/* ----------------------------------------------------------------------------- * * (c) The GHC Team, 2000-2012 * * RTS Object Linker * * ---------------------------------------------------------------------------*/ #if 0 #include "PosixSource.h" #endif #include "Rts.h" #include "HsFFI.h" #include "sm/Storage.h" #include "Stats.h" #include "Hash.h" #include "LinkerInternals.h" #include "RtsUtils.h" #include "Trace.h" #include "StgPrimFloat.h" // for __int_encodeFloat etc. #include "Proftimer.h" #include "GetEnv.h" #include "StablePtr.h" #include "RtsSymbols.h" #include "RtsSymbolInfo.h" #include "Profiling.h" #include "sm/OSMem.h" #include "linker/M32Alloc.h" #include "linker/CacheFlush.h" #include "linker/SymbolExtras.h" #include "PathUtils.h" #if !defined(mingw32_HOST_OS) #include "posix/Signals.h" #endif // get protos for is*() #include #if defined(HAVE_SYS_TYPES_H) #include #endif #include #include #include #include #include #include #if defined(HAVE_SYS_STAT_H) #include #endif #if defined(HAVE_DLFCN_H) #include #endif #if defined(OBJFORMAT_ELF) # include "linker/Elf.h" # include // regex is already used by dlopen() so this is OK // to use here without requiring an additional lib #elif defined(OBJFORMAT_PEi386) # include "linker/PEi386.h" # include #elif defined(OBJFORMAT_MACHO) # include "linker/MachO.h" # include # include # include #endif #if defined(dragonfly_HOST_OS) #include #endif /* Note [runtime-linker-support] ----------------------------- When adding support for a new platform to the runtime linker please update `$TOP/configure.ac` under heading `Does target have runtime linker support?`. */ /* `symhash` is a Hash table mapping symbol names to RtsSymbolInfo. This hashtable will contain information on all symbols that we know of, however the .o they are in may not be loaded. Until the ObjectCode the symbol belongs to is actually loaded this symbol may be replaced. So do not rely on addresses of unloaded symbols. Note [runtime-linker-phases] -------------------------------------- Broadly the behavior of the runtime linker can be split into the following four phases: - Indexing (e.g. ocVerifyImage and ocGetNames) - Initialization (e.g. ocResolve and ocRunInit) - Resolve (e.g. resolveObjs()) - Lookup (e.g. lookupSymbol) This is to enable lazy loading of symbols. Eager loading is problematic as it means that all symbols must be available, even those which we will never use. This is especially painful on Windows, where the number of libraries required to link things like mingwex grows to be quite high. We proceed through these stages as follows, * During Indexing we verify and open the ObjectCode and perform a quick scan/indexing of the ObjectCode. All the work required to actually load the ObjectCode is done. All symbols from the ObjectCode are also inserted into `symhash`, where possible duplicates are handled via the semantics described in `ghciInsertSymbolTable`. This phase will produce ObjectCode with status `OBJECT_LOADED` or `OBJECT_NEEDED` depending on whether they are an archive member or not. * During initialization we load ObjectCode, perform relocations, execute static constructors etc. This phase may trigger other ObjectCodes to be loaded because of the calls to lookupSymbol. This phase will produce ObjectCode with status `OBJECT_NEEDED` if the previous status was `OBJECT_LOADED`. * During resolve we attempt to resolve all the symbols needed for the initial link. This essentially means, that for any ObjectCode given directly to the command-line we perform lookupSymbols on the required symbols. lookupSymbols may trigger the loading of additional ObjectCode if required. This phase will produce ObjectCode with status `OBJECT_RESOLVED` if the previous status was `OBJECT_NEEDED`. * lookupSymbols is used to lookup any symbols required, both during initial link and during statement and expression compilations in the REPL. Declaration of e.g. a foreign import, will eventually call lookupSymbol which will either fail (symbol unknown) or succeed (and possibly trigger a load). This phase may transition an ObjectCode from `OBJECT_LOADED` to `OBJECT_RESOLVED` When a new scope is introduced (e.g. a new module imported) GHCi does a full re-link by calling unloadObj and starting over. When a new declaration or statement is performed ultimately lookupSymbol is called without doing a re-link. The goal of these different phases is to allow the linker to be able to perform "lazy loading" of ObjectCode. The reason for this is that we want to only link in symbols that are actually required for the link. This reduces: 1) Dependency chains, if A.o required a .o in libB but A.o isn't required to link then we don't need to load libB. This means the dependency chain for libraries such as mingw32 and mingwex can be broken down. 2) The number of duplicate symbols, since now only symbols that are true duplicates will display the error. */ StrHashTable *symhash; /* List of currently loaded objects */ ObjectCode *objects = NULL; /* initially empty */ /* List of objects that have been unloaded via unloadObj(), but are waiting to be actually freed via checkUnload() */ ObjectCode *unloaded_objects = NULL; /* initially empty */ #if defined(THREADED_RTS) /* This protects all the Linker's global state except unloaded_objects */ Mutex linker_mutex; /* * This protects unloaded_objects. We have a separate mutex for this, because * the GC needs to access unloaded_objects in checkUnload, while the linker only * needs to access unloaded_objects in unloadObj(), so this allows most linker * operations proceed concurrently with the GC. */ Mutex linker_unloaded_mutex; #endif /* Generic wrapper function to try and Resolve and RunInit oc files */ int ocTryLoad( ObjectCode* oc ); /* Link objects into the lower 2Gb on x86_64 and AArch64. GHC assumes the * small memory model on this architecture (see gcc docs, * -mcmodel=small). * * MAP_32BIT not available on OpenBSD/amd64 */ #if defined(MAP_32BIT) && defined(x86_64_HOST_ARCH) #define MAP_LOW_MEM #define TRY_MAP_32BIT MAP_32BIT #else #define TRY_MAP_32BIT 0 #endif #if defined(aarch64_HOST_ARCH) // On AArch64 MAP_32BIT is not available but we are still bound by the small // memory model. Consequently we still try using the MAP_LOW_MEM allocation // strategy. #define MAP_LOW_MEM #endif /* * Note [MAP_LOW_MEM] * ~~~~~~~~~~~~~~~~~~ * Due to the small memory model (see above), on x86_64 and AArch64 we have to * map all our non-PIC object files into the low 2Gb of the address space (why * 2Gb and not 4Gb? Because all addresses must be reachable using a 32-bit * signed PC-relative offset). On x86_64 Linux we can do this using the * MAP_32BIT flag to