/* ---------------------------------------------------------------------------- * * (c) The GHC Team, 1998-2003 * * Support for heap profiling * * --------------------------------------------------------------------------*/ #include "PosixSource.h" #include "Rts.h" #include "Capability.h" #include "RtsFlags.h" #include "RtsUtils.h" #include "Profiling.h" #include "ProfHeap.h" #include "Stats.h" #include "Hash.h" #include "RetainerProfile.h" #include "LdvProfile.h" #include "Arena.h" #include "Printer.h" #include "Trace.h" #include "sm/GCThread.h" #include #include FILE *hp_file; static char *hp_filename; /* heap profile (hp2ps style) log file */ /* ----------------------------------------------------------------------------- * era stores the current time period. It is the same as the * number of censuses that have been performed. * * RESTRICTION: * era must be no longer than LDV_SHIFT (15 or 30) bits. * Invariants: * era is initialized to 1 in initHeapProfiling(). * * max_era is initialized to 2^LDV_SHIFT in initHeapProfiling(). * When era reaches max_era, the profiling stops because a closure can * store only up to (max_era - 1) as its creation or last use time. * -------------------------------------------------------------------------- */ unsigned int era; static uint32_t max_era; /* ----------------------------------------------------------------------------- * Counters * * For most heap profiles each closure identity gets a simple count * of live words in the heap at each census. However, if we're * selecting by biography, then we have to keep the various * lag/drag/void counters for each identity. * -------------------------------------------------------------------------- */ typedef struct _counter { const void *identity; union { ssize_t resid; struct { // Total sizes of: ssize_t prim; // 'inherently used' closures ssize_t not_used; // 'never used' closures ssize_t used; // 'used at least once' closures ssize_t void_total; // 'destroyed without being used' closures ssize_t drag_total; // 'used at least once and waiting to die' } ldv; } c; struct _counter *next; } counter; STATIC_INLINE void initLDVCtr( counter *ctr ) { ctr->c.ldv.prim = 0; ctr->c.ldv.not_used = 0; ctr->c.ldv.used = 0; ctr->c.ldv.void_total = 0; ctr->c.ldv.drag_total = 0; } typedef struct { double time; // the time in MUT time when the census is made StgWord64 rtime; // The eventlog time the census was made. This is used // for the LDV profiling events because they are all // emitted at the end of compilation so we need to know // when the sample actually took place. HashTable * hash; counter * ctrs; Arena * arena; // for LDV profiling, when just displaying by LDV ssize_t prim; ssize_t not_used; ssize_t used; ssize_t void_total; ssize_t drag_total; } Census; static Census *censuses = NULL; static uint32_t n_censuses = 0; #if defined(PROFILING) static void aggregateCensusInfo( void ); #endif static void dumpCensus( Census *census ); static bool closureSatisfiesConstraints( const StgClosure* p ); /* ---------------------------------------------------------------------------- * Find the "closure identity", which is a unique pointer representing * the band to which this closure's heap space is attributed in the * heap profile. * ------------------------------------------------------------------------- */ static const void * closureIdentity( const StgClosure *p ) { switch (RtsFlags.ProfFlags.doHeapProfile) { #if defined(PROFILING) case HEAP_BY_CCS: return p->header.prof.ccs; case HEAP_BY_MOD: return p->header.prof.ccs->cc->module; case HEAP_BY_DESCR: return GET_PROF_DESC(get_itbl(p)); case HEAP_BY_TYPE: return GET_PROF_TYPE(get_itbl(p)); case HEAP_BY_RETAINER: // AFAIK, the only closures in the heap which might not have a // valid retainer