/* ---------------------------------------------------------------------------- * * (c) The GHC Team, 1998-2001 * * API for invoking Haskell functions via the RTS * * --------------------------------------------------------------------------*/ #include "PosixSource.h" #include "Rts.h" #include "OSThreads.h" #include "Storage.h" #include "RtsAPI.h" #include "SchedAPI.h" #include "RtsFlags.h" #include "RtsUtils.h" #include "Prelude.h" #include "Schedule.h" #include "Capability.h" #include /* ---------------------------------------------------------------------------- Building Haskell objects from C datatypes. ------------------------------------------------------------------------- */ HaskellObj rts_mkChar (Capability *cap, HsChar c) { StgClosure *p = (StgClosure *)allocateLocal(cap, CONSTR_sizeW(0,1)); SET_HDR(p, Czh_con_info, CCS_SYSTEM); p->payload[0] = (StgClosure *)(StgWord)(StgChar)c; return p; } HaskellObj rts_mkInt (Capability *cap, HsInt i) { StgClosure *p = (StgClosure *)allocateLocal(cap,CONSTR_sizeW(0,1)); SET_HDR(p, Izh_con_info, CCS_SYSTEM); p->payload[0] = (StgClosure *)(StgInt)i; return p; } HaskellObj rts_mkInt8 (Capability *cap, HsInt8 i) { StgClosure *p = (StgClosure *)allocateLocal(cap,CONSTR_sizeW(0,1)); SET_HDR(p, I8zh_con_info, CCS_SYSTEM); /* Make sure we mask out the bits above the lowest 8 */ p->payload[0] = (StgClosure *)(StgInt)((unsigned)i & 0xff); return p; } HaskellObj rts_mkInt16 (Capability *cap, HsInt16 i) { StgClosure *p = (StgClosure *)allocateLocal(cap,CONSTR_sizeW(0,1)); SET_HDR(p, I16zh_con_info, CCS_SYSTEM); /* Make sure we mask out the relevant bits */ p->payload[0] = (StgClosure *)(StgInt)((unsigned)i & 0xffff); return p; } HaskellObj rts_mkInt32 (Capability *cap, HsInt32 i) { StgClosure *p = (StgClosure *)allocateLocal(cap,CONSTR_sizeW(0,1)); SET_HDR(p, I32zh_con_info, CCS_SYSTEM); p->payload[0] = (StgClosure *)(StgInt)((unsigned)i & 0xffffffff); return p; } HaskellObj rts_mkInt64 (Capability *cap, HsInt64 i) { llong *tmp; StgClosure *p = (StgClosure *)allocateLocal(cap,CONSTR_sizeW(0,2)); SET_HDR(p, I64zh_con_info, CCS_SYSTEM); tmp = (llong*)&(p->payload[0]); *tmp = (StgInt64)i; return p; } HaskellObj rts_mkWord (Capability *cap, HsWord i) { StgClosure *p = (StgClosure *)allocateLocal(cap,CONSTR_sizeW(0,1)); SET_HDR(p, Wzh_con_info, CCS_SYSTEM); p->payload[0] = (StgClosure *)(StgWord)i; return p; } HaskellObj rts_mkWord8 (Capability *cap, HsWord8 w) { /* see rts_mkInt* comments */ StgClosure *p = (StgClosure *)allocateLocal(cap,CONSTR_sizeW(0,1)); SET_HDR(p, W8zh_con_info, CCS_SYSTEM); p->payload[0] = (StgClosure *)(StgWord)(w & 0xff); return p; } HaskellObj rts_mkWord16 (Capability *cap, HsWord16 w) { /* see rts_mkInt* comments */ StgClosure *p = (StgClosure *)allocateLocal(cap,CONSTR_sizeW(0,1)); SET_HDR(p, W16zh_con_info, CCS_SYSTEM); p->payload[0] = (StgClosure *)(StgWord)(w & 0xffff); return p; } HaskellObj rts_mkWord32 (Capability *cap, HsWord32 w) { /* see rts_mkInt* comments */ StgClosure *p = (StgClosure *)allocateLocal(cap,CONSTR_sizeW(0,1)); SET_HDR(p, W32zh_con_info, CCS_SYSTEM); p->payload[0] = (StgClosure *)(StgWord)(w & 0xffffffff); return p; } HaskellObj rts_mkWord64 (Capability *cap, HsWord64 w) { ullong *tmp; StgClosure *p = (StgClosure *)allocateLocal(cap,CONSTR_sizeW(0,2)); /* see mk_Int8 comment */ SET_HDR(p, W64zh_con_info, CCS_SYSTEM); tmp = (ullong*)&(p->payload[0]); *tmp = (StgWord64)w; return p; } HaskellObj rts_mkFloat (Capability *cap, HsFloat f) { StgClosure *p = (StgClosure *)allocateLocal(cap,CONSTR_sizeW(0,1)); SET_HDR(p, Fzh_con_info, CCS_SYSTEM); ASSIGN_FLT((P_)p->payload, (StgFloat)f); return p; } HaskellObj rts_mkDouble (Capability *cap, HsDouble d) { StgClosure *p = (StgClosure *)allocateLocal(cap,CONSTR_sizeW(0,sizeofW(StgDouble))); SET_HDR(p, Dzh_con_info, CCS_SYSTEM); ASSIGN_DBL((P_)p->payload, (StgDouble)d); return p; } HaskellObj rts_mkStablePtr (Capability *cap, HsStablePtr s) { StgClosure *p = (StgClosure *)allocateLocal(cap,sizeofW(StgHeader)+1); SET_HDR(p, StablePtr_con_info, CCS_SYSTEM); p->payload[0] = (StgClosure *)s; return p; } HaskellObj rts_mkPtr (Capability *cap, HsPtr a) { StgClosure *p = (StgClosure *)allocateLocal(cap,sizeofW(StgHeader)+1); SET_HDR(p, Ptr_con_info, CCS_SYSTEM); p->payload[0] = (StgClosure *)a; return p; } HaskellObj rts_mkFunPtr (Capability *cap, HsFunPtr a) { StgClosure *p = (StgClosure *)allocateLocal(cap,sizeofW(StgHeader)+1); SET_HDR(p, FunPtr_con_info, CCS_SYSTEM); p->payload[0] = (StgClosure *)a; return p; } HaskellObj rts_mkBool (Capability *cap STG_UNUSED, HsBool b) { if (b) { return (StgClosure *)True_closure; } else { return (StgClosure *)False_closure; } } HaskellObj rts_mkString (Capability *cap, char *s) { return rts_apply(cap, (StgClosure *)unpackCString_closure, rts_mkPtr(cap,s)); } HaskellObj rts_apply (Capability *cap, HaskellObj f, HaskellObj arg) { StgThunk *ap; ap = (StgThunk *)allocateLocal(cap,sizeofW(StgThunk) + 2); SET_HDR(ap, (StgInfoTable *)&stg_ap_2_upd_info, CCS_SYSTEM); ap->payload[0] = f; ap->payload[1] = arg; return (StgClosure *)ap; } /* ---------------------------------------------------------------------------- Deconstructing Haskell objects We would like to assert that we have the right kind of object in each case, but this is problematic because in GHCi the info table for the D# constructor (say) might be dynamically loaded. Hence we omit these assertions for now. ------------------------------------------------------------------------- */ HsChar rts_getChar (HaskellObj p) { // See comment above: // ASSERT(p->header.info == Czh_con_info || // p->header.info == Czh_static_info); return (StgChar)(StgWord)(p->payload[0]); } HsInt rts_getInt (HaskellObj p) { // See comment above: // ASSERT(p->header.info == Izh_con_info || // p->header.info == Izh_static_info); return (HsInt)(p->payload[0]); } HsInt8 rts_getInt8 (HaskellObj p) { // See comment above: // ASSERT(p->header.info == I8zh_con_info || // p->header.info == I8zh_static_info); return (HsInt8)(HsInt)(p->payload[0]); } HsInt16 rts_getInt16 (HaskellObj p) { // See comment above: // ASSERT(p->header.info == I16zh_con_info || // p->header.info == I16zh_static_info); return (HsInt16)(HsInt)(p->payload[0]); } HsInt32 rts_getInt32 (HaskellObj p) { // See comment above: // ASSERT(p->header.info == I32zh_con_info || // p->header.info == I32zh_static_info); return (HsInt32)(HsInt)(p->payload[0]); } HsInt64 rts_getInt64 (HaskellObj p) { HsInt64* tmp; // See comment above: // ASSERT(p->header.info == I64zh_con_info || // p->header.info == I64zh_static_info); tmp = (HsInt64*)&(p->payload[0]); return *tmp; } HsWord rts_getWord (HaskellObj p) { // See comment above: // ASSERT(p->header.info == Wzh_con_info || // p->header.info == Wzh_static_info); return (HsWord)(p->payload[0]); } HsWord8 rts_getWord8 (HaskellObj p) { // See comment above: // ASSERT(p->header.info == W8zh_con_info || // p->header.info == W8zh_static_info); return (HsWord8)(HsWord)(p->payload[0]); } HsWord16 rts_getWord16 (HaskellObj