mmap(), however on other OSs (e.g. *BSD, see #2063, and * also on Linux inside Xen, see #2512), we can't do this. So on these * systems, we have to pick a base address in the low 2Gb of the address space * and try to allocate memory from there. * * We pick a default address based on the OS, but also make this * configurable via an RTS flag (+RTS -xm) */ #if defined(MAP_32BIT) || DEFAULT_LINKER_ALWAYS_PIC // Try to use MAP_32BIT #define MMAP_32BIT_BASE_DEFAULT 0 #else // A guess: 1Gb. #define MMAP_32BIT_BASE_DEFAULT 0x40000000 #endif static void *mmap_32bit_base = (void *)MMAP_32BIT_BASE_DEFAULT; static void ghciRemoveSymbolTable(StrHashTable *table, const SymbolName* key, ObjectCode *owner) { RtsSymbolInfo *pinfo = lookupStrHashTable(table, key); if (!pinfo || owner != pinfo->owner) return; removeStrHashTable(table, key, NULL); if (isSymbolImport (owner, key)) stgFree(pinfo->value); stgFree(pinfo); } /* ----------------------------------------------------------------------------- * Insert symbols into hash tables, checking for duplicates. * * Returns: 0 on failure, nonzero on success */ /* Note [weak-symbols-support] ------------------------------------- While ghciInsertSymbolTable does implement extensive logic for weak symbol support, weak symbols are not currently fully supported by the RTS. This code is mostly here for COMDAT support which uses the weak symbols support. Linking weak symbols defined purely in C code with other C code should also work, probably. Observing weak symbols in Haskell won't. Some test have been written for weak symbols but have been disabled mostly because it's unsure how the weak symbols support should look. See #11223 */ int ghciInsertSymbolTable( pathchar* obj_name, StrHashTable *table, const SymbolName* key, SymbolAddr* data, HsBool weak, ObjectCode *owner) { RtsSymbolInfo *pinfo = lookupStrHashTable(table, key); if (!pinfo) /* new entry */ { pinfo = stgMallocBytes(sizeof (*pinfo), "ghciInsertToSymbolTable"); pinfo->value = data; pinfo->owner = owner; pinfo->weak = weak; insertStrHashTable(table, key, pinfo); return 1; } else if (weak && data && pinfo->weak && !pinfo->value) { /* The existing symbol is weak with a zero value; replace it with the new symbol. */ pinfo->value = data; pinfo->owner = owner; return 1; } else if (weak) { return 1; /* weak symbol, because the symbol is weak, data = 0 and we already know of another copy throw this one away. or both weak symbols have a nonzero value. Keep the existing one. This also preserves the semantics of linking against the first symbol we find. */ } else if (pinfo->weak && !weak) /* weak symbol is in the table */ { /* override the weak definition with the non-weak one */ pinfo->value = data; pinfo->owner = owner; pinfo->weak = HS_BOOL_FALSE; return 1; } else if ( pinfo->owner && pinfo->owner->status != OBJECT_RESOLVED && pinfo->owner->status != OBJECT_NEEDED) { /* If the other symbol hasn't been loaded or will be loaded and we want to explicitly load the new one, we can just swap it out and load the one that has been requested. If not, just keep the first one encountered. Because the `symHash' table consists symbols we've also not loaded but found during the initial scan this is safe to do. If however the existing symbol has been loaded then it means we have a duplicate. This is essentially emulating the behavior of a linker wherein it will always link in object files that are .o file arguments, but only take object files from archives as needed. */ if (owner && (owner->status == OBJECT_NEEDED || owner->status == OBJECT_RESOLVED)) { pinfo->value = data; pinfo->owner = owner; pinfo->weak = weak; } return 1; } else if (pinfo->owner == owner) { /* If it's the same symbol, ignore. This makes ghciInsertSymbolTable idempotent */ return 1; } else if (owner && owner->status == OBJECT_LOADED) { /* If the duplicate symbol is just in state OBJECT_LOADED it means we're in discovery of an member. It's not a real duplicate yet. If the Oc Becomes OBJECT_NEEDED then ocTryLoad will call this function again to trigger the duplicate error. */ return 1; } pathchar* archiveName = NULL; debugBelch( "GHC runtime linker: fatal error: I found a duplicate definition for symbol\n" " %s\n" "whilst processing object file\n" " %" PATH_FMT "\n" "The symbol was previously defined in\n" " %" PATH_FMT "\n" "This could be caused by:\n" " * Loading two different object files which export the same symbol\n" " * Specifying the same object file twice on the GHCi command line\n" " * An incorrect `package.conf' entry, causing some object to be\n" " loaded twice.\n", (char*)key, obj_name, pinfo->owner == NULL ? WSTR("(GHCi built-in symbols)") : pinfo->owner->archiveMemberName ? archiveName = mkPath(pinfo->owner->archiveMemberName) : pinfo->owner->fileName ); if (archiveName) { stgFree(archiveName); archiveName = NULL; } return 0; } /* ----------------------------------------------------------------------------- * Looks up symbols into hash tables. * * Returns: 0 on failure and result is not set, * nonzero on success and result set to nonzero pointer */ HsBool ghciLookupSymbolInfo(StrHashTable *table, const SymbolName* key, RtsSymbolInfo **result) { RtsSymbolInfo *pinfo = lookupStrHashTable(table, key); if (!pinfo) { *result = NULL; return HS_BOOL_FALSE; } if (pinfo->weak) IF_DEBUG(linker, debugBelch("lookupSymbolInfo: promoting %s\n", key)); /* Once it's looked up, it can no longer be overridden */ pinfo->weak = HS_BOOL_FALSE; *result = pinfo; return HS_BOOL_TRUE; } /* ----------------------------------------------------------------------------- * initialize the object linker */ static int linker_init_done = 0 ; #if defined(OBJFORMAT_ELF) || defined(OBJFORMAT_MACHO) static void *dl_prog_handle; static regex_t re_invalid; static regex_t re_realso; #if defined(THREADED_RTS) static Mutex dl_mutex; // mutex to protect dlopen/dlerror critical section #endif #endif void initLinker (void) { // default to retaining CAFs for backwards compatibility. Most // users will want initLinker_(0): otherwise unloadObj() will not // be able to unload object files when they contain CAFs. initLinker_(1); } void initLinker_ (int retain_cafs) { RtsSymbolVal *sym; #if defined(OBJFORMAT_ELF) || defined(OBJFORMAT_MACHO) int compileResult; #endif IF_DEBUG(linker, debugBelch("initLinker: start\n")); /* Make initLinker idempotent, so we can call it before every relevant operation; that means we don't need to initialise the linker separately */ if (linker_init_done == 1) { IF_DEBUG(linker, debugBelch("initLinker: idempotent return\n")); return; } else { linker_init_done = 1; } objects = NULL; unloaded_objects = NULL; #if