set are DEAD_WEAK closures. if (isTravDataValid(p)) return retainerSetOf(p); else return NULL; #endif case HEAP_BY_CLOSURE_TYPE: { const StgInfoTable *info; info = get_itbl(p); switch (info->type) { case CONSTR: case CONSTR_1_0: case CONSTR_0_1: case CONSTR_2_0: case CONSTR_1_1: case CONSTR_0_2: case CONSTR_NOCAF: return GET_CON_DESC(itbl_to_con_itbl(info)); default: return closure_type_names[info->type]; } } default: barf("closureIdentity"); } } /* -------------------------------------------------------------------------- * Profiling type predicates * ----------------------------------------------------------------------- */ #if defined(PROFILING) STATIC_INLINE bool doingLDVProfiling( void ) { return (RtsFlags.ProfFlags.doHeapProfile == HEAP_BY_LDV || RtsFlags.ProfFlags.bioSelector != NULL); } bool doingRetainerProfiling( void ) { return (RtsFlags.ProfFlags.doHeapProfile == HEAP_BY_RETAINER || RtsFlags.ProfFlags.retainerSelector != NULL); } #endif /* PROFILING */ // Processes a closure 'c' being destroyed whose size is 'size'. // Make sure that LDV_recordDead() is not invoked on 'inherently used' closures // such as TSO; they should not be involved in computing dragNew or voidNew. // // Even though era is checked in both LdvCensusForDead() and // LdvCensusKillAll(), we still need to make sure that era is > 0 because // LDV_recordDead() may be called from elsewhere in the runtime system. E.g., // when a thunk is replaced by an indirection object. #if defined(PROFILING) void LDV_recordDead( const StgClosure *c, uint32_t size ) { const void *id; uint32_t t; counter *ctr; if (era > 0 && closureSatisfiesConstraints(c)) { size -= sizeofW(StgProfHeader); ASSERT(LDVW(c) != 0); if ((LDVW((c)) & LDV_STATE_MASK) == LDV_STATE_CREATE) { t = (LDVW((c)) & LDV_CREATE_MASK) >> LDV_SHIFT; if (t < era) { if (RtsFlags.ProfFlags.bioSelector == NULL) { censuses[t].void_total += size; censuses[era].void_total -= size; ASSERT(censuses[t].void_total <= censuses[t].not_used); } else { id = closureIdentity(c); ctr = lookupHashTable(censuses[t].hash, (StgWord)id); if (ctr == NULL) barf("LDV_recordDead: Failed to find counter for closure %p", c); ctr->c.ldv.void_total += size; ctr = lookupHashTable(censuses[era].hash, (StgWord)id); if (ctr == NULL) { ctr = arenaAlloc(censuses[era].arena, sizeof(counter)); initLDVCtr(ctr); insertHashTable(censuses[era].hash, (StgWord)id, ctr); ctr->identity = id; ctr->next = censuses[era].ctrs; censuses[era].ctrs = ctr; } ctr->c.ldv.void_total -= size; } } } else { t = LDVW((c)) & LDV_LAST_MASK; if (t + 1 < era) { if (RtsFlags.ProfFlags.bioSelector == NULL) { censuses[t+1].drag_total += size; censuses[era].drag_total -= size; } else { const void *id; id = closureIdentity(c); ctr = lookupHashTable(censuses[t+1].hash, (StgWord)id); ASSERT( ctr != NULL ); ctr->c.ldv.drag_total += size; ctr = lookupHashTable(censuses[era].hash, (StgWord)id); if (ctr == NULL) { ctr = arenaAlloc(censuses[era].arena, sizeof(counter)); initLDVCtr(ctr); insertHashTable(censuses[era].hash, (StgWord)id, ctr); ctr->identity = id; ctr->next = censuses[era].ctrs; censuses[era].ctrs = ctr; } ctr->c.ldv.drag_total -= size; } } } } } #endif /* -------------------------------------------------------------------------- * Initialize censuses[era]; * ----------------------------------------------------------------------- */ STATIC_INLINE void initEra(Census *census) { census->hash = allocHashTable(); census->ctrs = NULL; census->arena = newArena(); census->not_used = 0; census->used = 0; census->prim = 0; census->void_total = 0; census->drag_total = 0; } STATIC_INLINE void freeEra(Census *census) { arenaFree(census->arena); freeHashTable(census->hash, NULL); } /* -------------------------------------------------------------------------- * Increases