/* ---------------------------------------------------------------------------- * * (c) The GHC Team, 1998-2001 * * API for invoking Haskell functions via the RTS * * --------------------------------------------------------------------------*/ #include "PosixSource.h" #include "Rts.h" #include "RtsAPI.h" #include "HsFFI.h" #include "RtsUtils.h" #include "Prelude.h" #include "Schedule.h" #include "Capability.h" #include "Stable.h" #include "Weak.h" /* ---------------------------------------------------------------------------- Building Haskell objects from C datatypes. TODO: Currently this code does not tag created pointers, however it is not unsafe (the contructor code will do it) just inefficient. ------------------------------------------------------------------------- */ HaskellObj rts_mkChar (Capability *cap, HsChar c) { StgClosure *p = (StgClosure *)allocate(cap, CONSTR_sizeW(0,1)); SET_HDR(p, Czh_con_info, CCS_SYSTEM); p->payload[0] = (StgClosure *)(StgWord)(StgChar)c; return p; } HaskellObj rts_mkInt (Capability *cap, HsInt i) { StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1)); SET_HDR(p, Izh_con_info, CCS_SYSTEM); p->payload[0] = (StgClosure *)(StgInt)i; return p; } HaskellObj rts_mkInt8 (Capability *cap, HsInt8 i) { StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1)); SET_HDR(p, I8zh_con_info, CCS_SYSTEM); /* Make sure we mask out the bits above the lowest 8 */ p->payload[0] = (StgClosure *)(StgInt)i; return p; } HaskellObj rts_mkInt16 (Capability *cap, HsInt16 i) { StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1)); SET_HDR(p, I16zh_con_info, CCS_SYSTEM); /* Make sure we mask out the relevant bits */ p->payload[0] = (StgClosure *)(StgInt)i; return p; } HaskellObj rts_mkInt32 (Capability *cap, HsInt32 i) { StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1)); SET_HDR(p, I32zh_con_info, CCS_SYSTEM); p->payload[0] = (StgClosure *)(StgInt)i; return p; } HaskellObj rts_mkInt64 (Capability *cap, HsInt64 i) { StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,2)); SET_HDR(p, I64zh_con_info, CCS_SYSTEM); ASSIGN_Int64((P_)&(p->payload[0]), i); return p; } HaskellObj rts_mkWord (Capability *cap, HsWord i) { StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1)); SET_HDR(p, Wzh_con_info, CCS_SYSTEM); p->payload[0] = (StgClosure *)(StgWord)i; return p; } HaskellObj rts_mkWord8 (Capability *cap, HsWord8 w) { /* see rts_mkInt* comments */ StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1)); SET_HDR(p, W8zh_con_info, CCS_SYSTEM); p->payload[0] = (StgClosure *)(StgWord)(w & 0xff); return p; } HaskellObj rts_mkWord16 (Capability *cap, HsWord16 w) { /* see rts_mkInt* comments */ StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1)); SET_HDR(p, W16zh_con_info, CCS_SYSTEM); p->payload[0] = (StgClosure *)(StgWord)(w & 0xffff); return p; } HaskellObj rts_mkWord32 (Capability *cap, HsWord32 w) { /* see rts_mkInt* comments */ StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1)); SET_HDR(p, W32zh_con_info, CCS_SYSTEM); p->payload[0] = (StgClosure *)(StgWord)(w & 0xffffffff); return p; } HaskellObj rts_mkWord64 (Capability *cap, HsWord64 w) { StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,2)); /* see mk_Int8 comment */ SET_HDR(p, W64zh_con_info, CCS_SYSTEM); ASSIGN_Word64((P_)&(p->payload[0]), w); return p; } HaskellObj rts_mkFloat (Capability *cap, HsFloat f) { StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,1)); SET_HDR(p, Fzh_con_info, CCS_SYSTEM); ASSIGN_FLT((P_)p->payload, (StgFloat)f); return p; } HaskellObj rts_mkDouble (Capability *cap, HsDouble d) { StgClosure *p = (StgClosure *)allocate(cap,CONSTR_sizeW(0,sizeofW(StgDouble))); SET_HDR(p, Dzh_con_info, CCS_SYSTEM); ASSIGN_DBL((P_)p->payload, (StgDouble)d); return p; } HaskellObj rts_mkStablePtr (Capability *cap, HsStablePtr s) { StgClosure *p = (StgClosure *)allocate(cap,sizeofW(StgHeader)+1); SET_HDR(p, StablePtr_con_info, CCS_SYSTEM); p->payload[0] = (StgClosure *)s; return p; } HaskellObj rts_mkPtr (Capability *cap, HsPtr a) { StgClosure *p = (StgClosure *)allocate(cap,sizeofW(StgHeader)+1); SET_HDR(p, Ptr_con_info, CCS_SYSTEM); p->payload[0] = (StgClosure *)a; return p; } HaskellObj rts_mkFunPtr (Capability *cap, HsFunPtr a) { StgClosure *p = (StgClosure *)allocate(cap,sizeofW(StgHeader)+1); SET_HDR(p, FunPtr_con_info, CCS_SYSTEM); p->payload[0] = (StgClosure *)a; return p; } HaskellObj rts_mkBool (Capability *cap STG_UNUSED, HsBool b) { if (b) { return (StgClosure *)True_closure; } else { return (StgClosure *)False_closure; } } HaskellObj rts_mkString (Capability *cap, char *s) { return rts_apply(cap, (StgClosure *)unpackCString_closure, rts_mkPtr(cap,s)); } HaskellObj rts_apply (Capability *cap, HaskellObj f, HaskellObj arg) { StgThunk *ap; ap = (StgThunk *)allocate(cap,sizeofW(StgThunk) + 2); // Here we don't want to use CCS_SYSTEM, because it's a hidden cost centre, // and evaluating Haskell code under a hidden cost centre leads to // confusing profiling output. (#7753) SET_HDR(ap, (StgInfoTable *)&stg_ap_2_upd_info, CCS_MAIN); ap->payload[0] = f; ap->payload[1] = arg; return (StgClosure *)ap; } /* ---------------------------------------------------------------------------- Deconstructing Haskell objects We would like to assert that we have the right kind of object in each case, but this is problematic because in GHCi the info table for the D# constructor (say) might be dynamically loaded. Hence we omit these assertions for now. ------------------------------------------------------------------------- */ HsChar rts_getChar (HaskellObj p) { // See comment above: // ASSERT(p->header.info == Czh_con_info || // p->header.info == Czh_static_info); return (StgChar)(StgWord)(UNTAG_CLOSURE(p)->payload[0]); } HsInt rts_getInt (HaskellObj p) { // See comment above: // ASSERT(p->header.info == Izh_con_info || // p->header.info == Izh_static_info); return (HsInt)(UNTAG_CLOSURE(p)->payload[0]); } HsInt8 rts_getInt8 (HaskellObj p) { // See comment above: // ASSERT(p->header.info == I8zh_con_info || // p->header.info == I8zh_static_info); return (HsInt8)(HsInt)(UNTAG_CLOSURE(p)->payload[0]); } HsInt16 rts_getInt16 (HaskellObj p) { // See comment above: // ASSERT(p->header.info == I16zh_con_info || // p->header.info == I16zh_static_info); return (HsInt16)(HsInt)(UNTAG_CLOSURE(p)->payload[0]); } HsInt32 rts_getInt32 (HaskellObj p) { // See comment above: // ASSERT(p->header.info == I32zh_con_info || // p->header.info == I32zh_static_info); return (HsInt32)(HsInt)(UNTAG_CLOSURE(p)->payload[0]); } HsInt64 rts_getInt64 (HaskellObj p) { // See comment above: // ASSERT(p->header.info == I64zh_con_info || // p->header.info == I64zh_static_info); return PK_Int64((P_)&(UNTAG_CLOSURE(p)->payload[0])); } HsWord rts_getWord (HaskellObj p) { // See comment above: // ASSERT(p->header.info == Wzh_con_info || // p->header.info == Wzh_static_info); return (HsWord)(UNTAG_CLOSURE(p)->payload[0]); } HsWord8 rts_getWord8 (HaskellObj p) { // See comment above: // ASSERT(p->header.info == W8zh_con_info || // p->header.info == W8zh_static_info); return (HsWord8)(HsWord)(UNTAG_CLOSURE(p)->payload[0]); } HsWord16 rts_getWord16 (HaskellObj p) { // See comment above: // ASSERT(p->header.info == W16zh_con_info || // p->header.info == W16zh_static_info); return (HsWord16)(HsWord)(UNTAG_CLOSURE(p)->payload[0]); } HsWord32 rts_getWord32 (HaskellObj p) { // See comment above: // ASSERT(p->header.info == W32zh_con_info || // p->header.info == W32zh_static_info); return (HsWord32)(HsWord)(UNTAG_CLOSURE(p)->payload[0]); } HsWord64 rts_getWord64 (HaskellObj p) { // See comment above: // ASSERT(p->header.info == W64zh_con_info || // p->header.info == W64zh_static_info); return PK_Word64((P_)&(UNTAG_CLOSURE(p)->payload[0])); } HsFloat rts_getFloat (HaskellObj p) { // See comment above: // ASSERT(p->header.info == Fzh_con_info || // p->header.info == Fzh_static_info); return (float)(PK_FLT((P_)UNTAG_CLOSURE(p)->payload)); } HsDouble rts_getDouble (HaskellObj p) { // See comment above: // ASSERT(p->header.info == Dzh_con_info || // p->header.info == Dzh_static_info); return (double)(PK_DBL((P_)UNTAG_CLOSURE(p)->payload)); } HsStablePtr rts_getStablePtr (HaskellObj p) { // See comment above: // ASSERT(p->header.info == StablePtr_con_info || // p->header.info == StablePtr_static_info); return (StgStablePtr)(UNTAG_CLOSURE(p)->payload[0]); } HsPtr rts_getPtr (HaskellObj p) { // See comment above: // ASSERT(p->header.info == Ptr_con_info || // p->header.info == Ptr_static_info); return (Capability *)(UNTAG_CLOSURE(p)->payload[0]); } HsFunPtr rts_getFunPtr (HaskellObj p) { // See comment above: // ASSERT(p->header.info == FunPtr_con_info || // p->header.info == FunPtr_static_info); return (void *)(UNTAG_CLOSURE(p)->payload[0]); } HsBool rts_getBool (HaskellObj p) { StgInfoTable *info; info = get_itbl((StgClosure *)UNTAG_CLOSURE(p)); if (info->srt_bitmap == 0) { // srt_bitmap is the constructor tag return 0; } else { return 1; } } /* ----------------------------------------------------------------------------- Creating threads -------------------------------------------------------------------------- */ INLINE_HEADER void pushClosure (StgTSO *tso, StgWord c) { tso->stackobj->sp--; tso->stackobj->sp[0] = (W_) c; } StgTSO * createGenThread (Capability *cap, W_ stack_size, StgClosure *closure) { StgTSO *t; t = createThread (cap, stack_size); pushClosure(t, (W_)closure); pushClosure(t, (W_)&stg_enter_info); return t; } StgTSO * createIOThread (Capability *cap, W_ stack_size, StgClosure *closure) { StgTSO *t; t = createThread (cap, stack_size); pushClosure(t, (W_)&stg_ap_v_info); pushClosure(t, (W_)closure); pushClosure(t, (W_)&stg_enter_info); return t; } /* * Same as above, but also evaluate the result of the IO action * to whnf while we're at it. */ StgTSO * createStrictIOThread(Capability *cap, W_ stack_size, StgClosure *closure) { StgTSO *t; t = createThread(cap, stack_size); pushClosure(t, (W_)&stg_forceIO_info); pushClosure(t, (W_)&stg_ap_v_info); pushClosure(t, (W_)closure); pushClosure(t, (W_)&stg_enter_info); return t; } /* ---------------------------------------------------------------------------- Evaluating Haskell expressions ------------------------------------------------------------------------- */ void rts_eval (/* inout */ Capability **cap, /* in */ HaskellObj p, /* out */ HaskellObj *ret) { StgTSO *tso; tso = createGenThread(*cap, RtsFlags.GcFlags.initialStkSize, p); scheduleWaitThread(tso,ret,cap); } void rts_eval_ (/* inout */ Capability **cap, /* in */ HaskellObj p, /* in */ unsigned int stack_size, /* out */ HaskellObj *ret) { StgTSO *tso; tso = createGenThread(*cap, stack_size, p); scheduleWaitThread(tso,ret,cap); } /* * rts_evalIO() evaluates a value of the form (IO a), forcing the action's * result to WHNF before returning. */ void rts_evalIO (/* inout */ Capability **cap, /* in */ HaskellObj p, /* out */ HaskellObj *ret) { StgTSO* tso; tso = createStrictIOThread(*cap, RtsFlags.GcFlags.initialStkSize, p); scheduleWaitThread(tso,ret,cap); } /* * rts_evalStableIO() is suitable for calling from Haskell. It * evaluates a value of the form (StablePtr (IO a)), forcing the * action's result to WHNF before returning. The result is returned * in a StablePtr. */ void rts_evalStableIO (/* inout */ Capability **cap, /* in */ HsStablePtr s, /* out */ HsStablePtr *ret) { StgTSO* tso; StgClosure *p, *r; SchedulerStatus stat; p = (StgClosure *)deRefStablePtr(s); tso = createStrictIOThread(*cap, RtsFlags.GcFlags.initialStkSize, p); // async exceptions are always blocked by default in the created // thread. See #1048. tso->flags |= TSO_BLOCKEX | TSO_INTERRUPTIBLE; scheduleWaitThread(tso,&r,cap); stat = rts_getSchedStatus(*cap); if (stat == Success && ret != NULL) { ASSERT(r != NULL); *ret = getStablePtr((StgPtr)r); } } /* * Like rts_evalIO(), but doesn't force the action's result. */ void rts_evalLazyIO (/* inout */ Capability **cap, /* in */ HaskellObj p, /* out */ HaskellObj *ret) { StgTSO *tso; tso = createIOThread(*cap, RtsFlags.GcFlags.initialStkSize, p); scheduleWaitThread(tso,ret,cap); } void rts_evalLazyIO_ (/* inout */ Capability **cap, /* in */ HaskellObj p, /* in */ unsigned int stack_size, /* out */ HaskellObj *ret) { StgTSO *tso; tso = createIOThread(*cap, stack_size, p); scheduleWaitThread(tso,ret,cap); } /* Convenience function for decoding the returned status. */ void rts_checkSchedStatus (char* site, Capability *cap) { SchedulerStatus rc = cap->running_task->incall->rstat; switch (rc) { case Success: return; case Killed: errorBelch("%s: uncaught exception",site); stg_exit(EXIT_FAILURE); case Interrupted: errorBelch("%s: interrupted", site); #ifdef THREADED_RTS // The RTS is shutting down, and the process will probably // soon exit. We don't want to preempt the shutdown // by exiting the whole process here, so we just terminate the // current thread. Don't forget to release the cap first though. rts_unlock(cap); shutdownThread(); #else stg_exit(EXIT_FAILURE); #endif default: errorBelch("%s: Return code (%d) not ok",(site),(rc)); stg_exit(EXIT_FAILURE); } } SchedulerStatus rts_getSchedStatus (Capability *cap) { return cap->running_task->incall->rstat; } Capability * rts_lock (void) { Capability *cap; Task *task; task = newBoundTask(); if (task->running_finalizers) { errorBelch("error: a C finalizer called back into Haskell.\n" " This was previously allowed, but is disallowed in GHC 6.10.2 and later.\n" " To create finalizers that may call back into Haskell, use\n" " Foreign.Concurrent.newForeignPtr instead of Foreign.newForeignPtr."); stg_exit(EXIT_FAILURE); } cap = NULL; waitForCapability(&cap, task); if (task->incall->prev_stack == NULL) { // This is a new outermost call from C into Haskell land. // Until the corresponding call to rts_unlock, this task // is doing work on behalf of the RTS. traceTaskCreate(task, cap); } return (Capability *)cap; } // Exiting the RTS: we hold a Capability that is not necessarily the // same one that was originally returned by rts_lock(), because // rts_evalIO() etc. may return a new one. Now that we have // investigated the return value, we can release the Capability, // and free the Task (in that order). void rts_unlock (Capability *cap) { Task *task; task = cap->running_task; ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task); // Now release the Capability. With the capability released, GC // may happen. NB. does not try to put the current Task on the // worker queue. // NB. keep cap->lock held while we call boundTaskExiting(). This // is necessary during shutdown, where we want the invariant that // after shutdownCapability(), all the Tasks associated with the // Capability have completed their shutdown too. Otherwise we // could have boundTaskExiting()/workerTaskStop() running at some // random point in the future, which causes problems for // freeTaskManager(). ACQUIRE_LOCK(&cap->lock); releaseCapability_(cap,rtsFalse); // Finally, we can release the Task to the free list. boundTaskExiting(task); RELEASE_LOCK(&cap->lock); if (task->incall == NULL) { // This is the end of an outermost call from C into Haskell land. // From here on, the task goes back to C land and we should not count // it as doing work on behalf of the RTS. traceTaskDelete(task); } } void rts_done (void) { freeMyTask(); }