defined(THREADED_RTS) initMutex(&linker_mutex); initMutex(&linker_unloaded_mutex); #if defined(OBJFORMAT_ELF) || defined(OBJFORMAT_MACHO) initMutex(&dl_mutex); #endif #endif symhash = allocStrHashTable(); /* populate the symbol table with stuff from the RTS */ for (sym = rtsSyms; sym->lbl != NULL; sym++) { if (! ghciInsertSymbolTable(WSTR("(GHCi built-in symbols)"), symhash, sym->lbl, sym->addr, sym->weak, NULL)) { barf("ghciInsertSymbolTable failed"); } IF_DEBUG(linker, debugBelch("initLinker: inserting rts symbol %s, %p\n", sym->lbl, sym->addr)); } /* GCC defines a special symbol __dso_handle which is resolved to NULL if referenced from a statically linked module. We need to mimic this, but we cannot use NULL because we use it to mean nonexistent symbols. So we use an arbitrary (hopefully unique) address here. */ if (! ghciInsertSymbolTable(WSTR("(GHCi special symbols)"), symhash, "__dso_handle", (void *)0x12345687, HS_BOOL_FALSE, NULL)) { barf("ghciInsertSymbolTable failed"); } // Redirect newCAF to newRetainedCAF if retain_cafs is true. if (! ghciInsertSymbolTable(WSTR("(GHCi built-in symbols)"), symhash, MAYBE_LEADING_UNDERSCORE_STR("newCAF"), retain_cafs ? newRetainedCAF : newGCdCAF, HS_BOOL_FALSE, NULL)) { barf("ghciInsertSymbolTable failed"); } # if defined(OBJFORMAT_ELF) || defined(OBJFORMAT_MACHO) # if defined(RTLD_DEFAULT) dl_prog_handle = RTLD_DEFAULT; # else dl_prog_handle = dlopen(NULL, RTLD_LAZY); # endif /* RTLD_DEFAULT */ compileResult = regcomp(&re_invalid, "(([^ \t()])+\\.so([^ \t:()])*):([ \t])*(invalid ELF header|file too short|invalid file format|Exec format error)", REG_EXTENDED); if (compileResult != 0) { barf("Compiling re_invalid failed"); } compileResult = regcomp(&re_realso, "(GROUP|INPUT) *\\( *([^ )]+)", REG_EXTENDED); if (compileResult != 0) { barf("Compiling re_realso failed"); } # endif if (RtsFlags.MiscFlags.linkerMemBase != 0) { // User-override for mmap_32bit_base mmap_32bit_base = (void*)RtsFlags.MiscFlags.linkerMemBase; } #if defined(OBJFORMAT_PEi386) initLinker_PEi386(); #endif IF_DEBUG(linker, debugBelch("initLinker: done\n")); return; } void exitLinker( void ) { #if defined(OBJFORMAT_PEi386) exitLinker_PEi386(); #endif #if defined(OBJFORMAT_ELF) || defined(OBJFORMAT_MACHO) if (linker_init_done == 1) { regfree(&re_invalid); regfree(&re_realso); #if defined(THREADED_RTS) closeMutex(&dl_mutex); #endif } #endif if (linker_init_done == 1) { freeStrHashTable(symhash, free); } #if defined(THREADED_RTS) closeMutex(&linker_mutex); #endif } /* ----------------------------------------------------------------------------- * Loading DLL or .so dynamic libraries * ----------------------------------------------------------------------------- * * Add a DLL from which symbols may be found. In the ELF case, just * do RTLD_GLOBAL-style add, so no further messing around needs to * happen in order that symbols in the loaded .so are findable -- * lookupSymbol() will subsequently see them by dlsym on the program's * dl-handle. Returns NULL if success, otherwise ptr to an err msg. * * In the PEi386 case, open the DLLs and put handles to them in a * linked list. When looking for a symbol, try all handles in the * list. This means that we need to load even DLLs that are guaranteed * to be in the ghc.exe image already, just so we can get a handle * to give to loadSymbol, so that we can find the symbols. For such * libraries, the LoadLibrary call should be a no-op except for returning * the handle. * */ # if defined(OBJFORMAT_ELF) || defined(OBJFORMAT_MACHO) /* Suppose in ghci we load a temporary SO for a module containing f = 1 and then modify the module, recompile, and load another temporary SO with f = 2 Then as we don't unload the first SO, dlsym will find the f = 1 symbol whereas we want the f = 2 symbol. We therefore need to keep our own SO handle list, and try SOs in the right order. */ typedef struct _OpenedSO { struct _OpenedSO* next; void *handle; } OpenedSO; /* A list thereof. */ static OpenedSO* openedSOs = NULL; static const char * internal_dlopen(const char *dll_name) { OpenedSO* o_so; void *hdl; const char *errmsg; char *errmsg_copy; // omitted: RTLD_NOW // see http://www.haskell.org/pipermail/cvs-ghc/2007-September/038570.html IF_DEBUG(linker, debugBelch("internal_dlopen: dll_name = '%s'\n", dll_name)); //-------------- Begin critical section ------------------ // This critical section is necessary because dlerror() is not // required to be reentrant (see POSIX -- IEEE Std 1003.1-2008) // Also, the error message returned must be copied to preserve it // (see POSIX also) ACQUIRE_LOCK(&dl_mutex); hdl = dlopen(dll_name, RTLD_LAZY|RTLD_LOCAL); /* see Note [RTLD_LOCAL] */ errmsg = NULL; if (hdl == NULL) { /* dlopen failed; return a ptr to the error msg. */ errmsg = dlerror(); if (errmsg == NULL) errmsg = "addDLL: unknown error"; errmsg_copy = stgMallocBytes(strlen(errmsg)+1, "addDLL"); strcpy(errmsg_copy, errmsg); errmsg = errmsg_copy; } else { o_so = stgMallocBytes(sizeof(OpenedSO), "addDLL"); o_so->handle = hdl; o_so->next = openedSOs; openedSOs = o_so; } RELEASE_LOCK(&dl_mutex); //--------------- End critical section ------------------- return errmsg; } /* Note [RTLD_LOCAL] In GHCi we want to be able to override previous .so's with newly loaded .so's when we recompile something. This further implies that when we look up a symbol in internal_dlsym() we have to iterate through the loaded libraries (in order from most recently loaded to oldest) looking up the symbol in each one until we find it. However, this can cause problems for some symbols that are copied by the linker into the executable image at runtime - see #8935 for a lengthy discussion. To solve that problem we need to look up symbols in the main executable *first*, before attempting to look them up in the loaded .so's. But in order to make that work, we have to always call dlopen with RTLD_LOCAL, so that the loaded libraries don't populate the global symbol table. */ static void * internal_dlsym(const char *symbol) { OpenedSO* o_so; void *v; // We acquire dl_mutex as concurrent dl* calls may alter dlerror ACQUIRE_LOCK(&dl_mutex); dlerror(); // look in program first v = dlsym(dl_prog_handle, symbol); if (dlerror() == NULL) { RELEASE_LOCK(&dl_mutex); return v; } for (o_so = openedSOs; o_so != NULL; o_so = o_so->next) { v = dlsym(o_so->handle, symbol); if (dlerror() == NULL) { RELEASE_LOCK(&dl_mutex); return v; } } RELEASE_LOCK(&dl_mutex); return v; } # endif const char * addDLL( pathchar *dll_name ) { # if defined(OBJFORMAT_ELF) || defined(OBJFORMAT_MACHO) /* ------------------- ELF DLL loader ------------------- */ #define NMATCH 5 regmatch_t match[NMATCH]; const char *errmsg; FILE* fp; size_t match_length; #define