p) { // See comment above: // ASSERT(p->header.info == W16zh_con_info || // p->header.info == W16zh_static_info); return (HsWord16)(HsWord)(p->payload[0]); } HsWord32 rts_getWord32 (HaskellObj p) { // See comment above: // ASSERT(p->header.info == W32zh_con_info || // p->header.info == W32zh_static_info); return (HsWord32)(HsWord)(p->payload[0]); } HsWord64 rts_getWord64 (HaskellObj p) { HsWord64* tmp; // See comment above: // ASSERT(p->header.info == W64zh_con_info || // p->header.info == W64zh_static_info); tmp = (HsWord64*)&(p->payload[0]); return *tmp; } HsFloat rts_getFloat (HaskellObj p) { // See comment above: // ASSERT(p->header.info == Fzh_con_info || // p->header.info == Fzh_static_info); return (float)(PK_FLT((P_)p->payload)); } HsDouble rts_getDouble (HaskellObj p) { // See comment above: // ASSERT(p->header.info == Dzh_con_info || // p->header.info == Dzh_static_info); return (double)(PK_DBL((P_)p->payload)); } HsStablePtr rts_getStablePtr (HaskellObj p) { // See comment above: // ASSERT(p->header.info == StablePtr_con_info || // p->header.info == StablePtr_static_info); return (StgStablePtr)(p->payload[0]); } HsPtr rts_getPtr (HaskellObj p) { // See comment above: // ASSERT(p->header.info == Ptr_con_info || // p->header.info == Ptr_static_info); return (Capability *)(p->payload[0]); } HsFunPtr rts_getFunPtr (HaskellObj p) { // See comment above: // ASSERT(p->header.info == FunPtr_con_info || // p->header.info == FunPtr_static_info); return (void *)(p->payload[0]); } HsBool rts_getBool (HaskellObj p) { StgInfoTable *info; info = get_itbl((StgClosure *)p); if (info->srt_bitmap == 0) { // srt_bitmap is the constructor tag return 0; } else { return 1; } } /* ----------------------------------------------------------------------------- Creating threads -------------------------------------------------------------------------- */ INLINE_HEADER void pushClosure (StgTSO *tso, StgWord c) { tso->sp--; tso->sp[0] = (W_) c; } StgTSO * createGenThread (Capability *cap, nat stack_size, StgClosure *closure) { StgTSO *t; #if defined(GRAN) t = createThread (cap, stack_size, NO_PRI); #else t = createThread (cap, stack_size); #endif pushClosure(t, (W_)closure); pushClosure(t, (W_)&stg_enter_info); return t; } StgTSO * createIOThread (Capability *cap, nat stack_size, StgClosure *closure) { StgTSO *t; #if defined(GRAN) t = createThread (cap, stack_size, NO_PRI); #else t = createThread (cap, stack_size); #endif pushClosure(t, (W_)&stg_noforceIO_info); pushClosure(t, (W_)&stg_ap_v_info); pushClosure(t, (W_)closure); pushClosure(t, (W_)&stg_enter_info); return t; } /* * Same as above, but also evaluate the result of the IO action * to whnf while we're at it. */ StgTSO * createStrictIOThread(Capability *cap, nat stack_size, StgClosure *closure) { StgTSO *t; #if defined(GRAN) t = createThread(cap, stack_size, NO_PRI); #else t = createThread(cap, stack_size); #endif pushClosure(t, (W_)&stg_forceIO_info); pushClosure(t, (W_)&stg_ap_v_info); pushClosure(t, (W_)closure); pushClosure(t, (W_)&stg_enter_info); return t; } /* ---------------------------------------------------------------------------- Evaluating Haskell expressions ------------------------------------------------------------------------- */ Capability * rts_eval (Capability *cap, HaskellObj p, /*out*/HaskellObj *ret) { StgTSO *tso; tso = createGenThread(cap, RtsFlags.GcFlags.initialStkSize, p); return scheduleWaitThread(tso,ret,cap); } Capability * rts_eval_ (Capability *cap, HaskellObj p, unsigned