/* ----------------------------------------------------------------------------- * * (c) The GHC Team, 1998-2004 * * Top-level include file for everything STG-ish. * * This file is included *automatically* by all .hc files. * * NOTE: always include Stg.h *before* any other headers, because we * define some register variables which must be done before any inline * functions are defined (some system headers have been known to * define the odd inline function). * * We generally try to keep as little visible as possible when * compiling .hc files. So for example the definitions of the * InfoTable structs, closure structs and other RTS types are not * visible here. The compiler knows enough about the representations * of these types to generate code which manipulates them directly * with pointer arithmetic. * * ---------------------------------------------------------------------------*/ #ifndef STG_H #define STG_H /* If we include "Stg.h" directly, we're in STG code, and we therefore * get all the global register variables, macros etc. that go along * with that. If "Stg.h" is included via "Rts.h", we're assumed to * be in vanilla C. */ #ifndef IN_STG_CODE # define IN_STG_CODE 1 #endif #if IN_STG_CODE == 0 # define NO_GLOBAL_REG_DECLS /* don't define fixed registers */ #endif /* Configuration */ #include "ghcconfig.h" #include "RtsConfig.h" /* ----------------------------------------------------------------------------- Useful definitions -------------------------------------------------------------------------- */ /* * The C backend like to refer to labels by just mentioning their * names. Howevver, when a symbol is declared as a variable in C, the * C compiler will implicitly dereference it when it occurs in source. * So we must subvert this behaviour for .hc files by declaring * variables as arrays, which eliminates the implicit dereference. */ #if IN_STG_CODE #define RTS_VAR(x) (x)[] #define RTS_DEREF(x) (*(x)) #else #define RTS_VAR(x) x #define RTS_DEREF(x) x #endif /* bit macros */ #define BITS_PER_BYTE 8 #define BITS_IN(x) (BITS_PER_BYTE * sizeof(x)) /* * 'Portable' inlining: * INLINE_HEADER is for inline functions in header files * STATIC_INLINE is for inline functions in source files */ #if defined(__GNUC__) || defined( __INTEL_COMPILER) # define INLINE_HEADER static inline # define INLINE_ME inline # define STATIC_INLINE INLINE_HEADER #elif defined(_MSC_VER) # define INLINE_HEADER __inline static # define INLINE_ME __inline # define STATIC_INLINE INLINE_HEADER #else # error "Don't know how to inline functions with your C compiler." #endif /* * GCC attributes */ #if defined(__GNUC__) #define GNU_ATTRIBUTE(at) __attribute__((at)) #else #define GNU_ATTRIBUTE(at) #endif #if __GNUC__ >= 3 #define GNUC3_ATTRIBUTE(at) __attribute__((at)) #else #define GNUC3_ATTRIBUTE(at) #endif #define STG_UNUSED GNUC3_ATTRIBUTE(__unused__) /* ----------------------------------------------------------------------------- Global type definitions -------------------------------------------------------------------------- */ #include "MachDeps.h" #include "StgTypes.h" /* ----------------------------------------------------------------------------- Shorthand forms -------------------------------------------------------------------------- */ typedef StgChar C_; typedef StgWord W_; typedef StgWord* P_; typedef P_* PP_; typedef StgInt I_; typedef StgAddr A_; typedef const StgWord* D_; typedef StgFunPtr F_; typedef StgByteArray B_; typedef StgClosurePtr L_; typedef StgInt64 LI_; typedef StgWord64 LW_; #define IF_(f) static F_ GNUC3_ATTRIBUTE(used) f(void) #define FN_(f) F_ f(void) #define EF_(f) extern F_ f(void) typedef StgWord StgWordArray[]; #define EI_(X) extern StgWordArray (X) GNU_ATTRIBUTE(aligned (8)) #define II_(X) static StgWordArray (X) GNU_ATTRIBUTE(aligned (8)) /* ----------------------------------------------------------------------------- Tail