MAXLINE 1000 char line[MAXLINE]; int result; IF_DEBUG(linker, debugBelch("addDLL: dll_name = '%s'\n", dll_name)); errmsg = internal_dlopen(dll_name); if (errmsg == NULL) { return NULL; } // GHC #2615 // On some systems (e.g., Gentoo Linux) dynamic files (e.g. libc.so) // contain linker scripts rather than ELF-format object code. This // code handles the situation by recognizing the real object code // file name given in the linker script. // // If an "invalid ELF header" error occurs, it is assumed that the // .so file contains a linker script instead of ELF object code. // In this case, the code looks for the GROUP ( ... ) linker // directive. If one is found, the first file name inside the // parentheses is treated as the name of a dynamic library and the // code attempts to dlopen that file. If this is also unsuccessful, // an error message is returned. // see if the error message is due to an invalid ELF header IF_DEBUG(linker, debugBelch("errmsg = '%s'\n", errmsg)); result = regexec(&re_invalid, errmsg, (size_t) NMATCH, match, 0); IF_DEBUG(linker, debugBelch("result = %i\n", result)); if (result == 0) { // success -- try to read the named file as a linker script match_length = (size_t) stg_min((match[1].rm_eo - match[1].rm_so), MAXLINE-1); strncpy(line, (errmsg+(match[1].rm_so)),match_length); line[match_length] = '\0'; // make sure string is null-terminated IF_DEBUG(linker, debugBelch ("file name = '%s'\n", line)); if ((fp = __rts_fopen(line, "r")) == NULL) { return errmsg; // return original error if open fails } // try to find a GROUP or INPUT ( ... ) command while (fgets(line, MAXLINE, fp) != NULL) { IF_DEBUG(linker, debugBelch("input line = %s", line)); if (regexec(&re_realso, line, (size_t) NMATCH, match, 0) == 0) { // success -- try to dlopen the first named file IF_DEBUG(linker, debugBelch("match%s\n","")); line[match[2].rm_eo] = '\0'; stgFree((void*)errmsg); // Free old message before creating new one errmsg = internal_dlopen(line+match[2].rm_so); break; } // if control reaches here, no GROUP or INPUT ( ... ) directive // was found and the original error message is returned to the // caller } fclose(fp); } return errmsg; # elif defined(OBJFORMAT_PEi386) return addDLL_PEi386(dll_name, NULL); # else barf("addDLL: not implemented on this platform"); # endif } /* ----------------------------------------------------------------------------- * Searches the system directories to determine if there is a system DLL that * satisfies the given name. This prevent GHCi from linking against a static * library if a DLL is available. * * Returns: NULL on failure or no DLL found, else the full path to the DLL * that can be loaded. */ pathchar* findSystemLibrary(pathchar* dll_name) { IF_DEBUG(linker, debugBelch("\nfindSystemLibrary: dll_name = `%" PATH_FMT "'\n", dll_name)); #if defined(OBJFORMAT_PEi386) return findSystemLibrary_PEi386(dll_name); #else (void)(dll_name); // Function not implemented for other platforms. return NULL; #endif } /* ----------------------------------------------------------------------------- * Emits a warning determining that the system is missing a required security * update that we need to get access to the proper APIs */ void warnMissingKBLibraryPaths( void ) { static HsBool missing_update_warn = HS_BOOL_FALSE; if (!missing_update_warn) { debugBelch("Warning: If linking fails, consider installing KB2533623.\n"); missing_update_warn = HS_BOOL_TRUE; } } /* ----------------------------------------------------------------------------- * appends a directory to the process DLL Load path so LoadLibrary can find it * * Returns: NULL on failure, or pointer to be passed to removeLibrarySearchPath to * restore the search path to what it was before this call. */ HsPtr addLibrarySearchPath(pathchar* dll_path) { IF_DEBUG(linker, debugBelch("\naddLibrarySearchPath: dll_path = `%" PATH_FMT "'\n", dll_path)); #if defined(OBJFORMAT_PEi386) return addLibrarySearchPath_PEi386(dll_path); #else (void)(dll_path); // Function not implemented for other platforms. return NULL; #endif } /* ----------------------------------------------------------------------------- * removes a directory from the process DLL Load path * * Returns: HS_BOOL_TRUE on success, otherwise HS_BOOL_FALSE */ HsBool removeLibrarySearchPath(HsPtr dll_path_index) { IF_DEBUG(linker, debugBelch("\nremoveLibrarySearchPath: ptr = `%p'\n", dll_path_index)); #if defined(OBJFORMAT_PEi386) return removeLibrarySearchPath_PEi386(dll_path_index); #else (void)(dll_path_index); // Function not implemented for other platforms. return HS_BOOL_FALSE; #endif } /* ----------------------------------------------------------------------------- * insert a symbol in the hash table * * Returns: 0 on failure, nonzero on success */ HsInt insertSymbol(pathchar* obj_name, SymbolName* key, SymbolAddr* data) { return ghciInsertSymbolTable(obj_name, symhash, key, data, HS_BOOL_FALSE, NULL); } /* ----------------------------------------------------------------------------- * lookup a symbol in the hash table */ #if defined(OBJFORMAT_PEi386) SymbolAddr* lookupSymbol_ (SymbolName* lbl) { return lookupSymbol_PEi386(lbl); } #else SymbolAddr* lookupSymbol_ (SymbolName* lbl) { IF_DEBUG(linker, debugBelch("lookupSymbol: looking up %s\n", lbl)); ASSERT(symhash != NULL); RtsSymbolInfo *pinfo; if (!ghciLookupSymbolInfo(symhash, lbl, &pinfo)) { IF_DEBUG(linker, debugBelch("lookupSymbol: symbol not found\n")); # if defined(OBJFORMAT_ELF) return internal_dlsym(lbl); # elif defined(OBJFORMAT_MACHO) /* HACK: On OS X, all symbols are prefixed with an underscore. However, dlsym wants us to omit the leading underscore from the symbol name -- the dlsym routine puts it back on before searching for the symbol. For now, we simply strip it off here (and ONLY here). */ IF_DEBUG(linker, debugBelch("lookupSymbol: looking up %s with dlsym\n", lbl)); ASSERT(lbl[0] == '_'); return internal_dlsym(lbl + 1); # else ASSERT(2+2 == 5); return NULL; # endif } else { return loadSymbol(lbl, pinfo); } } #endif /* OBJFORMAT_PEi386 */ /* * Load and relocate the object code for a symbol as necessary. * Symbol name only used for diagnostics output. */ SymbolAddr* loadSymbol(SymbolName *lbl, RtsSymbolInfo *pinfo) { IF_DEBUG(linker, debugBelch("lookupSymbol: value of %s is %p, owned by %s\n", lbl, pinfo->value, pinfo->owner ? OC_INFORMATIVE_FILENAME(pinfo->owner) : "No owner, probably built-in.")); ObjectCode* oc = pinfo->owner; /* Symbol can be found during linking, but hasn't been relocated. Do so now. See Note [runtime-linker-phases] */ if (oc && lbl && oc->status == OBJECT_LOADED) { oc->status = OBJECT_NEEDED; IF_DEBUG(linker, debugBelch("lookupSymbol: on-demand " "loading