era by 1 and initialize census[era]. * Reallocates gi[] and increases its size if needed. * ----------------------------------------------------------------------- */ static void nextEra( void ) { #if defined(PROFILING) if (doingLDVProfiling()) { era++; if (era == max_era) { errorBelch("Maximum number of censuses reached."); if (rtsConfig.rts_opts_suggestions == true) { if (rtsConfig.rts_opts_enabled == RtsOptsAll) { errorBelch("Use `+RTS -i' to reduce censuses."); } else { errorBelch("Relink with -rtsopts and " "use `+RTS -i' to reduce censuses."); } } stg_exit(EXIT_FAILURE); } if (era == n_censuses) { n_censuses *= 2; censuses = stgReallocBytes(censuses, sizeof(Census) * n_censuses, "nextEra"); } } #endif /* PROFILING */ initEra( &censuses[era] ); } /* ---------------------------------------------------------------------------- * Heap profiling by info table * ------------------------------------------------------------------------- */ static void printEscapedString(const char* string) { for (const char* p = string; *p != '\0'; ++p) { if (*p == '\"') { // Escape every " as "" fputc('"', hp_file); } fputc(*p, hp_file); } } static void printSample(bool beginSample, StgDouble sampleValue) { fprintf(hp_file, "%s %f\n", (beginSample ? "BEGIN_SAMPLE" : "END_SAMPLE"), sampleValue); if (!beginSample) { fflush(hp_file); } } void freeHeapProfiling (void) { } /* -------------------------------------------------------------------------- * Initialize the heap profilier * ----------------------------------------------------------------------- */ void initHeapProfiling(void) { if (! RtsFlags.ProfFlags.doHeapProfile) { return; } char *prog; prog = stgMallocBytes(strlen(prog_name) + 1, "initHeapProfiling"); strcpy(prog, prog_name); #if defined(mingw32_HOST_OS) // on Windows, drop the .exe suffix if there is one { char *suff; suff = strrchr(prog,'.'); if (suff != NULL && !strcmp(suff,".exe")) { *suff = '\0'; } } #endif if (RtsFlags.ProfFlags.doHeapProfile) { /* Initialise the log file name */ hp_filename = stgMallocBytes(strlen(prog) + 6, "hpFileName"); sprintf(hp_filename, "%s.hp", prog); /* open the log file */ if ((hp_file = __rts_fopen(hp_filename, "w+")) == NULL) { debugBelch("Can't open profiling report file %s\n", hp_filename); RtsFlags.ProfFlags.doHeapProfile = 0; stgFree(prog); return; } } stgFree(prog); #if defined(PROFILING) if (doingLDVProfiling() && doingRetainerProfiling()) { errorBelch("cannot mix -hb and -hr"); stg_exit(EXIT_FAILURE); } #if defined(THREADED_RTS) // See #12019. if (doingLDVProfiling() && RtsFlags.ParFlags.nCapabilities > 1) { errorBelch("-hb cannot be used with multiple capabilities"); stg_exit(EXIT_FAILURE); } #endif #endif // we only count eras if we're doing LDV profiling. Otherwise era // is fixed at zero. #if defined(PROFILING) if (doingLDVProfiling()) { era = 1; } else #endif { era = 0; } // max_era = 2^LDV_SHIFT max_era = 1 << LDV_SHIFT; n_censuses = 32; censuses = stgMallocBytes(sizeof(Census) * n_censuses, "initHeapProfiling"); initEra( &censuses[era] ); /* initProfilingLogFile(); */ fprintf(hp_file, "JOB \""); printEscapedString(prog_name); #if defined(PROFILING) for (int i = 1; i < prog_argc; ++i) { fputc(' ', hp_file); printEscapedString(prog_argv[i]); } fprintf(hp_file, " +RTS"); for (int i = 0; i < rts_argc; ++i) { fputc(' ', hp_file); printEscapedString(rts_argv[i]); } #endif /* PROFILING */ fprintf(hp_file, "\"\n" ); fprintf(hp_file, "DATE \"%s\"\n", time_str()); fprintf(hp_file, "SAMPLE_UNIT \"seconds\"\n"); fprintf(hp_file, "VALUE_UNIT \"bytes\"\n"); printSample(true, 0); printSample(false, 0); #if defined(PROFILING) if (doingRetainerProfiling()) { initRetainerProfiling(); } #endif traceHeapProfBegin(0); } void endHeapProfiling(void) { StgDouble seconds; if (! RtsFlags.ProfFlags.doHeapProfile) { return; } #if defined(PROFILING) if (doingRetainerProfiling()) { endRetainerProfiling(); } #endif #if defined(PROFILING) if (doingLDVProfiling()) { uint32_t t; LdvCensusKillAll(); aggregateCensusInfo(); for (t = 1; t < era; t++) { dumpCensus( &censuses[t] ); } } #endif #if defined(PROFILING) if (doingLDVProfiling()) { uint32_t t; if (RtsFlags.ProfFlags.bioSelector != NULL) { for (t = 1; t <= era; t++) { freeEra( &censuses[t] ); } } else { freeEra( &censuses[era] ); } } else { freeEra( &censuses[0] ); } #else freeEra( &censuses[0] ); #endif stgFree(censuses); seconds = mut_user_time(); printSample(true, seconds); printSample(false, seconds); fclose(hp_file); } #if defined(PROFILING) static size_t buf_append(char *p, const char *q, char *end) { int m; for (m = 0; p < end; p++, q++, m++) { *p = *q; if (*q == '\0') { break; } } return m; } static void fprint_ccs(FILE *fp, CostCentreStack *ccs, uint32_t max_length) { char buf[max_length+1], *p, *buf_end; // MAIN on its own gets printed as "MAIN", otherwise we ignore MAIN. if (ccs == CCS_MAIN) { fprintf(fp, "MAIN"); return; } fprintf(fp, "(%" FMT_Int ")", ccs->ccsID); p = buf; buf_end = buf + max_length + 1; // keep printing components of the stack until we run out of space // in the buffer. If we run out of space, end with "...". for (; ccs != NULL && ccs != CCS_MAIN; ccs = ccs->prevStack) { // CAF cost centres print as M.CAF, but we leave the module // name out of all the others to save space. if (!strcmp(ccs->cc->label,"CAF")) { p += buf_append(p, ccs->cc->module, buf_end); p += buf_append(p, ".CAF", buf_end); } else { p += buf_append(p, ccs->cc->label, buf_end); if (ccs->prevStack != NULL && ccs->prevStack != CCS_MAIN) { p += buf_append(p, "/", buf_end); } } if (p >= buf_end) { sprintf(buf+max_length-4, "..."); break; } } fprintf(fp, "%s", buf); } bool strMatchesSelector( const char* str, const char* sel ) { const char* p; // debugBelch("str_matches_selector %s %s\n", str, sel); while (1) { // Compare str against wherever we've got to in sel. p = str; while (*p != '\0' && *sel != ',' && *sel != '\0' && *p == *sel) { p++; sel++; } // Match if all of str used and have reached the end of a sel fragment. if (*p == '\0' && (*sel == ',' || *sel == '\0')) return true; // No match. Advance sel to the start of the next elem. while (*sel != ',' && *sel != '\0') sel++; if (*sel == ',') sel++; /* Run out of sel ?? */ if (*sel == '\0') return false; } } #endif /* PROFILING */ /* ----------------------------------------------------------------------------- * Figure out whether a closure should be counted in this census, by * testing against all the specified constraints. * -------------------------------------------------------------------------- */ static bool closureSatisfiesConstraints( const StgClosure* p ) { #if !defined(PROFILING) (void)p; /* keep gcc -Wall happy */ return true; #else bool b; // The CCS has a selected field to indicate whether this closure is // deselected by not being mentioned in the module, CC, or CCS // selectors. if (!p->header.prof.ccs->selected) { return false; } if (RtsFlags.ProfFlags.descrSelector) { b = strMatchesSelector( (GET_PROF_DESC(get_itbl((StgClosure *)p))), RtsFlags.ProfFlags.descrSelector ); if (!b) return false; } if (RtsFlags.ProfFlags.typeSelector) { b = strMatchesSelector( (GET_PROF_TYPE(get_itbl((StgClosure *)p))), RtsFlags.ProfFlags.typeSelector ); if (!b) return false; } if (RtsFlags.ProfFlags.retainerSelector) { RetainerSet *rs; uint32_t i; // We must check that the retainer set is valid here. One // reason it might not be valid is if this closure is a // a newly deceased weak pointer (i.e. a DEAD_WEAK), since // these aren't reached by the retainer profiler's traversal. if (isTravDataValid((StgClosure *)p)) { rs = retainerSetOf((StgClosure *)p); if (rs != NULL) { for (i = 0; i < rs->num; i++) { b = strMatchesSelector( rs->element[i]->cc->label, RtsFlags.ProfFlags.retainerSelector ); if (b) return true; } } } return false; } return true; #endif /* PROFILING */ } /* ----------------------------------------------------------------------------- * Aggregate the heap census info for biographical profiling * -------------------------------------------------------------------------- */ #if defined(PROFILING) static void aggregateCensusInfo( void ) { HashTable *acc; uint32_t t; counter *c, *d, *ctrs; Arena *arena; if (!doingLDVProfiling()) return; // Aggregate the LDV counters when displaying by biography. if (RtsFlags.ProfFlags.doHeapProfile == HEAP_BY_LDV) { long void_total, drag_total; // Now we compute void_total and drag_total for each census // After the program has finished, the void_total field of // each census contains the count of words that were *created* // in this era and were eventually void. Conversely, if a // void closure was destroyed in this era, it will be // represented by a negative count of words in void_total. // // To get the count of live words that are void at each // census, just propagate the void_total count forwards: void_total = 0; drag_total = 0; for (t = 1; t < era; t++) { // note: start at 1, not 0 void_total += censuses[t].void_total; drag_total += censuses[t].drag_total; censuses[t].void_total = void_total; censuses[t].drag_total = drag_total; ASSERT( censuses[t].void_total <= censuses[t].not_used ); // should be true because: void_total is the count of // live words that are void at this census, which *must* // be less than the number of live words that have not // been used yet. ASSERT( censuses[t].drag_total <= censuses[t].used ); // similar reasoning as above. } return; } // otherwise... we're doing a heap profile that is restricted to // some combination of lag, drag, void or use. We've kept all the // census info for all censuses so far, but we still need to // aggregate the counters forwards. arena = newArena(); acc = allocHashTable(); ctrs = NULL; for (t = 1; t < era; t++) { // first look through all the counters we're aggregating for (c = ctrs; c != NULL; c = c->next) { // if one of the totals is non-zero, then this closure // type must be present in the heap at this census time... d = lookupHashTable(censuses[t].hash, (StgWord)c->identity); if (d == NULL) { // if this closure identity isn't present in the // census for this time period, then our running // totals *must* be zero. ASSERT(c->c.ldv.void_total == 0 && c->c.ldv.drag_total == 0); // debugCCS(c->identity); // debugBelch(" census=%d void_total=%d drag_total=%d\n", // t, c->c.ldv.void_total, c->c.ldv.drag_total); } else { d->c.ldv.void_total += c->c.ldv.void_total; d->c.ldv.drag_total += c->c.ldv.drag_total; c->c.ldv.void_total = d->c.ldv.void_total; c->c.ldv.drag_total = d->c.ldv.drag_total; ASSERT( c->c.ldv.void_total >= 0 ); ASSERT( c->c.ldv.drag_total >= 0 ); } } // now look through the counters in this census to find new ones for (c = censuses[t].ctrs; c != NULL; c = c->next) { d = lookupHashTable(acc, (StgWord)c->identity); if (d == NULL) { d = arenaAlloc( arena, sizeof(counter) ); initLDVCtr(d); insertHashTable( acc, (StgWord)c->identity, d ); d->identity = c->identity; d->next = ctrs; ctrs = d; d->c.ldv.void_total = c->c.ldv.void_total; d->c.ldv.drag_total = c->c.ldv.drag_total; } ASSERT( c->c.ldv.void_total >= 0 ); ASSERT( c->c.ldv.drag_total >= 0 ); } } freeHashTable(acc, NULL); arenaFree(arena); } #endif /* ----------------------------------------------------------------------------- * Print out the results of a heap census. * -------------------------------------------------------------------------- */ static void dumpCensus( Census *census ) { counter *ctr; ssize_t count; printSample(true, census->time); if (RtsFlags.ProfFlags.doHeapProfile == HEAP_BY_LDV) { traceHeapBioProfSampleBegin(era, census->rtime); } else { traceHeapProfSampleBegin(era); } #if defined(PROFILING) /* change typecast to uint64_t to remove * print formatting warning. See #12636 */ if (RtsFlags.ProfFlags.doHeapProfile == HEAP_BY_LDV) { fprintf(hp_file, "VOID\t%" FMT_Word64 "\n", (uint64_t)(census->void_total * sizeof(W_))); fprintf(hp_file, "LAG\t%" FMT_Word64 "\n", (uint64_t)((census->not_used - census->void_total) * sizeof(W_))); fprintf(hp_file, "USE\t%" FMT_Word64 "\n", (uint64_t)((census->used - census->drag_total) * sizeof(W_))); fprintf(hp_file, "INHERENT_USE\t%" FMT_Word64 "\n", (uint64_t)(census->prim * sizeof(W_))); fprintf(hp_file, "DRAG\t%" FMT_Word64 "\n", (uint64_t)(census->drag_total * sizeof(W_))); // Eventlog traceHeapProfSampleString(0, "VOID", (census->void_total * sizeof(W_))); traceHeapProfSampleString(0, "LAG", ((census->not_used - census->void_total) * sizeof(W_))); traceHeapProfSampleString(0, "USE", ((census->used - census->drag_total) * sizeof(W_))); traceHeapProfSampleString(0, "INHERENT_USE", (census->prim * sizeof(W_))); traceHeapProfSampleString(0, "DRAG", (census->drag_total * sizeof(W_))); traceHeapProfSampleEnd(era); printSample(false, census->time); return; } #endif for (ctr = census->ctrs; ctr != NULL; ctr = ctr->next) { #if defined(PROFILING) if (RtsFlags.ProfFlags.bioSelector != NULL) { count = 0; if (strMatchesSelector("lag", RtsFlags.ProfFlags.bioSelector)) count += ctr->c.ldv.not_used - ctr->c.ldv.void_total; if (strMatchesSelector("drag", RtsFlags.ProfFlags.bioSelector)) count += ctr->c.ldv.drag_total; if (strMatchesSelector("void", RtsFlags.ProfFlags.bioSelector)) count += ctr->c.ldv.void_total; if (strMatchesSelector("use", RtsFlags.ProfFlags.bioSelector)) count += ctr->c.ldv.used - ctr->c.ldv.drag_total; } else #endif { count = ctr->c.resid; } ASSERT( count >= 0 ); if (count == 0) continue; switch (RtsFlags.ProfFlags.doHeapProfile) { case HEAP_BY_CLOSURE_TYPE: fprintf(hp_file, "%s", (char *)ctr->identity); traceHeapProfSampleString(0, (char *)ctr->identity, count * sizeof(W_)); break; #if defined(PROFILING) case HEAP_BY_CCS: fprint_ccs(hp_file, (CostCentreStack *)ctr->identity, RtsFlags.ProfFlags.ccsLength); traceHeapProfSampleCostCentre(0, (CostCentreStack *)ctr->identity, count * sizeof(W_)); break; case HEAP_BY_MOD: case HEAP_BY_DESCR: case HEAP_BY_TYPE: fprintf(hp_file, "%s", (char *)ctr->identity); traceHeapProfSampleString(0, (char *)ctr->identity, count * sizeof(W_)); break; case HEAP_BY_RETAINER: { RetainerSet *rs = (RetainerSet *)ctr->identity; // it might be the distinguished retainer set rs_MANY: if (rs == &rs_MANY) { fprintf(hp_file, "MANY"); break; } // Mark this retainer set by negating its id, because it // has appeared in at least one census. We print the // values of all such retainer sets into the log file at // the end. A retainer set may exist but not feature in // any censuses if it arose as the intermediate retainer // set for some closure during retainer set calculation. if (rs->id > 0) rs->id = -(rs->id); // report in the unit of bytes: * sizeof(StgWord) printRetainerSetShort(hp_file, rs, (W_)count * sizeof(W_) , RtsFlags.ProfFlags.ccsLength); break; } #endif default: barf("dumpCensus; doHeapProfile"); } fprintf(hp_file, "\t%" FMT_Word "\n", (W_)count * sizeof(W_)); } traceHeapProfSampleEnd(era); printSample(false, census->time); } static void heapProfObject(Census *census, StgClosure *p, size_t size, bool prim #if !defined(PROFILING) STG_UNUSED #endif ) { const void *identity; size_t real_size; counter *ctr; identity = NULL; #if