmt RdrName] -> RnM (thing, FreeVars) -> RnM (([LStmt Name], thing), FreeVars) rnStmts (MDoExpr _) = rnMDoStmts rnStmts ctxt = rnNormalStmts ctxt rnNormalStmts :: HsStmtContext Name -> [LStmt RdrName] -> RnM (thing, FreeVars) -> RnM (([LStmt Name], thing), FreeVars) -- Used for cases *other* than recursive mdo -- Implements nested scopes rnNormalStmts ctxt [] thing_inside = do { (thing, fvs) <- thing_inside ; return (([],thing), fvs) } rnNormalStmts ctxt (L loc stmt : stmts) thing_inside = do { ((stmt', (stmts', thing)), fvs) <- rnStmt ctxt stmt $ rnNormalStmts ctxt stmts thing_inside ; return (((L loc stmt' : stmts'), thing), fvs) } rnStmt :: HsStmtContext Name -> Stmt RdrName -> RnM (thing, FreeVars) -> RnM ((Stmt Name, thing), FreeVars) rnStmt ctxt (ExprStmt expr _ _) thing_inside = do { (expr', fv_expr) <- rnLExpr expr ; (then_op, fvs1) <- lookupSyntaxName thenMName ; (thing, fvs2) <- thing_inside ; return ((ExprStmt expr' then_op placeHolderType, thing), fv_expr `plusFV` fvs1 `plusFV` fvs2) } rnStmt ctxt (BindStmt pat expr _ _) thing_inside = do { (expr', fv_expr) <- rnLExpr expr -- The binders do not scope over the expression ; (bind_op, fvs1) <- lookupSyntaxName bindMName ; (fail_op, fvs2) <- lookupSyntaxName failMName ; rnPatsAndThen (StmtCtxt ctxt) [pat] $ \ [pat'] -> do { (thing, fvs3) <- thing_inside ; return ((BindStmt pat' expr' bind_op fail_op, thing), fv_expr `plusFV` fvs1 `plusFV` fvs2 `plusFV` fvs3) }} -- fv_expr shouldn't really be filtered by the rnPatsAndThen -- but it does not matter because the names are unique rnStmt ctxt (LetStmt binds) thing_inside = do { checkErr (ok ctxt binds) (badIpBinds (ptext SLIT("a parallel list comprehension:")) binds) ; rnLocalBindsAndThen binds $ \ binds' -> do { (thing, fvs) <- thing_inside ; return ((LetStmt binds', thing), fvs) }} where -- We do not allow implicit-parameter bindings in a parallel -- list comprehension. I'm not sure what it might mean. ok (ParStmtCtxt _) (HsIPBinds _) = False ok _ _ = True rnStmt ctxt (RecStmt rec_stmts _ _ _ _) thing_inside = bindLocatedLocalsRn doc (collectLStmtsBinders rec_stmts) $ \ bndrs -> rn_rec_stmts bndrs rec_stmts `thenM` \ segs -> thing_inside `thenM` \ (thing, fvs) -> let segs_w_fwd_refs = addFwdRefs segs (ds, us, fs, rec_stmts') = unzip4 segs_w_fwd_refs later_vars = nameSetToList (plusFVs ds `intersectNameSet` fvs) fwd_vars = nameSetToList (plusFVs fs) uses = plusFVs us rec_stmt = RecStmt rec_stmts' later_vars fwd_vars [] emptyLHsBinds in returnM ((rec_stmt, thing), uses `plusFV` fvs) where doc = text "In a recursive do statement" rnStmt ctxt (ParStmt segs) thing_inside = do { opt_GlasgowExts <- doptM Opt_GlasgowExts ; checkM opt_GlasgowExts parStmtErr ; orig_lcl_env <- getLocalRdrEnv ; ((segs',thing), fvs) <- go orig_lcl_env [] segs ; return ((ParStmt segs', thing), fvs) } where -- type ParSeg id = [([LStmt id], [id])] -- go :: NameSet -> [ParSeg RdrName] -- -> RnM (([ParSeg Name], thing), FreeVars) go orig_lcl_env bndrs [] = do { let { (bndrs', dups) = removeDups cmpByOcc bndrs ; inner_env = extendLocalRdrEnv orig_lcl_env bndrs' } ; mappM dupErr dups ; (thing, fvs) <- setLocalRdrEnv inner_env thing_inside ; return (([], thing), fvs) } go orig_lcl_env bndrs_so_far ((stmts, _) : segs) = do { ((stmts', (bndrs, segs', thing)), fvs) <- rnNormalStmts par_ctxt stmts $ do { -- Find the Names that are bound by stmts lcl_env <- getLocalRdrEnv ; let { rdr_bndrs = collectLStmtsBinders stmts ; bndrs = map ( expectJust "rnStmt" . lookupLocalRdrEnv lcl_env . unLoc) rdr_bndrs ; new_bndrs = nub bndrs ++ bndrs_so_far -- The nub is because there might be shadowing -- x <- e1; x <- e2 -- So we'll look up (Unqual x) twice, getting -- the second binding both times, which is the } -- one we want -- Typecheck the thing inside, passing on all -- the Names bound, but separately; revert the envt ; ((segs', thing), fvs) <- setLocalRdrEnv orig_lcl_env $ go orig_lcl_env new_bndrs segs -- Figure out which of the bound names are used ; let used_bndrs = filter (`elemNameSet` fvs) bndrs ; return ((used_bndrs, segs', thing), fvs) } ; let seg' = (stmts', bndrs) ; return (((seg':segs'), thing), delListFromNameSet fvs bndrs) } par_ctxt = ParStmtCtxt ctxt cmpByOcc n1 n2 = nameOccName n1 `compare` nameOccName n2 dupErr vs = addErr (ptext SLIT("Duplicate binding in parallel list comprehension for:") <+> quotes (ppr (head vs))) \end{code} %************************************************************************ %* * \subsubsection{mdo expressions} %* * %************************************************************************ \begin{code} type FwdRefs = NameSet type Segment stmts = (Defs, Uses, -- May include defs FwdRefs, -- A subset of uses that are -- (a) used before they are bound in this segment, or -- (b) used here, and bound in subsequent segments stmts) -- Either Stmt or [Stmt] ---------------------------------------------------- rnMDoStmts :: [LStmt RdrName] -> RnM (thing, FreeVars) -> RnM (([LStmt Name], thing), FreeVars) rnMDoStmts stmts thing_inside = -- Step1: bring all the binders of the mdo into scope -- Remember that this also removes the binders from the -- finally-returned free-vars bindLocatedLocalsRn doc (collectLStmtsBinders stmts) $ \ bndrs -> do { -- Step 2: Rename each individual stmt, making a -- singleton segment. At this stage the FwdRefs field -- isn't finished: it's empty for all except a BindStmt -- for which it's the fwd refs within the bind itself -- (This set may not be empty, because we're in a recursive -- context.) segs <- rn_rec_stmts bndrs stmts ; (thing, fvs_later) <- thing_inside ; let -- Step 3: Fill in the fwd refs. -- The segments are all singletons, but their fwd-ref -- field mentions all the things used by the segment -- that are bound after their use segs_w_fwd_refs = addFwdRefs segs -- Step 4: Group together the segments to make bigger segments -- Invariant: in the result, no segment uses a variable -- bound in a later segment grouped_segs = glomSegments segs_w_fwd_refs -- Step 5: Turn the segments into Stmts -- Use RecStmt when and only when there are fwd refs -- Also gather up the uses from the end towards the -- start, so we can tell the RecStmt which things are -- used 'after' the RecStmt (stmts', fvs) = segsToStmts grouped_segs fvs_later ; return ((stmts', thing), fvs) } where doc = text "In a recursive mdo-expression" --------------------------------------------- rn_rec_stmts :: [Name] -> [LStmt RdrName] -> RnM [Segment (LStmt Name)] rn_rec_stmts bndrs stmts = mappM (rn_rec_stmt bndrs) stmts `thenM` \ segs_s -> returnM (concat segs_s) ---------------------------------------------------- rn_rec_stmt :: [Name] -> LStmt