calls This needs to be up near the top as the register line on alpha needs to be before all procedures (inline & out-of-line). -------------------------------------------------------------------------- */ #include "TailCalls.h" /* ----------------------------------------------------------------------------- Other Stg stuff... -------------------------------------------------------------------------- */ #include "StgDLL.h" #include "MachRegs.h" #include "Regs.h" #include "StgProf.h" /* ToDo: separate out RTS-only stuff from here */ #if IN_STG_CODE /* * This is included later for RTS sources, after definitions of * StgInfoTable, StgClosure and so on. */ #include "StgMiscClosures.h" #endif /* RTS external interface */ #include "RtsExternal.h" /* ----------------------------------------------------------------------------- Moving Floats and Doubles ASSIGN_FLT is for assigning a float to memory (usually the stack/heap). The memory address is guaranteed to be StgWord aligned (currently == sizeof(void *)). PK_FLT is for pulling a float out of memory. The memory is guaranteed to be StgWord aligned. -------------------------------------------------------------------------- */ INLINE_HEADER void ASSIGN_FLT (W_ [], StgFloat); INLINE_HEADER StgFloat PK_FLT (W_ []); #if ALIGNMENT_FLOAT <= ALIGNMENT_LONG INLINE_HEADER void ASSIGN_FLT(W_ p_dest[], StgFloat src) { *(StgFloat *)p_dest = src; } INLINE_HEADER StgFloat PK_FLT (W_ p_src[]) { return *(StgFloat *)p_src; } #else /* ALIGNMENT_FLOAT > ALIGNMENT_UNSIGNED_INT */ INLINE_HEADER void ASSIGN_FLT(W_ p_dest[], StgFloat src) { float_thing y; y.f = src; *p_dest = y.fu; } INLINE_HEADER StgFloat PK_FLT(W_ p_src[]) { float_thing y; y.fu = *p_src; return(y.f); } #endif /* ALIGNMENT_FLOAT > ALIGNMENT_LONG */ #if ALIGNMENT_DOUBLE <= ALIGNMENT_LONG INLINE_HEADER void ASSIGN_DBL (W_ [], StgDouble); INLINE_HEADER StgDouble PK_DBL (W_ []); INLINE_HEADER void ASSIGN_DBL(W_ p_dest[], StgDouble src) { *(StgDouble *)p_dest = src; } INLINE_HEADER StgDouble PK_DBL (W_ p_src[]) { return *(StgDouble *)p_src; } #else /* ALIGNMENT_DOUBLE > ALIGNMENT_LONG */ /* Sparc uses two floating point registers to hold a double. We can * write ASSIGN_DBL and PK_DBL by directly accessing the registers * independently - unfortunately this code isn't writable in C, we * have to use inline assembler. */ #if sparc_HOST_ARCH #define ASSIGN_DBL(dst0,src) \ { StgPtr dst = (StgPtr)(dst0); \ __asm__("st %2,%0\n\tst %R2,%1" : "=m" (((P_)(dst))[0]), \ "=m" (((P_)(dst))[1]) : "f" (src)); \ } #define PK_DBL(src0) \ ( { StgPtr src = (StgPtr)(src0); \ register double d; \ __asm__("ld %1,%0\n\tld %2,%R0" : "=f" (d) : \ "m" (((P_)(src))[0]), "m" (((P_)(src))[1])); d; \ } ) #else /* ! sparc_HOST_ARCH */ INLINE_HEADER void ASSIGN_DBL (W_ [], StgDouble); INLINE_HEADER StgDouble PK_DBL (W_ []); typedef struct { StgWord dhi; StgWord dlo; } unpacked_double; typedef union { StgDouble d; unpacked_double du; } double_thing; INLINE_HEADER void ASSIGN_DBL(W_ p_dest[], StgDouble src) { double_thing y; y.d = src; p_dest[0] = y.du.dhi; p_dest[1] = y.du.dlo; } /* GCC also works with this version, but it generates the same code as the previous one, and is not ANSI #define ASSIGN_DBL( p_dest, src ) \ *p_dest = ((double_thing) src).du.dhi; \ *(p_dest+1) = ((double_thing) src).du.dlo \ */ INLINE_HEADER StgDouble PK_DBL(W_ p_src[]) { double_thing y; y.du.dhi = p_src[0]; y.du.dlo = p_src[1]; return(y.d); } #endif /* ! sparc_HOST_ARCH */ #endif /* ALIGNMENT_DOUBLE > ALIGNMENT_UNSIGNED_INT */ /* ----------------------------------------------------------------------------- Moving 64-bit quantities around ASSIGN_Word64 assign an StgWord64/StgInt64 to a memory location PK_Word64 load an StgWord64/StgInt64 from a amemory location In both cases the memory location might not be 64-bit