/* ----------------------------------------------------------------------------- * * (c) The GHC Team 1998-2005 * * Prototypes for functions in Schedule.c * (RTS internal scheduler interface) * * -------------------------------------------------------------------------*/ #ifndef SCHEDULE_H #define SCHEDULE_H #include "OSThreads.h" #include "Capability.h" /* initScheduler(), exitScheduler() * Called from STG : no * Locks assumed : none */ void initScheduler (void); void exitScheduler (rtsBool wait_foreign); void freeScheduler (void); // Place a new thread on the run queue of the current Capability void scheduleThread (Capability *cap, StgTSO *tso); // Place a new thread on the run queue of a specified Capability // (cap is the currently owned Capability, cpu is the number of // the desired Capability). void scheduleThreadOn(Capability *cap, StgWord cpu, StgTSO *tso); /* awakenBlockedQueue() * * Takes a pointer to the beginning of a blocked TSO queue, and * wakes up the entire queue. * Called from STG : yes * Locks assumed : none */ #if defined(GRAN) void awakenBlockedQueue(StgBlockingQueueElement *q, StgClosure *node); #elif defined(PAR) void awakenBlockedQueue(StgBlockingQueueElement *q, StgClosure *node); #else void awakenBlockedQueue (Capability *cap, StgTSO *tso); #endif /* wakeUpRts() * * Causes an OS thread to wake up and run the scheduler, if necessary. */ void wakeUpRts(void); /* unblockOne() * * Put the specified thread on the run queue of the given Capability. * Called from STG : yes * Locks assumed : we own the Capability. */ StgTSO * unblockOne (Capability *cap, StgTSO *tso); /* raiseExceptionHelper */ StgWord raiseExceptionHelper (StgRegTable *reg, StgTSO *tso, StgClosure *exception); /* findRetryFrameHelper */ StgWord findRetryFrameHelper (StgTSO *tso); /* workerStart() * * Entry point for a new worker task. * Called from STG : NO * Locks assumed : none */ void workerStart(Task *task); #if defined(GRAN) void awaken_blocked_queue(StgBlockingQueueElement *q, StgClosure *node); void unlink_from_bq(StgTSO* tso, StgClosure* node); void initThread(StgTSO *tso, nat stack_size, StgInt pri); #elif defined(PAR) nat run_queue_len(void); void awaken_blocked_queue(StgBlockingQueueElement *q, StgClosure *node); void initThread(StgTSO *tso, nat stack_size); #else char *info_type(StgClosure *closure); // dummy char *info_type_by_ip(StgInfoTable *ip); // dummy void awaken_blocked_queue(StgTSO *q); void initThread(StgTSO *tso, nat stack_size); #endif /* Context switch flag. * Locks required : none (conflicts are harmless) */ extern int RTS_VAR(context_switch); /* The state of the scheduler. This is used to control the sequence * of events during shutdown, and when the runtime is interrupted * using ^C. */ #define SCHED_RUNNING 0 /* running as normal */ #define SCHED_INTERRUPTING 1 /* ^C detected, before threads are deleted */ #define SCHED_SHUTTING_DOWN 2 /* final shutdown */ extern rtsBool RTS_VAR(sched_state); /* * flag that tracks whether we have done any execution in this time slice. */ #define ACTIVITY_YES 0 /* there has been activity in the current slice */ #define ACTIVITY_MAYBE_NO 1 /* no activity in the current slice */ #define ACTIVITY_INACTIVE 2 /* a complete slice has passed with no activity */ #define ACTIVITY_DONE_GC 3 /* like 2, but we've done a GC too */ /* Recent activity flag. * Locks required : Transition from MAYBE_NO to INACTIVE * happens in the timer signal, so it is atomic. Trnasition from * INACTIVE to DONE_GC happens under sched_mutex. No lock required * to set it to ACTIVITY_YES. */ extern nat recent_activity; /* Thread queues. * Locks required : sched_mutex * * In GranSim we have one run/blocked_queue per PE. */ #if defined(GRAN) // run_queue_hds defined in GranSim.h #else extern StgTSO *RTS_VAR(blackhole_queue); #if !defined(THREADED_RTS) extern StgTSO *RTS_VAR(blocked_queue_hd), *RTS_VAR(blocked_queue_tl); extern StgTSO *RTS_VAR(sleeping_queue); #endif #endif /* Linked list of all threads. * Locks required : sched_mutex */ extern StgTSO *RTS_VAR(all_threads); /* Set to rtsTrue if there are threads on the blackhole_queue, and * it is possible that one or more of them may be available to run. * This flag is set to rtsFalse after we've checked the queue, and * set to rtsTrue just before we run some Haskell code. It is used * to decide whether we should yield the Capability or not. * Locks required : none (see scheduleCheckBlackHoles()). */ extern rtsBool blackholes_need_checking; #if defined(THREADED_RTS) extern Mutex RTS_VAR(sched_mutex); #endif SchedulerStatus rts_mainLazyIO(HaskellObj p, /*out*/HaskellObj *ret); /* Called by shutdown_handler(). */ void interruptStgRts (void); nat run_queue_len (void); void resurrectThreads (StgTSO *); void printAllThreads(void); /* debugging only */ #ifdef DEBUG void print_bq (StgClosure *node); #endif #if defined(PAR) void print_bqe (StgBlockingQueueElement *bqe); #endif /* ----------------------------------------------------------------------------- * Some convenient macros/inline functions... */ #if !IN_STG_CODE /* END_TSO_QUEUE and friends now defined in includes/StgMiscClosures.h */ /* Add a thread to the end of the run queue. * NOTE: tso->link should be END_TSO_QUEUE before calling this macro. * ASSUMES: cap->running_task is the current task. */ INLINE_HEADER void appendToRunQueue (Capability *cap, StgTSO *tso) { ASSERT(tso->_link == END_TSO_QUEUE); if (cap->run_queue_hd == END_TSO_QUEUE) { cap->run_queue_hd = tso; } else { setTSOLink(cap, cap->run_queue_tl, tso); } cap->run_queue_tl = tso; } /* Push a thread on the beginning of the run queue. Used for * newly awakened threads, so they get run as soon as possible. * ASSUMES: cap->running_task is the current task. */ INLINE_HEADER void pushOnRunQueue (Capability *cap, StgTSO *tso) { setTSOLink(cap, tso, cap->run_queue_hd); cap->run_queue_hd = tso; if (cap->run_queue_tl == END_TSO_QUEUE) { cap->run_queue_tl = tso; } } /* Pop the first thread off the runnable queue. */ INLINE_HEADER StgTSO * popRunQueue (Capability *cap) { StgTSO *t = cap->run_queue_hd; ASSERT(t != END_TSO_QUEUE); cap->run_queue_hd = t->_link; t->_link = END_TSO_QUEUE; // no write barrier req'd if (cap->run_queue_hd == END_TSO_QUEUE) { cap->run_queue_tl = END_TSO_QUEUE; } return t; } /* Add a thread to the end of the blocked queue. */ #if !defined(THREADED_RTS) INLINE_HEADER void appendToBlockedQueue(StgTSO *tso) { ASSERT(tso->_link == END_TSO_QUEUE); if (blocked_queue_hd == END_TSO_QUEUE) { blocked_queue_hd = tso; } else { setTSOLink(&MainCapability, blocked_queue_tl, tso); } blocked_queue_tl = tso; } #endif #if defined(THREADED_RTS) INLINE_HEADER void appendToWakeupQueue (Capability *cap, StgTSO *tso) { ASSERT(tso->_link == END_TSO_QUEUE); if (cap->wakeup_queue_hd == END_TSO_QUEUE) { cap->wakeup_queue_hd = tso; } else { setTSOLink(cap, cap->wakeup_queue_tl, tso); } cap->wakeup_queue_tl = tso; } #endif /* Check whether various thread queues are empty */ INLINE_HEADER rtsBool emptyQueue (StgTSO *q) { return (q == END_TSO_QUEUE); } INLINE_HEADER rtsBool emptyRunQueue(Capability *cap) { return emptyQueue(cap->run_queue_hd); } #if defined(THREADED_RTS) INLINE_HEADER rtsBool emptyWakeupQueue(Capability *cap) { return emptyQueue(cap->wakeup_queue_hd); } #endif #if !defined(THREADED_RTS) #define EMPTY_BLOCKED_QUEUE() (emptyQueue(blocked_queue_hd)) #define EMPTY_SLEEPING_QUEUE() (emptyQueue(sleeping_queue)) #endif INLINE_HEADER rtsBool emptyThreadQueues(Capability *cap) { return emptyRunQueue(cap) #if !defined(THREADED_RTS) && EMPTY_BLOCKED_QUEUE() && EMPTY_SLEEPING_QUEUE() #endif ; } #endif /* !IN_STG_CODE */ #endif /* SCHEDULE_H */