\begin{code} {-# OPTIONS -fno-implicit-prelude #-} ----------------------------------------------------------------------------- -- | -- Module : GHC.List -- Copyright : (c) The University of Glasgow 1994-2002 -- License : see libraries/base/LICENSE -- -- Maintainer : cvs-ghc@haskell.org -- Stability : internal -- Portability : non-portable (GHC Extensions) -- -- The List data type and its operations -- ----------------------------------------------------------------------------- module GHC.List ( -- [] (..), -- Not Haskell 98; built in syntax map, (++), filter, concat, head, last, tail, init, null, length, (!!), foldl, foldl1, scanl, scanl1, foldr, foldr1, scanr, scanr1, iterate, repeat, replicate, cycle, take, drop, splitAt, takeWhile, dropWhile, span, break, reverse, and, or, any, all, elem, notElem, lookup, maximum, minimum, concatMap, zip, zip3, zipWith, zipWith3, unzip, unzip3, #ifdef USE_REPORT_PRELUDE #else -- non-standard, but hidden when creating the Prelude -- export list. takeUInt_append #endif ) where import {-# SOURCE #-} GHC.Err ( error ) import Data.Tuple import Data.Maybe import GHC.Base infixl 9 !! infix 4 `elem`, `notElem` \end{code} %********************************************************* %* * \subsection{List-manipulation functions} %* * %********************************************************* \begin{code} -- head and tail extract the first element and remaining elements, -- respectively, of a list, which must be non-empty. last and init -- are the dual functions working from the end of a finite list, -- rather than the beginning. head :: [a] -> a head (x:_) = x head [] = badHead badHead = errorEmptyList "head" -- This rule is useful in cases like -- head [y | (x,y) <- ps, x==t] {-# RULES "head/build" forall (g::forall b.(Bool->b->b)->b->b) . head (build g) = g (\x _ -> x) badHead "head/augment" forall xs (g::forall b. (a->b->b) -> b -> b) . head (augment g xs) = g (\x _ -> x) (head xs) #-} tail :: [a] -> [a] tail (_:xs) = xs tail [] = errorEmptyList "tail" last :: [a] -> a #ifdef USE_REPORT_PRELUDE last [x] = x last (_:xs) = last xs last [] = errorEmptyList "last" #else -- eliminate repeated cases last [] = errorEmptyList "last" last (x:xs) = last' x xs where last' y [] = y last' _ (y:ys) = last' y ys #endif init :: [a] -> [a] #ifdef USE_REPORT_PRELUDE init [x] = [] init (x:xs) = x : init xs init [] = errorEmptyList "init" #else -- eliminate repeated cases init [] = errorEmptyList "init" init (x:xs) = init' x xs where init' _ [] = [] init' y (z:zs) = y : init' z zs #endif null :: [a] -> Bool null [] = True null (_:_) = False -- length returns the length of a finite list as an Int; it is an instance -- of the more general genericLength, the result type of which may be -- any kind of number. length :: [a] -> Int length l = len l 0# where len :: [a] -> Int# -> Int len [] a# = I# a# len (_:xs) a# = len xs (a# +# 1#) -- filter, applied to a predicate and a list, returns the list of those -- elements that satisfy the predicate; i.e., -- filter p xs = [ x | x <- xs, p x] filter :: (a -> Bool) -> [a] -> [a] filter _pred [] = [] filter pred (x:xs) | pred x = x : filter pred xs | otherwise = filter pred xs {-# NOINLINE [0] filterFB #-} filterFB c p x r | p x = x `c` r | otherwise = r {-# RULES "filter" [~1] forall p xs. filter p xs = build (\c n -> foldr (filterFB c p) n xs) "filterList" [1] forall p. foldr (filterFB (:) p) [] = filter p "filterFB" forall c p q. filterFB (filterFB c p) q = filterFB c (\x -> q x && p x) #-} -- Note the filterFB rule, which has p and q the "wrong way round" in the RHS. -- filterFB (filterFB c p) q a b -- = if q a then filterFB c p a b else b -- = if q a then (if p a then c a b else b) else b -- = if q a && p a then c a b else b -- = filterFB c (\x -> q x && p x) a b -- I originally wrote (\x -> p x && q x), which is wrong, and actually -- gave rise to a live bug report. SLPJ. -- foldl, applied to a binary operator, a starting value (typically the -- left-identity of the operator), and a list, reduces the list using -- the binary operator, from left to right: -- foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn -- foldl1 is a variant that has no starting value argument, and thus must -- be applied to non-empty lists. scanl is similar to foldl, but returns -- a list of successive reduced values from the left: -- scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...] -- Note that last (scanl f z xs) == foldl f z xs. -- scanl1 is similar, again without the starting element: -- scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...] -- We write foldl as a non-recursive thing, so that it -- can be inlined, and then (often) strictness-analysed, -- and hence the classic space leak on foldl (+) 0 xs foldl :: (a -> b -> a) -> a -> [b] -> a foldl f z xs = lgo z xs where lgo z [] = z lgo z (x:xs) = lgo (f z x) xs foldl1 :: (a -> a -> a) -> [a] -> a foldl1 f (x:xs) = foldl f x xs foldl1 _ [] = errorEmptyList "foldl1" scanl :: (a -> b -> a) -> a -> [b] -> [a] scanl f q ls = q : (case ls of [] -> [] x:xs -> scanl f (f q x) xs) scanl1 :: (a -> a -> a) -> [a] -> [a] scanl1 f (x:xs) = scanl f x xs scanl1 _ [] = [] -- foldr, foldr1, scanr, and scanr1 are the right-to-left duals of the -- above functions. foldr1 :: (a -> a -> a) -> [a] -> a foldr1 _ [x] = x foldr1 f (x:xs) = f x (foldr1 f xs) foldr1 _ [] = errorEmptyList "foldr1" scanr :: (a -> b -> b) -> b -> [a] -> [b] scanr _ q0 [] = [q0] scanr f q0 (x:xs) = f x q : qs where qs@(q:_) = scanr f q0 xs scanr1 :: (a -> a -> a) -> [a] -> [a] scanr1 f [] = [] scanr1 f [x] = [x] scanr1 f (x:xs) = f x q : qs where qs@(q:_) = scanr1 f xs -- iterate f x returns an infinite list of repeated applications of f to x: -- iterate f x == [x, f x, f (f x), ...] iterate :: (a -> a) -> a -> [a] iterate f x = x : iterate f (f x) iterateFB c f x = x `c` iterateFB c f (f x) {-# RULES "iterate" [~1] forall f x. iterate f x = build (\c _n -> iterateFB c f x) "iterateFB" [1] iterateFB (:) = iterate #-} -- repeat x is an infinite list, with x the value of every element. repeat :: a -> [a] {-# INLINE [0] repeat #-} -- The pragma just gives the rules more chance to fire repeat x = xs where xs = x : xs {-# INLINE [0] repeatFB #-} -- ditto repeatFB c x = xs where xs = x `c` xs {-# RULES "repeat" [~1] forall x. repeat x = build (\c _n -> repeatFB c x) "repeatFB" [1] repeatFB (:) = repeat #-} -- replicate n x is a list of length n with x the value of every element replicate :: Int -> a -> [a] replicate n x = take n (repeat x) -- cycle ties a finite list into a circular one, or equivalently, -- the infinite repetition of the original list. It is the identity -- on infinite lists. cycle :: [a] -> [a] cycle [] = error "Prelude.cycle: empty list" cycle xs = xs' where xs' = xs ++ xs' -- takeWhile, applied to a predicate p and a list xs, returns the longest -- prefix (possibly empty) of xs of elements that satisfy p. dropWhile p xs -- returns the remaining suffix. Span p xs is equivalent to -- (takeWhile p xs, dropWhile p xs), while break p uses the negation of p. takeWhile :: (a -> Bool) -> [a] -> [a] takeWhile _ [] = [] takeWhile p (x:xs) | p x = x : takeWhile p xs | otherwise = [] dropWhile :: (a -> Bool) -> [a] -> [a] dropWhile _ [] = [] dropWhile p xs@(x:xs') | p x = dropWhile p xs' | otherwise = xs -- take n, applied to a list xs, returns the prefix of xs of length n, -- or xs itself if n > length xs. drop n xs returns the suffix of xs -- after the first n elements, or [] if n > length xs. splitAt n xs -- is equivalent to (take n xs, drop n xs). #ifdef USE_REPORT_PRELUDE take :: Int -> [a] -> [a] take n _ | n <= 0 = [] take _ [] = [] take n (x:xs) = x : take (n-1) xs drop :: Int -> [a] -> [a] drop n xs | n <= 0 = xs drop _ [] = [] drop n (_:xs) = drop (n-1) xs splitAt :: Int -> [a] -> ([a],[a]) splitAt n xs = (take n xs, drop n xs) #else /* hack away */ take :: Int -> [b] -> [b] take (I# n#) xs = takeUInt n# xs -- The general code for take, below, checks n <= maxInt -- No need to check for maxInt overflow when specialised -- at type Int or Int# since the Int must be <= maxInt takeUInt :: Int# -> [b] -> [b] takeUInt n xs | n >=# 0# = take_unsafe_UInt n xs | otherwise = [] take_unsafe_UInt :: Int# -> [b] -> [b] take_unsafe_UInt 0# _ = [] take_unsafe_UInt m ls = case ls of [] -> [] (x:xs) -> x : take_unsafe_UInt (m -# 1#) xs takeUInt_append :: Int# -> [b] -> [b] -> [b] takeUInt_append n xs rs | n >=# 0# = take_unsafe_UInt_append n xs rs | otherwise = [] take_unsafe_UInt_append :: Int# -> [b] -> [b] -> [b] take_unsafe_UInt_append 0# _ rs = rs take_unsafe_UInt_append m ls rs = case ls of [] -> rs (x:xs) -> x : take_unsafe_UInt_append (m -# 1#) xs rs drop :: Int -> [b] -> [b] drop (I# n#) ls | n# <# 0# = [] | otherwise = drop# n# ls where drop# :: Int# -> [a] -> [a] drop# 0# xs = xs drop# _ xs@[] = xs drop# m# (_:xs) = drop# (m# -# 1#) xs splitAt :: Int -> [b] -> ([b], [b]) splitAt (I# n#) ls | n# <# 0# = ([], ls) | otherwise = splitAt# n# ls where splitAt# :: Int# -> [a] -> ([a], [a]) splitAt# 0# xs = ([], xs) splitAt# _ xs@[] = (xs, xs) splitAt# m# (x:xs) = (x:xs', xs'') where (xs', xs'') = splitAt# (m# -# 1#) xs #endif /* USE_REPORT_PRELUDE */ span, break :: (a -> Bool) -> [a] -> ([a],[a]) span _ xs@[] = (xs, xs) span p xs@(x:xs') | p x = let (ys,zs) = span p xs' in (x:ys,zs) | otherwise = ([],xs) #ifdef USE_REPORT_PRELUDE break p = span (not . p) #else -- HBC version (stolen) break _ xs@[] = (xs, xs) break p xs@(x:xs') | p x = ([],xs) | otherwise = let (ys,zs) = break p xs' in (x:ys,zs) #endif -- reverse xs returns the elements of xs in reverse order. xs must be finite. reverse :: [a] -> [a] #ifdef USE_REPORT_PRELUDE reverse = foldl (flip (:)) [] #else reverse l = rev