RdrName -> RnM [Segment (LStmt Name)] -- Rename a Stmt that is inside a RecStmt (or mdo) -- Assumes all binders are already in scope -- Turns each stmt into a singleton Stmt rn_rec_stmt all_bndrs (L loc (ExprStmt expr _ _)) = rnLExpr expr `thenM` \ (expr', fvs) -> lookupSyntaxName thenMName `thenM` \ (then_op, fvs1) -> returnM [(emptyNameSet, fvs `plusFV` fvs1, emptyNameSet, L loc (ExprStmt expr' then_op placeHolderType))] rn_rec_stmt all_bndrs (L loc (BindStmt pat expr _ _)) = rnLExpr expr `thenM` \ (expr', fv_expr) -> rnLPat pat `thenM` \ (pat', fv_pat) -> lookupSyntaxName bindMName `thenM` \ (bind_op, fvs1) -> lookupSyntaxName failMName `thenM` \ (fail_op, fvs2) -> let bndrs = mkNameSet (collectPatBinders pat') fvs = fv_expr `plusFV` fv_pat `plusFV` fvs1 `plusFV` fvs2 in returnM [(bndrs, fvs, bndrs `intersectNameSet` fvs, L loc (BindStmt pat' expr' bind_op fail_op))] rn_rec_stmt all_bndrs (L loc (LetStmt binds@(HsIPBinds _))) = do { addErr (badIpBinds (ptext SLIT("an mdo expression")) binds) ; failM } rn_rec_stmt all_bndrs (L loc (LetStmt (HsValBinds binds))) = rnValBinds (trimWith all_bndrs) binds `thenM` \ (binds', du_binds) -> returnM [(duDefs du_binds, duUses du_binds, emptyNameSet, L loc (LetStmt (HsValBinds binds')))] rn_rec_stmt all_bndrs (L loc (RecStmt stmts _ _ _ _)) -- Flatten Rec inside Rec = rn_rec_stmts all_bndrs stmts rn_rec_stmt all_bndrs stmt@(L _ (ParStmt _)) -- Syntactically illegal in mdo = pprPanic "rn_rec_stmt" (ppr stmt) --------------------------------------------- addFwdRefs :: [Segment a] -> [Segment a] -- So far the segments only have forward refs *within* the Stmt -- (which happens for bind: x <- ...x...) -- This function adds the cross-seg fwd ref info addFwdRefs pairs = fst (foldr mk_seg ([], emptyNameSet) pairs) where mk_seg (defs, uses, fwds, stmts) (segs, later_defs) = (new_seg : segs, all_defs) where new_seg = (defs, uses, new_fwds, stmts) all_defs = later_defs `unionNameSets` defs new_fwds = fwds `unionNameSets` (uses `intersectNameSet` later_defs) -- Add the downstream fwd refs here ---------------------------------------------------- -- Glomming the singleton segments of an mdo into -- minimal recursive groups. -- -- At first I thought this was just strongly connected components, but -- there's an important constraint: the order of the stmts must not change. -- -- Consider -- mdo { x <- ...y... -- p <- z -- y <- ...x... -- q <- x -- z <- y -- r <- x } -- -- Here, the first stmt mention 'y', which is bound in the third. -- But that means that the innocent second stmt (p <- z) gets caught -- up in the recursion. And that in turn means that the binding for -- 'z' has to be included... and so on. -- -- Start at the tail { r <- x } -- Now add the next one { z <- y ; r <- x } -- Now add one more { q <- x ; z <- y ; r <- x } -- Now one more... but this time we have to group a bunch into rec -- { rec { y <- ...x... ; q <- x ; z <- y } ; r <- x } -- Now one more, which we can add on without a rec -- { p <- z ; -- rec { y <- ...x... ; q <- x ; z <- y } ; -- r <- x } -- Finally we add the last one; since it mentions y we have to -- glom it togeher with the first two groups -- { rec { x <- ...y...; p <- z ; y <- ...x... ; -- q <- x ; z <- y } ; -- r <- x } glomSegments :: [Segment (LStmt Name)] -> [Segment [LStmt Name]] glomSegments [] = [] glomSegments ((defs,uses,fwds,stmt) : segs) -- Actually stmts will always be a singleton = (seg_defs, seg_uses, seg_fwds, seg_stmts) : others where segs' = glomSegments segs (extras, others) = grab uses segs' (ds, us, fs, ss) = unzip4 extras seg_defs = plusFVs ds `plusFV` defs seg_uses = plusFVs us `plusFV` uses seg_fwds = plusFVs fs `plusFV` fwds seg_stmts = stmt : concat ss grab :: NameSet -- The client -> [Segment a] -> ([Segment a], -- Needed by the 'client' [Segment a]) -- Not needed by the client -- The result is simply a split of the input grab uses dus = (reverse yeses, reverse noes) where (noes, yeses) = span not_needed (reverse dus) not_needed (defs,_,_,_) = not (intersectsNameSet defs uses) ---------------------------------------------------- segsToStmts :: [Segment [LStmt Name]] -> FreeVars -- Free vars used 'later' -> ([LStmt Name], FreeVars) segsToStmts [] fvs_later = ([], fvs_later) segsToStmts ((defs, uses, fwds, ss) : segs) fvs_later = ASSERT( not (null ss) ) (new_stmt : later_stmts, later_uses `plusFV` uses) where (later_stmts, later_uses) = segsToStmts segs fvs_later new_stmt | non_rec = head ss | otherwise = L (getLoc (head ss)) $ RecStmt ss (nameSetToList used_later) (nameSetToList fwds) [] emptyLHsBinds where non_rec = isSingleton ss && isEmptyNameSet fwds used_later = defs `intersectNameSet` later_uses -- The ones needed after the RecStmt \end{code} %************************************************************************ %* * \subsubsection{breakpoint utils} %* * %************************************************************************ \begin{code} #if defined(GHCI) && defined(BREAKPOINT) mkBreakPointExpr :: [Name] -> RnM (HsExpr Name, FreeVars) mkBreakPointExpr scope = do sloc <- getSrcSpanM undef <- lookupOccRn undefined_RDR let inLoc = L sloc lHsApp x y = inLoc (HsApp x y) mkExpr fnName args = mkExpr' fnName (reverse args) mkExpr' fnName [] = inLoc (HsVar fnName) mkExpr' fnName (arg:args) = lHsApp (mkExpr' fnName args) (inLoc arg) expr = unLoc $ mkExpr breakpointJumpName [mkScopeArg scope, HsVar undef, HsLit msg] mkScopeArg args = unLoc $ mkExpr undef (map HsVar args) msg = HsString (mkFastString (unpackFS (srcSpanFile sloc) ++ ":" ++ show (srcSpanStartLine sloc))) return (expr, emptyFVs) #endif \end{code} %************************************************************************ %* * \subsubsection{Assertion utils} %* * %************************************************************************ \begin{code} mkAssertErrorExpr :: RnM (HsExpr Name, FreeVars) -- Return an expression for (assertError "Foo.hs:27") mkAssertErrorExpr = getSrcSpanM `thenM` \ sloc -> let expr = HsApp (L sloc (HsVar assertErrorName)) (L sloc (HsLit msg)) msg = HsStringPrim (mkFastString (showSDoc (ppr sloc))) in returnM (expr, emptyFVs) \end{code} %************************************************************************ %* * \subsubsection{Errors} %* * %************************************************************************ \begin{code} patSynErr e = do { addErr (sep [ptext SLIT("Pattern syntax in expression context:"), nest 4 (ppr e)]) ; return (EWildPat, emptyFVs) } parStmtErr = addErr (ptext SLIT("Illegal parallel list comprehension: use -fglasgow-exts")) badIpBinds what binds = hang (ptext SLIT("Implicit-parameter bindings illegal in") <+> what) 2 (ppr binds) \end{code}