symbol '%s'\n", lbl)); int r = ocTryLoad(oc); if (!r) { return NULL; } #if defined(PROFILING) // collect any new cost centres & CCSs // that were defined during runInit refreshProfilingCCSs(); #endif } return pinfo->value; } void printLoadedObjects() { ObjectCode* oc; for (oc = objects; oc; oc = oc->next) { if (oc->sections != NULL) { int i; printf("%s\n", OC_INFORMATIVE_FILENAME(oc)); for (i=0; i < oc->n_sections; i++) { if(oc->sections[i].mapped_start != NULL || oc->sections[i].start != NULL) { printf("\tsec %2d[alloc: %d; kind: %d]: %p - %p; mmaped: %p - %p\n", i, oc->sections[i].alloc, oc->sections[i].kind, oc->sections[i].start, (void*)((uintptr_t)(oc->sections[i].start) + oc->sections[i].size), oc->sections[i].mapped_start, (void*)((uintptr_t)(oc->sections[i].mapped_start) + oc->sections[i].mapped_size)); } } } } } SymbolAddr* lookupSymbol( SymbolName* lbl ) { ACQUIRE_LOCK(&linker_mutex); SymbolAddr* r = lookupSymbol_(lbl); if (!r) { errorBelch("^^ Could not load '%s', dependency unresolved. " "See top entry above.\n", lbl); IF_DEBUG(linker, printLoadedObjects()); fflush(stderr); } RELEASE_LOCK(&linker_mutex); return r; } /* ----------------------------------------------------------------------------- Create a StablePtr for a foreign export. This is normally called by a C function with __attribute__((constructor)), which is generated by GHC and linked into the module. If the object code is being loaded dynamically, then we remember which StablePtrs were allocated by the constructors and free them again in unloadObj(). -------------------------------------------------------------------------- */ static ObjectCode *loading_obj = NULL; StgStablePtr foreignExportStablePtr (StgPtr p) { ForeignExportStablePtr *fe_sptr; StgStablePtr *sptr; sptr = getStablePtr(p); if (loading_obj != NULL) { fe_sptr = stgMallocBytes(sizeof(ForeignExportStablePtr), "foreignExportStablePtr"); fe_sptr->stable_ptr = sptr; fe_sptr->next = loading_obj->stable_ptrs; loading_obj->stable_ptrs = fe_sptr; } return sptr; } /* ----------------------------------------------------------------------------- * Debugging aid: look in GHCi's object symbol tables for symbols * within DELTA bytes of the specified address, and show their names. */ #if defined(DEBUG) void ghci_enquire ( SymbolAddr* addr ); void ghci_enquire(SymbolAddr* addr) { int i; SymbolName* sym; RtsSymbolInfo* a; const int DELTA = 64; ObjectCode* oc; for (oc = objects; oc; oc = oc->next) { for (i = 0; i < oc->n_symbols; i++) { sym = oc->symbols[i].name; if (sym == NULL) continue; a = NULL; if (a == NULL) { ghciLookupSymbolInfo(symhash, sym, &a); } if (a == NULL) { // debugBelch("ghci_enquire: can't find %s\n", sym); } else if ( a->value && (char*)addr-DELTA <= (char*)a->value && (char*)a->value <= (char*)addr+DELTA) { debugBelch("%p + %3d == `%s'\n", addr, (int)((char*)a->value - (char*)addr), sym); } } } } #endif pathchar* resolveSymbolAddr (pathchar* buffer, int size, SymbolAddr* symbol, uintptr_t* top) { #if defined(OBJFORMAT_PEi386) return resolveSymbolAddr_PEi386 (buffer, size, symbol, top); #else /* OBJFORMAT_PEi386 */ (void)buffer; (void)size; (void)symbol; (void)top; return NULL; #endif /* OBJFORMAT_PEi386 */ } #if RTS_LINKER_USE_MMAP // // Returns NULL on failure. // void * mmapForLinker (size_t bytes, uint32_t flags, int fd, int offset) { void *map_addr = NULL; void *result; size_t size; uint32_t tryMap32Bit = RtsFlags.MiscFlags.linkerAlwaysPic ? 0 : TRY_MAP_32BIT; static uint32_t fixed = 0; IF_DEBUG(linker, debugBelch("mmapForLinker: start\n")); size = roundUpToPage(bytes); #if defined(MAP_LOW_MEM) mmap_again: #endif if (mmap_32bit_base != 0) { map_addr = mmap_32bit_base; } const int prot = PROT_READ | PROT_WRITE; IF_DEBUG(linker, debugBelch("mmapForLinker: \tprotection %#0x\n", prot)); IF_DEBUG(linker, debugBelch("mmapForLinker: \tflags %#0x\n", MAP_PRIVATE | tryMap32Bit | fixed | flags)); result = mmap(map_addr, size, prot, MAP_PRIVATE|tryMap32Bit|fixed|flags, fd, offset); if (result == MAP_FAILED) { sysErrorBelch("mmap %" FMT_Word " bytes at %p",(W_)size,map_addr); errorBelch("Try specifying an address with +RTS -xm -RTS"); return NULL; } #if defined(MAP_LOW_MEM) if (RtsFlags.MiscFlags.linkerAlwaysPic) { } else if (mmap_32bit_base != 0) { if (result == map_addr) { mmap_32bit_base = (StgWord8*)map_addr + size; } else { if ((W_)result > 0x80000000) { // oops, we were given memory over 2Gb munmap(result,size); #if defined(freebsd_HOST_OS) || \ defined(kfreebsdgnu_HOST_OS) || \ defined(dragonfly_HOST_OS) // Some platforms require MAP_FIXED. This is normally // a bad idea, because MAP_FIXED will overwrite // existing mappings. fixed = MAP_FIXED; goto mmap_again; #else errorBelch("loadObj: failed to mmap() memory below 2Gb; " "asked for %lu bytes at %p. " "Try specifying an address with +RTS -xm -RTS", size, map_addr); return NULL; #endif } else { // hmm, we were given memory somewhere else, but it's // still under 2Gb so we can use it. Next time, ask // for memory right after the place we just got some mmap_32bit_base = (StgWord8*)result + size; } } } else { if ((W_)result > 0x80000000) { // oops, we were given memory over 2Gb // ... try allocating memory somewhere else?; debugTrace(DEBUG_linker, "MAP_32BIT didn't work; gave us %lu bytes at 0x%p", bytes, result); munmap(result, size); // Set a base address and try again... (guess: 1Gb) mmap_32bit_base = (void*)0x40000000; goto mmap_again; } } #endif IF_DEBUG(linker, debugBelch("mmapForLinker: mapped %" FMT_Word " bytes starting at %p\n", (W_)size, result)); IF_DEBUG(linker, debugBelch("mmapForLinker: done\n")); return result; } /* Note [Memory protection in the linker] * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * For many years the linker would simply map all of its memory * with PROT_READ|PROT_WRITE|PROT_EXEC. However operating systems have been * becoming increasingly reluctant to accept this practice (e.g. #17353, * #12657) and for good reason: writable code is ripe for exploitation. * * Consequently mmapForLinker now maps its memory with PROT_READ|PROT_WRITE. * After the linker has finished filling/relocating the mapping it must then * call mmapForLinkerMarkExecutable on the sections of the mapping which * contain executable code. * * Note that the m32 allocator handles protection of its allocations. For this * reason the caller to m32_alloc() must tell the allocator whether the * allocation needs to be executable. The caller must then ensure that they * call m32_flush() after they are finished filling the region, which will * cause the allocator to change the protection bits to PROT_READ|PROT_EXEC. * */ /* * Mark an portion of a mapping previously reserved