defined(PROFILING) // subtract the profiling overhead real_size = size - sizeofW(StgProfHeader); #else real_size = size; #endif if (closureSatisfiesConstraints((StgClosure*)p)) { #if defined(PROFILING) if (RtsFlags.ProfFlags.doHeapProfile == HEAP_BY_LDV) { if (prim) census->prim += real_size; else if ((LDVW(p) & LDV_STATE_MASK) == LDV_STATE_CREATE) census->not_used += real_size; else census->used += real_size; } else #endif { identity = closureIdentity((StgClosure *)p); if (identity != NULL) { ctr = lookupHashTable(census->hash, (StgWord)identity); if (ctr != NULL) { #if defined(PROFILING) if (RtsFlags.ProfFlags.bioSelector != NULL) { if (prim) ctr->c.ldv.prim += real_size; else if ((LDVW(p) & LDV_STATE_MASK) == LDV_STATE_CREATE) ctr->c.ldv.not_used += real_size; else ctr->c.ldv.used += real_size; } else #endif { ctr->c.resid += real_size; } } else { ctr = arenaAlloc( census->arena, sizeof(counter) ); initLDVCtr(ctr); insertHashTable( census->hash, (StgWord)identity, ctr ); ctr->identity = identity; ctr->next = census->ctrs; census->ctrs = ctr; #if defined(PROFILING) if (RtsFlags.ProfFlags.bioSelector != NULL) { if (prim) ctr->c.ldv.prim = real_size; else if ((LDVW(p) & LDV_STATE_MASK) == LDV_STATE_CREATE) ctr->c.ldv.not_used = real_size; else ctr->c.ldv.used = real_size; } else #endif { ctr->c.resid = real_size; } } } } } } // Compact objects require special handling code because they // are not stored consecutively in memory (rather, each object // is a list of objects), and that would break the while loop // below. But we know that each block holds at most one object // so we don't need the loop. // // See Note [Compact Normal Forms] for details. static void heapCensusCompactList(Census *census, bdescr *bd) { for (; bd != NULL; bd = bd->link) { StgCompactNFDataBlock *block = (StgCompactNFDataBlock*)bd->start; StgCompactNFData *str = block->owner; heapProfObject(census, (StgClosure*)str, compact_nfdata_full_sizeW(str), true); } } /* ----------------------------------------------------------------------------- * Code to perform a heap census. * -------------------------------------------------------------------------- */ static void heapCensusChain( Census *census, bdescr *bd ) { StgPtr p; const StgInfoTable *info; size_t size; bool prim; for (; bd != NULL; bd = bd->link) { // HACK: pretend a pinned block is just one big ARR_WORDS // owned by CCS_PINNED. These blocks can be full of holes due // to alignment constraints so we can't traverse the memory // and do a proper census. if (bd->flags & BF_PINNED) { StgClosure arr; SET_HDR(&arr, &stg_ARR_WORDS_info, CCS_PINNED); heapProfObject(census, &arr, bd->blocks * BLOCK_SIZE_W, true); continue; } p = bd->start; // When we shrink a large ARR_WORDS, we do not adjust the free pointer // of the associated block descriptor, thus introducing slop at the end // of the object. This slop remains after GC, violating the assumption // of the loop below that all slop has been eliminated (#11627). // The slop isn't always zeroed (e.g. in non-profiling mode, cf // OVERWRITING_CLOSURE_OFS). // Consequently, we handle large ARR_WORDS objects as a special case. if (bd->flags & BF_LARGE && get_itbl((StgClosure *)p)->type == ARR_WORDS) { size = arr_words_sizeW((StgArrBytes *)p); prim = true; heapProfObject(census, (StgClosure *)p, size, prim); continue; } while (p < bd->free) { info = get_itbl((const StgClosure *)p); prim = false; switch (info->type) { case THUNK: size = thunk_sizeW_fromITBL(info); break; case THUNK_1_1: case THUNK_0_2: case THUNK_2_0: size = sizeofW(StgThunkHeader) + 2; break; case THUNK_1_0: case THUNK_0_1: case THUNK_SELECTOR: size = sizeofW(StgThunkHeader) + 1; break; case FUN: case BLACKHOLE: case BLOCKING_QUEUE: case FUN_1_0: case FUN_0_1: case FUN_1_1: case FUN_0_2: case FUN_2_0: case CONSTR: case CONSTR_NOCAF: case CONSTR_1_0: case CONSTR_0_1: case CONSTR_1_1: case CONSTR_0_2: case CONSTR_2_0: size = sizeW_fromITBL(info); break; case IND: // Special case/Delicate Hack: INDs don't normally // appear, since we're doing this heap census right // after GC. However, GarbageCollect() also does // resurrectThreads(), which can update some // blackholes when it calls raiseAsync() on the // resurrected threads. So we know that any IND will // be the size of a BLACKHOLE. size = BLACKHOLE_sizeW(); break; case BCO: prim = true; size = bco_sizeW((StgBCO *)p); break; case MVAR_CLEAN: case MVAR_DIRTY: case TVAR: case WEAK: case PRIM: case MUT_PRIM: case MUT_VAR_CLEAN: case MUT_VAR_DIRTY: prim = true; size = sizeW_fromITBL(info); break; case AP: size = ap_sizeW((StgAP *)p); break; case PAP: size = pap_sizeW((StgPAP *)p); break; case AP_STACK: size = ap_stack_sizeW((StgAP_STACK *)p); break; case ARR_WORDS: prim = true; size = arr_words_sizeW((StgArrBytes*)p); break; case MUT_ARR_PTRS_CLEAN: case MUT_ARR_PTRS_DIRTY: case MUT_ARR_PTRS_FROZEN_CLEAN: case MUT_ARR_PTRS_FROZEN_DIRTY: prim = true; size = mut_arr_ptrs_sizeW((StgMutArrPtrs *)p); break; case SMALL_MUT_ARR_PTRS_CLEAN: case SMALL_MUT_ARR_PTRS_DIRTY: case SMALL_MUT_ARR_PTRS_FROZEN_CLEAN: case SMALL_MUT_ARR_PTRS_FROZEN_DIRTY: prim = true; size = small_mut_arr_ptrs_sizeW((StgSmallMutArrPtrs *)p); break; case TSO: prim = true; #if defined(PROFILING) if (RtsFlags.ProfFlags.includeTSOs) { size = sizeofW(StgTSO); break; } else { // Skip this TSO and move on to the next object p += sizeofW(StgTSO); continue; } #else size = sizeofW(StgTSO); break; #endif case STACK: prim = true; #if defined(PROFILING) if (RtsFlags.ProfFlags.includeTSOs) { size = stack_sizeW((StgStack*)p); break; } else { // Skip this TSO and move on to the next object p += stack_sizeW((StgStack*)p); continue; } #else size = stack_sizeW((StgStack*)p); break; #endif case TREC_CHUNK: prim = true; size = sizeofW(StgTRecChunk); break; case COMPACT_NFDATA: barf("heapCensus, found compact object in the wrong list"); break; default: barf("heapCensus, unknown object: %d", info->type); } heapProfObject(census,(StgClosure*)p,size,prim); p += size; /* skip over slop */ while (p < bd->free && !*p) p++; // skip slop } } } void heapCensus (Time t) { uint32_t g, n; Census *census; gen_workspace *ws; census = &censuses[era]; census->time = mut_user_time_until(t); census->rtime = TimeToNS(stat_getElapsedTime()); // calculate retainer sets if necessary #if defined(PROFILING) if (doingRetainerProfiling()) { retainerProfile(); } #endif #if defined(PROFILING) stat_startHeapCensus(); #endif // Traverse the heap, collecting the census info for (g = 0; g < RtsFlags.GcFlags.generations; g++) { heapCensusChain( census, generations[g].blocks ); // Are we interested in large objects? might be // confusing to include the stack in a heap profile. heapCensusChain( census, generations[g].large_objects ); heapCensusCompactList ( census, generations[g].compact_objects ); for (n = 0; n < n_capabilities; n++) { ws = &gc_threads[n]->gens[g]; heapCensusChain(census, ws->todo_bd); heapCensusChain(census, ws->part_list); heapCensusChain(census, ws->scavd_list); } } // dump out the census info #if defined(PROFILING) // We can't generate any info for LDV profiling until // the end of the run... if (!doingLDVProfiling()) dumpCensus( census ); #else dumpCensus( census ); #endif // free our storage, unless we're keeping all the census info for // future restriction by biography. #if defined(PROFILING) if (RtsFlags.ProfFlags.bioSelector == NULL) { freeEra(census); census->hash = NULL; census->arena = NULL; } #endif // we're into the next time period now nextEra(); #if defined(PROFILING) stat_endHeapCensus(); #endif }