l [] where rev [] a = a rev (x:xs) a = rev xs (x:a) #endif -- and returns the conjunction of a Boolean list. For the result to be -- True, the list must be finite; False, however, results from a False -- value at a finite index of a finite or infinite list. or is the -- disjunctive dual of and. and, or :: [Bool] -> Bool #ifdef USE_REPORT_PRELUDE and = foldr (&&) True or = foldr (||) False #else and [] = True and (x:xs) = x && and xs or [] = False or (x:xs) = x || or xs {-# RULES "and/build" forall (g::forall b.(Bool->b->b)->b->b) . and (build g) = g (&&) True "or/build" forall (g::forall b.(Bool->b->b)->b->b) . or (build g) = g (||) False #-} #endif -- Applied to a predicate and a list, any determines if any element -- of the list satisfies the predicate. Similarly, for all. any, all :: (a -> Bool) -> [a] -> Bool #ifdef USE_REPORT_PRELUDE any p = or . map p all p = and . map p #else any _ [] = False any p (x:xs) = p x || any p xs all _ [] = True all p (x:xs) = p x && all p xs {-# RULES "any/build" forall p (g::forall b.(a->b->b)->b->b) . any p (build g) = g ((||) . p) False "all/build" forall p (g::forall b.(a->b->b)->b->b) . all p (build g) = g ((&&) . p) True #-} #endif -- elem is the list membership predicate, usually written in infix form, -- e.g., x `elem` xs. notElem is the negation. elem, notElem :: (Eq a) => a -> [a] -> Bool #ifdef USE_REPORT_PRELUDE elem x = any (== x) notElem x = all (/= x) #else elem _ [] = False elem x (y:ys) = x==y || elem x ys notElem _ [] = True notElem x (y:ys)= x /= y && notElem x ys #endif -- lookup key assocs looks up a key in an association list. lookup :: (Eq a) => a -> [(a,b)] -> Maybe b lookup _key [] = Nothing lookup key ((x,y):xys) | key == x = Just y | otherwise = lookup key xys -- maximum and minimum return the maximum or minimum value from a list, -- which must be non-empty, finite, and of an ordered type. {-# SPECIALISE maximum :: [Int] -> Int #-} {-# SPECIALISE minimum :: [Int] -> Int #-} maximum, minimum :: (Ord a) => [a] -> a maximum [] = errorEmptyList "maximum" maximum xs = foldl1 max xs minimum [] = errorEmptyList "minimum" minimum xs = foldl1 min xs concatMap :: (a -> [b]) -> [a] -> [b] concatMap f = foldr ((++) . f) [] concat :: [[a]] -> [a] concat = foldr (++) [] {-# RULES "concat" forall xs. concat xs = build (\c n -> foldr (\x y -> foldr c y x) n xs) -- We don't bother to turn non-fusible applications of concat back into concat #-} \end{code} \begin{code} -- List index (subscript) operator, 0-origin (!!) :: [a] -> Int -> a #ifdef USE_REPORT_PRELUDE xs !! n | n < 0 = error "Prelude.!!: negative index" [] !! _ = error "Prelude.!!: index too large" (x:_) !! 0 = x (_:xs) !! n = xs !! (n-1) #else -- HBC version (stolen), then unboxified -- The semantics is not quite the same for error conditions -- in the more efficient version. -- xs !! (I# n) | n <# 0# = error "Prelude.(!!): negative index\n" | otherwise = sub xs n where sub :: [a] -> Int# -> a sub [] _ = error "Prelude.