int stack_size, /*out*/HaskellObj *ret) { StgTSO *tso; tso = createGenThread(cap, stack_size, p); return scheduleWaitThread(tso,ret,cap); } /* * rts_evalIO() evaluates a value of the form (IO a), forcing the action's * result to WHNF before returning. */ Capability * rts_evalIO (Capability *cap, HaskellObj p, /*out*/HaskellObj *ret) { StgTSO* tso; tso = createStrictIOThread(cap, RtsFlags.GcFlags.initialStkSize, p); return scheduleWaitThread(tso,ret,cap); } /* * rts_evalStableIO() is suitable for calling from Haskell. It * evaluates a value of the form (StablePtr (IO a)), forcing the * action's result to WHNF before returning. The result is returned * in a StablePtr. */ Capability * rts_evalStableIO (Capability *cap, HsStablePtr s, /*out*/HsStablePtr *ret) { StgTSO* tso; StgClosure *p, *r; SchedulerStatus stat; p = (StgClosure *)deRefStablePtr(s); tso = createStrictIOThread(cap, RtsFlags.GcFlags.initialStkSize, p); cap = scheduleWaitThread(tso,&r,cap); stat = rts_getSchedStatus(cap); if (stat == Success && ret != NULL) { ASSERT(r != NULL); *ret = getStablePtr((StgPtr)r); } return cap; } /* * Like rts_evalIO(), but doesn't force the action's result. */ Capability * rts_evalLazyIO (Capability *cap, HaskellObj p, /*out*/HaskellObj *ret) { StgTSO *tso; tso = createIOThread(cap, RtsFlags.GcFlags.initialStkSize, p); return scheduleWaitThread(tso,ret,cap); } Capability * rts_evalLazyIO_ (Capability *cap, HaskellObj p, unsigned int stack_size, /*out*/HaskellObj *ret) { StgTSO *tso; tso = createIOThread(cap, stack_size, p); return scheduleWaitThread(tso,ret,cap); } /* Convenience function for decoding the returned status. */ void rts_checkSchedStatus (char* site, Capability *cap) { SchedulerStatus rc = cap->running_task->stat; switch (rc) { case Success: return; case Killed: errorBelch("%s: uncaught exception",site); stg_exit(EXIT_FAILURE); case Interrupted: errorBelch("%s: interrupted", site); stg_exit(EXIT_FAILURE); default: errorBelch("%s: Return code (%d) not ok",(site),(rc)); stg_exit(EXIT_FAILURE); } } SchedulerStatus rts_getSchedStatus (Capability *cap) { return cap->running_task->stat; } Capability * rts_lock (void) { Capability *cap; Task *task; // ToDo: get rid of this lock in the common case. We could store // a free Task in thread-local storage, for example. That would // leave just one lock on the path into the RTS: cap->lock when // acquiring the Capability. ACQUIRE_LOCK(&sched_mutex); task = newBoundTask(); RELEASE_LOCK(&sched_mutex); cap = NULL; waitForReturnCapability(&cap, task); return (Capability *)cap; } // Exiting the RTS: we hold a Capability that is not necessarily the // same one that was originally returned by rts_lock(), because // rts_evalIO() etc. may return a new one. Now that we have // investigated the return value, we can release the Capability, // and free the Task (in that order). void rts_unlock (Capability *cap) { Task *task; task = cap->running_task; ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task); // slightly delicate ordering of operations below, pay attention! // We are no longer a bound task/thread. This is important, // because the GC can run when we release the Capability below, // and we don't want it to treat this as a live TSO pointer. task->tso = NULL; // Now release the Capability. With the capability released, GC // may happen. NB. does not try to put the current Task on the // worker queue. releaseCapability(cap); // Finally, we can release the Task to the free list. boundTaskExiting(task); }