by mmapForLinker * as executable (but not writable). */ void mmapForLinkerMarkExecutable(void *start, size_t len) { IF_DEBUG(linker, debugBelch("mmapForLinkerMarkExecutable: protecting %" FMT_Word " bytes starting at %p\n", (W_)len, start)); if (mprotect(start, len, PROT_READ|PROT_EXEC) == -1) { barf("mmapForLinkerMarkExecutable: mprotect: %s\n", strerror(errno)); } } #endif /* * Remove symbols from the symbol table, and free oc->symbols. * This operation is idempotent. */ static void removeOcSymbols (ObjectCode *oc) { if (oc->symbols == NULL) return; // Remove all the mappings for the symbols within this object.. int i; for (i = 0; i < oc->n_symbols; i++) { if (oc->symbols[i].name != NULL) { ghciRemoveSymbolTable(symhash, oc->symbols[i].name, oc); } } stgFree(oc->symbols); oc->symbols = NULL; } /* * Release StablePtrs and free oc->stable_ptrs. * This operation is idempotent. */ static void freeOcStablePtrs (ObjectCode *oc) { // Release any StablePtrs that were created when this // object module was initialized. ForeignExportStablePtr *fe_ptr, *next; for (fe_ptr = oc->stable_ptrs; fe_ptr != NULL; fe_ptr = next) { next = fe_ptr->next; freeStablePtr(fe_ptr->stable_ptr); stgFree(fe_ptr); } oc->stable_ptrs = NULL; } static void freePreloadObjectFile (ObjectCode *oc) { #if defined(mingw32_HOST_OS) freePreloadObjectFile_PEi386(oc); #else if (RTS_LINKER_USE_MMAP && oc->imageMapped) { munmap(oc->image, oc->fileSize); } else { stgFree(oc->image); } #endif oc->image = NULL; oc->fileSize = 0; } /* * freeObjectCode() releases all the pieces of an ObjectCode. It is called by * the GC when a previously unloaded ObjectCode has been determined to be * unused, and when an error occurs during loadObj(). */ void freeObjectCode (ObjectCode *oc) { freePreloadObjectFile(oc); if (oc->symbols != NULL) { stgFree(oc->symbols); oc->symbols = NULL; } if (oc->extraInfos != NULL) { freeStrHashTable(oc->extraInfos, NULL); oc->extraInfos = NULL; } if (oc->sections != NULL) { int i; for (i=0; i < oc->n_sections; i++) { if (oc->sections[i].start != NULL) { switch(oc->sections[i].alloc){ #if RTS_LINKER_USE_MMAP case SECTION_MMAP: munmap(oc->sections[i].mapped_start, oc->sections[i].mapped_size); break; case SECTION_M32: IF_DEBUG(zero_on_gc, memset(oc->sections[i].start, 0x00, oc->sections[i].size)); // Freed by m32_allocator_free break; #endif case SECTION_MALLOC: IF_DEBUG(zero_on_gc, memset(oc->sections[i].start, 0x00, oc->sections[i].size)); stgFree(oc->sections[i].start); break; default: break; } } if (oc->sections[i].info) { stgFree(oc->sections[i].info); } } stgFree(oc->sections); } freeProddableBlocks(oc); freeSegments(oc); /* Free symbol_extras. On x86_64 Windows, symbol_extras are allocated * alongside the image, so we don't need to free. */ #if defined(NEED_SYMBOL_EXTRAS) && (!defined(x86_64_HOST_ARCH) \ || !defined(mingw32_HOST_OS)) if (RTS_LINKER_USE_MMAP) { if (!USE_CONTIGUOUS_MMAP && !RtsFlags.MiscFlags.linkerAlwaysPic && oc->symbol_extras != NULL) { // Freed by m32_allocator_free } } else { stgFree(oc->symbol_extras); } #endif #if defined(OBJECTFORMAT_MACHO) ocDeinit_MachO(oc); #endif #if defined(OBJFORMAT_ELF) ocDeinit_ELF(oc); #endif #if RTS_LINKER_USE_MMAP == 1 m32_allocator_free(oc->rx_m32); m32_allocator_free(oc->rw_m32); #endif stgFree(oc->fileName); stgFree(oc->archiveMemberName); stgFree(oc); } /* ----------------------------------------------------------------------------- * Sets the initial status of a fresh ObjectCode */ static void setOcInitialStatus(ObjectCode* oc) { /* If a target has requested the ObjectCode not to be resolved then honor this requests. Usually this means the ObjectCode has not been initialized and can't be. */ if (oc->status == OBJECT_DONT_RESOLVE) return; if (oc->archiveMemberName == NULL) { oc->status = OBJECT_NEEDED; } else { oc->status = OBJECT_LOADED; } } ObjectCode* mkOc( pathchar *path, char *image, int imageSize, bool mapped, char *archiveMemberName, int misalignment ) { ObjectCode* oc; IF_DEBUG(linker, debugBelch("mkOc: start\n")); oc = stgMallocBytes(sizeof(ObjectCode), "mkOc(oc)"); oc->info = NULL; # if defined(OBJFORMAT_ELF) oc->formatName = "ELF"; # elif defined(OBJFORMAT_PEi386) oc->formatName = "PEi386"; # elif defined(OBJFORMAT_MACHO) oc->formatName = "Mach-O"; # else stgFree(oc); barf("loadObj: not implemented on this platform"); # endif oc->image = image; oc->fileName = pathdup(path); if (archiveMemberName) { oc->archiveMemberName = stgMallocBytes( strlen(archiveMemberName)+1, "loadObj" ); strcpy(oc->archiveMemberName, archiveMemberName); } else { oc->archiveMemberName = NULL; } setOcInitialStatus( oc ); oc->fileSize = imageSize; oc->n_symbols = 0; oc->symbols = NULL; oc->n_sections = 0; oc->sections = NULL; oc->n_segments = 0; oc->segments = NULL; oc->proddables = NULL; oc->stable_ptrs = NULL; #if defined(NEED_SYMBOL_EXTRAS) oc->symbol_extras = NULL; #endif oc->bssBegin = NULL; oc->bssEnd = NULL; oc->imageMapped = mapped; oc->misalignment = misalignment; oc->extraInfos = NULL; /* chain it onto the list of objects */ oc->next = NULL; #if RTS_LINKER_USE_MMAP oc->rw_m32 = m32_allocator_new(false); oc->rx_m32 = m32_allocator_new(true); #endif IF_DEBUG(linker, debugBelch("mkOc: done\n")); return oc; } /* ----------------------------------------------------------------------------- * Check if an object or archive is already loaded. * * Returns: 1 if the path is already loaded, 0 otherwise. */ HsInt isAlreadyLoaded( pathchar *path ) { ObjectCode *o; for (o = objects; o; o = o->next) { if (0 == pathcmp(o->fileName, path)) { return 1; /* already loaded */ } } return 0; /* not loaded yet */ } // // Load the object file into memory. This will not be its final resting place, // as on 64-bit platforms we need to map its segments into the low 2Gb of the // address space, properly aligned. // static ObjectCode * preloadObjectFile (pathchar *path) { int fileSize; struct_stat st; int r; void *image; ObjectCode *oc; int misalignment = 0; r = pathstat(path, &st); if (r == -1) { errorBelch("loadObj: %" PATH_FMT ": file doesn't exist", path); return NULL; } fileSize = st.st_size; #if RTS_LINKER_USE_MMAP int fd; /* On many architectures malloc'd memory isn't executable, so we need to use * mmap. */ #if defined(openbsd_HOST_OS) fd = open(path, O_RDONLY, S_IRUSR); #else fd = open(path, O_RDONLY); #endif if (fd == -1) { errorBelch("loadObj: can't open %s", path); return NULL; } /* iOS does not permit to mmap with r+w+x, however while the comment for * this function says this is not the final resting place, for some * architectures / hosts (at least mach-o non-iOS -- see ocGetNames_MachO) * the image mmaped here in fact ends up being the final resting place for * the sections. And hence we need to leave r+w+x here for other hosts * until all hosts have been made aware of the initial image being r+w only. * * See also the misalignment logic for darwin below. */ #if defined(ios_HOST_OS) image = mmap(NULL, fileSize, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0); #else image = mmap(NULL, fileSize, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0); #endif if (image == MAP_FAILED) { errorBelch("mmap: failed. errno = %d", errno); } // not 32-bit yet, we'll remap later close(fd); #else /* !RTS_LINKER_USE_MMAP */ FILE *f; /* load the image into memory */ /* coverity[toctou] */ f = pathopen(path, WSTR("rb")); if (!f) { errorBelch("loadObj: can't preload `%" PATH_FMT "'", path); return NULL; } # if defined(darwin_HOST_OS) // In a Mach-O .o file, all sections can and will be misaligned // if the total size of the headers is not a multiple of the // desired alignment. This is fine for .o files that only serve // as input for the static linker, but it's not fine for us, // as SSE (used by gcc for floating point) and Altivec require // 16-byte alignment. // We calculate the correct alignment from the header before // reading the file, and then we misalign image on purpose so // that the actual sections end up aligned again. misalignment = machoGetMisalignment(f); image = stgMallocBytes(fileSize + misalignment, "loadObj(image)"); image += misalignment; # else /* !defined(darwin_HOST_OS) */ image = stgMallocBytes(fileSize, "loadObj(image)"); #endif int n; n = fread ( image, 1, fileSize, f ); fclose(f); if (n != fileSize) { errorBelch("loadObj: error whilst reading `%" PATH_FMT "'", path); stgFree(image); return NULL; } #endif /* RTS_LINKER_USE_MMAP */ IF_DEBUG(linker, debugBelch("loadObj: preloaded image at %p\n", (void *) image)); /* FIXME (AP): =mapped= parameter unconditionally set to true */ oc = mkOc(path, image, fileSize, true, NULL, misalignment); #if defined(OBJFORMAT_MACHO) if (ocVerifyImage_MachO( oc )) ocInit_MachO( oc ); #endif #if defined(OBJFORMAT_ELF) if(ocVerifyImage_ELF( oc )) ocInit_ELF( oc ); #endif return oc; } /* ----------------------------------------------------------------------------- * Load an obj (populate the global symbol table, but don't resolve yet) * * Returns: 1 if ok, 0 on error. */ static HsInt loadObj_ (pathchar *path) { ObjectCode* oc; IF_DEBUG(linker, debugBelch("loadObj: %" PATH_FMT "\n", path)); /* debugBelch("loadObj %s\n", path ); */ /* Check that we haven't already loaded this object. Ignore requests to load multiple times */ if (isAlreadyLoaded(path)) { IF_DEBUG(linker, debugBelch("ignoring repeated load of %" PATH_FMT "\n", path)); return 1; /* success */ } oc = preloadObjectFile(path); if (oc == NULL) return 0; if (! loadOc(oc)) { // failed; free everything we've allocated removeOcSymbols(oc); // no need to freeOcStablePtrs, they aren't created until resolveObjs() freeObjectCode(oc); return 0; } oc->next = objects; objects = oc; return 1; } HsInt loadObj (pathchar *path) { ACQUIRE_LOCK(&linker_mutex); HsInt r = loadObj_(path); RELEASE_LOCK(&linker_mutex); return r; } HsInt loadOc (ObjectCode* oc) { int r; IF_DEBUG(linker, debugBelch("loadOc: start\n")); /* verify the in-memory image */ # if defined(OBJFORMAT_ELF) r = ocVerifyImage_ELF ( oc ); # elif defined(OBJFORMAT_PEi386) r = ocVerifyImage_PEi386 ( oc ); # elif defined(OBJFORMAT_MACHO) r = ocVerifyImage_MachO ( oc ); # else barf("loadObj: no verify method"); # endif if (!r) { IF_DEBUG(linker, debugBelch("loadOc: ocVerifyImage_* failed\n")); return r; } /* Note [loadOc orderings] The order of `ocAllocateExtras` and `ocGetNames` matters. For MachO and ELF, `ocInit` and `ocGetNames` initialize a bunch of pointers based on the offset to `oc->image`, but `ocAllocateExtras` may relocate the address of `oc->image` and invalidate those pointers. So we must compute or recompute those pointers after `ocAllocateExtras`. On Windows, when we have an import library we (for now, as we don't honor the lazy loading semantics of the library and instead GHCi is already lazy) don't use the library after ocGetNames as it just populates the symbol table. Allocating space for jump tables in ocAllocateExtras would just be a waste then as we'll be stopping further processing of the library in the next few steps. If necessary, the actual allocation happens in `ocGetNames_PEi386` and `ocAllocateExtras_PEi386` simply set the correct pointers. */ #if defined(NEED_SYMBOL_EXTRAS) # if defined(OBJFORMAT_MACHO) r = ocAllocateExtras_MachO ( oc ); if (!r) { IF_DEBUG(linker, debugBelch("loadOc: ocAllocateExtras_MachO failed\n")); return r; } # elif defined(OBJFORMAT_ELF) r = ocAllocateExtras_ELF ( oc ); if (!r) { IF_DEBUG(linker, debugBelch("loadOc: ocAllocateExtras_ELF failed\n")); return r; } # endif #endif /* build the symbol list for this image */ # if defined(OBJFORMAT_ELF) r = ocGetNames_ELF ( oc ); # elif defined(OBJFORMAT_PEi386) r = ocGetNames_PEi386 ( oc ); # elif defined(OBJFORMAT_MACHO) r = ocGetNames_MachO ( oc ); # else barf("loadObj: no getNames method"); # endif if (!r) { IF_DEBUG(linker, debugBelch("loadOc: ocGetNames_* failed\n")); return r; } #if defined(NEED_SYMBOL_EXTRAS) # if defined(OBJFORMAT_PEi386) ocAllocateExtras_PEi386 ( oc ); # endif #endif /* loaded, but not resolved yet, ensure the OC is in a consistent state */ setOcInitialStatus( oc ); IF_DEBUG(linker, debugBelch("loadOc: done.\n")); return 1; } /* ----------------------------------------------------------------------------- * try to load and initialize an ObjectCode into memory * * Returns: 1 if ok, 0 on error. */ int ocTryLoad (ObjectCode* oc) { int r; if (oc->status != OBJECT_NEEDED) { return 1; } /* Check for duplicate symbols by looking into `symhash`. Duplicate symbols are any symbols which exist in different ObjectCodes that have both been loaded, or are to be loaded by this call. This call is intended to have no side-effects when a non-duplicate symbol is re-inserted. A symbol is only a duplicate if the object file it is defined in has had it's relocations resolved. A resolved object file means the symbols inside it are required. The symbol address is not used to distinguish symbols. Duplicate symbols are distinguished by name, oc and attributes (weak symbols etc). */ int x; Symbol_t symbol; for (x = 0; x < oc->n_symbols; x++) { symbol = oc->symbols[x]; if ( symbol.name && !ghciInsertSymbolTable(oc->fileName, symhash, symbol.name, symbol.addr, isSymbolWeak(oc, symbol.name), oc)) { return 0; } } # if defined(OBJFORMAT_ELF) r = ocResolve_ELF ( oc ); # elif defined(OBJFORMAT_PEi386) r = ocResolve_PEi386 ( oc ); # elif defined(OBJFORMAT_MACHO) r = ocResolve_MachO ( oc ); # else