(!!): index too large\n" sub (y:ys) n = if n ==# 0# then y else sub ys (n -# 1#) #endif \end{code} %********************************************************* %* * \subsection{The zip family} %* * %********************************************************* \begin{code} foldr2 _k z [] _ys = z foldr2 _k z _xs [] = z foldr2 k z (x:xs) (y:ys) = k x y (foldr2 k z xs ys) foldr2_left _k z _x _r [] = z foldr2_left k _z x r (y:ys) = k x y (r ys) foldr2_right _k z _y _r [] = z foldr2_right k _z y r (x:xs) = k x y (r xs) -- foldr2 k z xs ys = foldr (foldr2_left k z) (\_ -> z) xs ys -- foldr2 k z xs ys = foldr (foldr2_right k z) (\_ -> z) ys xs {-# RULES "foldr2/left" forall k z ys (g::forall b.(a->b->b)->b->b) . foldr2 k z (build g) ys = g (foldr2_left k z) (\_ -> z) ys "foldr2/right" forall k z xs (g::forall b.(a->b->b)->b->b) . foldr2 k z xs (build g) = g (foldr2_right k z) (\_ -> z) xs #-} \end{code} The foldr2/right rule isn't exactly right, because it changes the strictness of foldr2 (and thereby zip) E.g. main = print (null (zip nonobviousNil (build undefined))) where nonobviousNil = f 3 f n = if n == 0 then [] else f (n-1) I'm going to leave it though. zip takes two lists and returns a list of corresponding pairs. If one input list is short, excess elements of the longer list are discarded. zip3 takes three lists and returns a list of triples. Zips for larger tuples are in the List module. \begin{code} ---------------------------------------------- zip :: [a] -> [b] -> [(a,b)] zip (a:as) (b:bs) = (a,b) : zip as bs zip _ _ = [] {-# INLINE [0] zipFB #-} zipFB c x y r = (x,y) `c` r {-# RULES "zip" [~1] forall xs ys. zip xs ys = build (\c n -> foldr2 (zipFB c) n xs ys) "zipList" [1] foldr2 (zipFB (:)) [] = zip #-} \end{code} \begin{code} ---------------------------------------------- zip3 :: [a] -> [b] -> [c] -> [(a,b,c)] -- Specification -- zip3 = zipWith3 (,,) zip3 (a:as) (b:bs) (c:cs) = (a,b,c) : zip3 as bs cs zip3 _ _ _ = [] \end{code} -- The zipWith family generalises the zip family by zipping with the -- function given as the first argument, instead of a tupling function. -- For example, zipWith (+) is applied to two lists to produce the list -- of corresponding sums. \begin{code} ---------------------------------------------- zipWith :: (a->b->c) -> [a]->[b]->[c] zipWith f (a:as) (b:bs) = f a b : zipWith f as bs zipWith _ _ _ = [] {-# INLINE [0] zipWithFB #-} zipWithFB c f x y r = (x `f` y) `c` r {-# RULES "zipWith" [~1] forall f xs ys. zipWith f xs ys = build (\c n -> foldr2 (zipWithFB c f) n xs ys) "zipWithList" [1] forall f. foldr2 (zipWithFB (:) f) [] = zipWith f #-} \end{code} \begin{code} zipWith3 :: (a->b->c->d) -> [a]->[b]->[c]->[d] zipWith3 z (a:as) (b:bs) (c:cs) = z a b c : zipWith3 z as bs cs zipWith3 _ _ _ _ = [] -- unzip transforms a list of pairs into a pair of lists. unzip :: [(a,b)] -> ([a],[b]) {-# INLINE unzip #-} unzip = foldr (\(a,b) ~(as,bs) -> (a:as,b:bs)) ([],[]) unzip3 :: [(a,b,c)] -> ([a],[b],[c]) {-# INLINE unzip3 #-} unzip3 = foldr (\(a,b,c) ~(as,bs,cs) -> (a:as,b:bs,c:cs)) ([],[],[]) \end{code} %********************************************************* %* * \subsection{Error code} %* * %********************************************************* Common up near identical calls to `error' to reduce the number constant strings created when compiled: \begin{code} errorEmptyList :: String -> a errorEmptyList fun = error (prel_list_str ++ fun ++ ": empty list") prel_list_str :: String prel_list_str = "Prelude." \end{code}