/* ----------------------------------------------------------------------------- * * (c) The GHC Team 1998-2005 * * Prototypes for functions in Schedule.c * (RTS internal scheduler interface) * * -------------------------------------------------------------------------*/ #pragma once #include "rts/OSThreads.h" #include "Capability.h" #include "Trace.h" #include "BeginPrivate.h" /* initScheduler(), exitScheduler() * Called from STG : no * Locks assumed : none */ void initScheduler (void); void exitScheduler (bool wait_foreign); void freeScheduler (void); // Place a new thread on the run queue of the current Capability void scheduleThread (Capability *cap, StgTSO *tso); // Place a new thread on the run queue of the current Capability // at the front of the queue. void scheduleThreadNow (Capability *cap, StgTSO *tso); // Place a new thread on the run queue of a specified Capability // (cap is the currently owned Capability, cpu is the number of // the desired Capability). void scheduleThreadOn(Capability *cap, StgWord cpu, StgTSO *tso); /* wakeUpRts() * * Causes an OS thread to wake up and run the scheduler, if necessary. */ #if defined(THREADED_RTS) void wakeUpRts(void); #endif /* raiseExceptionHelper */ StgWord raiseExceptionHelper (StgRegTable *reg, StgTSO *tso, StgClosure *exception); /* findRetryFrameHelper */ StgWord findRetryFrameHelper (Capability *cap, StgTSO *tso); /* findAtomicallyFrameHelper */ StgWord findAtomicallyFrameHelper (Capability *cap, StgTSO *tso); /* Entry point for a new worker */ void scheduleWorker (Capability *cap, Task *task); #if defined(THREADED_RTS) void stopAllCapabilitiesWith (Capability **pCap, Task *task, SyncType sync_type); void stopAllCapabilities (Capability **pCap, Task *task); void releaseAllCapabilities(uint32_t n, Capability *keep_cap, Task *task); #endif /* The state of the scheduler. This is used to control the sequence * of events during shutdown. See Note [shutdown] in Schedule.c. */ enum SchedState { SCHED_RUNNING = 0, /* running as normal */ SCHED_INTERRUPTING = 1, /* before threads are deleted */ SCHED_SHUTTING_DOWN = 2, /* final shutdown */ }; extern StgWord sched_state; INLINE_HEADER void setSchedState(enum SchedState ss) { SEQ_CST_STORE_ALWAYS(&sched_state, (StgWord) ss); } INLINE_HEADER enum SchedState getSchedState(void) { return (enum SchedState) SEQ_CST_LOAD_ALWAYS(&sched_state); } /* * flag that tracks whether we have done any execution in this time * slice, and controls the disabling of the interval timer. * * The timer interrupt transitions ACTIVITY_YES into * ACTIVITY_MAYBE_NO, waits for RtsFlags.GcFlags.idleGCDelayTime, * and then: * - if idle GC is on, set ACTIVITY_INACTIVE and wakeUpRts() * - if idle GC is off, set ACTIVITY_DONE_GC and stopTimer() * * If the scheduler finds ACTIVITY_INACTIVE, then it sets * ACTIVITY_DONE_GC, performs the GC and calls stopTimer(). * * If the scheduler finds ACTIVITY_DONE_GC and it has a thread to run, * it enables the timer again with startTimer(). */ enum RecentActivity { // the RTS is active ACTIVITY_YES = 0, // no activity since the last timer signal ACTIVITY_MAYBE_NO = 1, // RtsFlags.GcFlags.idleGCDelayTime has passed with no activity ACTIVITY_INACTIVE = 2, // like ACTIVITY_INACTIVE, but we've done a GC too (if idle GC is // enabled) and the interval timer is now turned off. ACTIVITY_DONE_GC = 3, }; /* Recent activity flag. * Locks required : Transition from MAYBE_NO to INACTIVE * happens in the timer signal, so it is atomic. Transition from * INACTIVE to DONE_GC happens under sched_mutex. No lock required * to set it to ACTIVITY_YES. * * N.B. we must always use atomics here since even in the non-threaded runtime * the timer may be provided via a signal. */ extern StgWord recent_activity; INLINE_HEADER enum RecentActivity setRecentActivity(enum RecentActivity new_value) { StgWord old = SEQ_CST_XCHG_ALWAYS((StgPtr) &recent_activity, (StgWord) new_value); return (enum RecentActivity) old; } INLINE_HEADER enum RecentActivity getRecentActivity(void) { return (enum RecentActivity) RELAXED_LOAD_ALWAYS(&recent_activity); } extern bool heap_overflow; #if defined(THREADED_RTS) extern Mutex sched_mutex; #endif /* Called by shutdown_handler(). */ void interruptStgRts (void); void resurrectThreads (StgTSO *); /* ----------------------------------------------------------------------------- * Some convenient macros/inline functions... */ #if !IN_STG_CODE /* END_TSO_QUEUE and friends now defined in rts/include/stg/MiscClosures.h */ /* Add a thread to the end of the run queue. * NOTE: tso->link should be END_TSO_QUEUE before calling this macro. * ASSUMES: cap->running_task is the current task. */ void appendToRunQueue (Capability *cap, StgTSO *tso); /* Push a thread on the beginning of the run queue. * ASSUMES: cap->running_task is the current task. */ void pushOnRunQueue (Capability *cap, StgTSO *tso); /* Pop the first thread off the runnable queue. */ StgTSO *popRunQueue (Capability *cap); INLINE_HEADER StgTSO * peekRunQueue (Capability *cap) { return cap->run_queue_hd; } void promoteInRunQueue (Capability *cap, StgTSO *tso); INLINE_HEADER bool emptyRunQueue(Capability *cap) { // Can only be called by the task owning the capability. TSAN_ANNOTATE_BENIGN_RACE(&cap->n_run_queue, "emptyRunQueue"); return cap->n_run_queue == 0; } INLINE_HEADER void truncateRunQueue(Capability *cap) { // Can only be called by the task owning the capability. TSAN_ANNOTATE_BENIGN_RACE(&cap->run_queue_hd, "truncateRunQueue"); TSAN_ANNOTATE_BENIGN_RACE(&cap->run_queue_tl, "truncateRunQueue"); TSAN_ANNOTATE_BENIGN_RACE(&cap->n_run_queue, "truncateRunQueue"); cap->run_queue_hd = END_TSO_QUEUE; cap->run_queue_tl = END_TSO_QUEUE; cap->n_run_queue = 0; } #endif /* !IN_STG_CODE */ #include "EndPrivate.h"