aligned. -------------------------------------------------------------------------- */ #ifdef SUPPORT_LONG_LONGS typedef struct { StgWord dhi; StgWord dlo; } unpacked_double_word; typedef union { StgInt64 i; unpacked_double_word iu; } int64_thing; typedef union { StgWord64 w; unpacked_double_word wu; } word64_thing; INLINE_HEADER void ASSIGN_Word64(W_ p_dest[], StgWord64 src) { word64_thing y; y.w = src; p_dest[0] = y.wu.dhi; p_dest[1] = y.wu.dlo; } INLINE_HEADER StgWord64 PK_Word64(W_ p_src[]) { word64_thing y; y.wu.dhi = p_src[0]; y.wu.dlo = p_src[1]; return(y.w); } INLINE_HEADER void ASSIGN_Int64(W_ p_dest[], StgInt64 src) { int64_thing y; y.i = src; p_dest[0] = y.iu.dhi; p_dest[1] = y.iu.dlo; } INLINE_HEADER StgInt64 PK_Int64(W_ p_src[]) { int64_thing y; y.iu.dhi = p_src[0]; y.iu.dlo = p_src[1]; return(y.i); } #elif SIZEOF_VOID_P == 8 INLINE_HEADER void ASSIGN_Word64(W_ p_dest[], StgWord64 src) { p_dest[0] = src; } INLINE_HEADER StgWord64 PK_Word64(W_ p_src[]) { return p_src[0]; } INLINE_HEADER void ASSIGN_Int64(W_ p_dest[], StgInt64 src) { p_dest[0] = src; } INLINE_HEADER StgInt64 PK_Int64(W_ p_src[]) { return p_src[0]; } #endif /* ----------------------------------------------------------------------------- Split markers -------------------------------------------------------------------------- */ #if defined(USE_SPLIT_MARKERS) #if defined(LEADING_UNDERSCORE) #define __STG_SPLIT_MARKER __asm__("\n___stg_split_marker:"); #else #define __STG_SPLIT_MARKER __asm__("\n__stg_split_marker:"); #endif #else #define __STG_SPLIT_MARKER /* nothing */ #endif /* ----------------------------------------------------------------------------- Write-combining store -------------------------------------------------------------------------- */ INLINE_HEADER void wcStore (StgPtr p, StgWord w) { #ifdef x86_64_HOST_ARCH __asm__( "movnti\t%1, %0" : "=m" (*p) : "r" (w) ); #else *p = w; #endif } /* ----------------------------------------------------------------------------- Integer multiply with overflow -------------------------------------------------------------------------- */ /* Multiply with overflow checking. * * This is tricky - the usual sign rules for add/subtract don't apply. * * On 32-bit machines we use gcc's 'long long' types, finding * overflow with some careful bit-twiddling. * * On 64-bit machines where gcc's 'long long' type is also 64-bits, * we use a crude approximation, testing whether either operand is * larger than 32-bits; if neither is, then we go ahead with the * multiplication. * * Return non-zero if there is any possibility that the signed multiply * of a and b might overflow. Return zero only if you are absolutely sure * that it won't overflow. If in doubt, return non-zero. */ #if SIZEOF_VOID_P == 4 #ifdef WORDS_BIGENDIAN #define RTS_CARRY_IDX__ 0 #define RTS_REM_IDX__ 1 #else #define RTS_CARRY_IDX__ 1 #define RTS_REM_IDX__ 0 #endif typedef union { StgInt64 l; StgInt32 i[2]; } long_long_u ; #define mulIntMayOflo(a,b) \ ({ \ StgInt32 r, c; \ long_long_u z; \ z.l = (StgInt64)a * (StgInt64)b; \ r = z.i[RTS_REM_IDX__]; \ c = z.i[RTS_CARRY_IDX__]; \ if (c == 0 || c == -1) { \ c = ((StgWord)((a^b) ^ r)) \ >> (BITS_IN (I_) - 1); \ } \ c; \ }) /* Careful: the carry calculation above is extremely delicate. Make sure * you test it thoroughly after changing it. */ #else /* Approximate version when we don't have long arithmetic (on 64-bit archs) */ /* If we have n-bit words then we have n-1 bits after accounting for the * sign bit, so we can fit the result of multiplying 2 (n-1)/2-bit numbers */ #define HALF_POS_INT (((I_)1) << ((BITS_IN (I_) - 1) / 2)) #define HALF_NEG_INT (-HALF_POS_INT) #define mulIntMayOflo(a,b) \ ({ \ I_ c; \ if ((I_)a <= HALF_NEG_INT || a >= HALF_POS_INT \ || (I_)b <= HALF_NEG_INT || b >= HALF_POS_INT) {\ c = 1; \ } else { \ c = 0; \ } \ c; \ }) #endif #endif /* STG_H */