barf("ocTryLoad: not implemented on this platform"); # endif if (!r) { return r; } #if defined(NEED_SYMBOL_EXTRAS) ocProtectExtras(oc); #endif // We have finished loading and relocating; flush the m32 allocators to // setup page protections. #if RTS_LINKER_USE_MMAP m32_allocator_flush(oc->rx_m32); m32_allocator_flush(oc->rw_m32); #endif // run init/init_array/ctors/mod_init_func IF_DEBUG(linker, debugBelch("ocTryLoad: ocRunInit start\n")); loading_obj = oc; // tells foreignExportStablePtr what to do #if defined(OBJFORMAT_ELF) r = ocRunInit_ELF ( oc ); #elif defined(OBJFORMAT_PEi386) r = ocRunInit_PEi386 ( oc ); #elif defined(OBJFORMAT_MACHO) r = ocRunInit_MachO ( oc ); #else barf("ocTryLoad: initializers not implemented on this platform"); #endif loading_obj = NULL; if (!r) { return r; } oc->status = OBJECT_RESOLVED; return 1; } /* ----------------------------------------------------------------------------- * resolve all the currently unlinked objects in memory * * Returns: 1 if ok, 0 on error. */ static HsInt resolveObjs_ (void) { ObjectCode *oc; int r; IF_DEBUG(linker, debugBelch("resolveObjs: start\n")); for (oc = objects; oc; oc = oc->next) { r = ocTryLoad(oc); if (!r) { errorBelch("Could not load Object Code %s.\n", OC_INFORMATIVE_FILENAME(oc)); IF_DEBUG(linker, printLoadedObjects()); fflush(stderr); return r; } } #if defined(PROFILING) // collect any new cost centres & CCSs that were defined during runInit refreshProfilingCCSs(); #endif IF_DEBUG(linker, debugBelch("resolveObjs: done\n")); return 1; } HsInt resolveObjs (void) { ACQUIRE_LOCK(&linker_mutex); HsInt r = resolveObjs_(); RELEASE_LOCK(&linker_mutex); return r; } /* ----------------------------------------------------------------------------- * delete an object from the pool */ static HsInt unloadObj_ (pathchar *path, bool just_purge) { ObjectCode *oc, *prev, *next; HsBool unloadedAnyObj = HS_BOOL_FALSE; ASSERT(symhash != NULL); ASSERT(objects != NULL); IF_DEBUG(linker, debugBelch("unloadObj: %" PATH_FMT "\n", path)); prev = NULL; for (oc = objects; oc; oc = next) { next = oc->next; // oc might be freed if (!pathcmp(oc->fileName,path)) { // these are both idempotent, so in just_purge mode we can // later call unloadObj() to really unload the object. removeOcSymbols(oc); freeOcStablePtrs(oc); if (!just_purge) { if (prev == NULL) { objects = oc->next; } else { prev->next = oc->next; } ACQUIRE_LOCK(&linker_unloaded_mutex); oc->next = unloaded_objects; unloaded_objects = oc; oc->status = OBJECT_UNLOADED; RELEASE_LOCK(&linker_unloaded_mutex); // We do not own oc any more; it can be released at any time by // the GC in checkUnload(). } else { prev = oc; } /* This could be a member of an archive so continue * unloading other members. */ unloadedAnyObj = HS_BOOL_TRUE; } else { prev = oc; } } if (unloadedAnyObj) { return 1; } else { errorBelch("unloadObj: can't find `%" PATH_FMT "' to unload", path); return 0; } } HsInt unloadObj (pathchar *path) { ACQUIRE_LOCK(&linker_mutex); HsInt r = unloadObj_(path, false); RELEASE_LOCK(&linker_mutex); return r; } HsInt purgeObj (pathchar *path) { ACQUIRE_LOCK(&linker_mutex); HsInt r = unloadObj_(path, true); RELEASE_LOCK(&linker_mutex); return r; } static OStatus getObjectLoadStatus_ (pathchar *path) { ObjectCode *o; for (o = objects; o; o = o->next) { if (0 == pathcmp(o->fileName, path)) { return o->status; } } for (o = unloaded_objects; o; o = o->next) { if (0 == pathcmp(o->fileName, path)) { return o->status; } } return OBJECT_NOT_LOADED; } OStatus getObjectLoadStatus (pathchar *path) { ACQUIRE_LOCK(&linker_mutex); OStatus r = getObjectLoadStatus_(path); RELEASE_LOCK(&linker_mutex); return r; } /* ----------------------------------------------------------------------------- * Sanity checking. For each ObjectCode, maintain a list of address ranges * which may be prodded during relocation, and abort if we try and write * outside any of these. */ void addProddableBlock ( ObjectCode* oc, void* start, int size ) { ProddableBlock* pb = stgMallocBytes(sizeof(ProddableBlock), "addProddableBlock"); IF_DEBUG(linker, debugBelch("addProddableBlock: %p %p %d\n", oc, start, size)); ASSERT(size > 0); pb->start = start; pb->size = size; pb->next = oc->proddables; oc->proddables = pb; } void checkProddableBlock (ObjectCode *oc, void *addr, size_t size ) { ProddableBlock* pb; for (pb = oc->proddables; pb != NULL; pb = pb->next) { char* s = (char*)(pb->start); char* e = s + pb->size; char* a = (char*)addr; if (a >= s && (a+size) <= e) return; } barf("checkProddableBlock: invalid fixup in runtime linker: %p", addr); } void freeProddableBlocks (ObjectCode *oc) { ProddableBlock *pb, *next; for (pb = oc->proddables; pb != NULL; pb = next) { next = pb->next; stgFree(pb); } oc->proddables = NULL; } /* ----------------------------------------------------------------------------- * Section management. */ void addSection (Section *s, SectionKind kind, SectionAlloc alloc, void* start, StgWord size, StgWord mapped_offset, void* mapped_start, StgWord mapped_size) { s->start = start; /* actual start of section in memory */ s->size = size; /* actual size of section in memory */ s->kind = kind; s->alloc = alloc; s->mapped_offset = mapped_offset; /* offset from the image of mapped_start */ s->mapped_start = mapped_start; /* start of mmap() block */ s->mapped_size = mapped_size; /* size of mmap() block */ if (!s->info) s->info = (struct SectionFormatInfo*)stgCallocBytes(1, sizeof *s->info, "addSection(SectionFormatInfo)"); IF_DEBUG(linker, debugBelch("addSection: %p-%p (size %" FMT_Word "), kind %d\n", start, (void*)((StgWord)start + size), size, kind )); } /* ----------------------------------------------------------------------------- * Segment management */ void initSegment (Segment *s, void *start, size_t size, SegmentProt prot, int n_sections) { s->start = start; s->size = size; s->prot = prot; s->sections_idx = (int *)stgCallocBytes(n_sections, sizeof(int), "initSegment(segment)"); s->n_sections = n_sections; } void freeSegments (ObjectCode *oc) { if (oc->segments != NULL) { IF_DEBUG(linker, debugBelch("freeSegments: freeing %d segments\n", oc->n_segments)); for (int i = 0; i < oc->n_segments; i++) { Segment *s = &oc->segments[i]; IF_DEBUG(linker, debugBelch("freeSegments: freeing segment %d at %p size %zu\n", i, s->start, s->size)); stgFree(s->sections_idx); s->sections_idx = NULL; if (0 == s->size) { IF_DEBUG(linker, debugBelch("freeSegment: skipping segment of 0 size\n")); continue; } else { #if RTS_LINKER_USE_MMAP CHECKM(0 == munmap(s->start, s->size), "freeSegments: failed to unmap memory"); #else stgFree(s->start); #endif } s->start = NULL; } stgFree(oc->segments); oc->segments = NULL; } }