/* ---------------------------------------------------------------------------- * * (c) The GHC Team, 1998-2004 * * Entry code for various built-in closure types. * * This file is written in a subset of C--, extended with various * features specific to GHC. It is compiled by GHC directly. For the * syntax of .cmm files, see the parser in ghc/compiler/cmm/CmmParse.y. * * --------------------------------------------------------------------------*/ #include "Cmm.h" import pthread_mutex_lock; import ghczmprim_GHCziTypes_Czh_info; import ghczmprim_GHCziTypes_Izh_info; import EnterCriticalSection; import LeaveCriticalSection; /* ---------------------------------------------------------------------------- Stack underflow ------------------------------------------------------------------------- */ INFO_TABLE_RET (stg_stack_underflow_frame, UNDERFLOW_FRAME, W_ info_ptr, P_ unused) /* no args => explicit stack */ { W_ new_tso; W_ ret_off; SAVE_STGREGS SAVE_THREAD_STATE(); (ret_off) = foreign "C" threadStackUnderflow(MyCapability() "ptr", CurrentTSO); LOAD_THREAD_STATE(); RESTORE_STGREGS jump %ENTRY_CODE(Sp(ret_off)) [*]; // NB. all registers live! } /* ---------------------------------------------------------------------------- Restore a saved cost centre ------------------------------------------------------------------------- */ INFO_TABLE_RET (stg_restore_cccs, RET_SMALL, W_ info_ptr, W_ cccs) { unwind Sp = Sp + WDS(2); #if defined(PROFILING) CCCS = Sp(1); #endif Sp_adj(2); jump %ENTRY_CODE(Sp(0)) [*]; // NB. all registers live! } /* ---------------------------------------------------------------------------- Support for the bytecode interpreter. ------------------------------------------------------------------------- */ /* 7 bits of return code for constructors created by the interpreter. */ stg_interp_constr1_entry (P_ ret) { return (ret + 1); } stg_interp_constr2_entry (P_ ret) { return (ret + 2); } stg_interp_constr3_entry (P_ ret) { return (ret + 3); } stg_interp_constr4_entry (P_ ret) { return (ret + 4); } stg_interp_constr5_entry (P_ ret) { return (ret + 5); } stg_interp_constr6_entry (P_ ret) { return (ret + 6); } stg_interp_constr7_entry (P_ ret) { return (ret + 7); } /* Some info tables to be used when compiled code returns a value to the interpreter, i.e. the interpreter pushes one of these onto the stack before entering a value. What the code does is to impedance-match the compiled return convention (in R1p/R1n/F1/D1 etc) to the interpreter's convention (returned value is on top of stack), and then cause the scheduler to enter the interpreter. On entry, the stack (growing down) looks like this: ptr to BCO holding return continuation ptr to one of these info tables. The info table code, both direct and vectored, must: * push R1/F1/D1 on the stack, and its tag if necessary * push the BCO (so it's now on the stack twice) * Yield, ie, go to the scheduler. Scheduler examines the t.o.s, discovers it is a BCO, and proceeds directly to the bytecode interpreter. That pops the top element (the BCO, containing the return continuation), and interprets it. Net result: return continuation gets interpreted, with the following stack: ptr to this BCO ptr to the info table just jumped thru return value which is just what we want -- the "standard" return layout for the interpreter. Hurrah! Don't ask me how unboxed tuple returns are supposed to work. We haven't got a good story about that yet. */ INFO_TABLE_RET( stg_ctoi_R1p, RET_BCO) /* explicit stack */ { Sp_adj(-2); Sp(1) = R1; Sp(0) = stg_enter_info; jump stg_yield_to_interpreter []; } /* * When the returned value is a pointer, but unlifted, in R1 ... */ INFO_TABLE_RET( stg_ctoi_R1unpt, RET_BCO ) /* explicit stack */ { Sp_adj(-2); Sp(1) = R1; Sp(0) = stg_ret_p_info; jump stg_yield_to_interpreter []; } /* * When the returned value is a non-pointer in R1 ... */ INFO_TABLE_RET( stg_ctoi_R1n, RET_BCO ) /* explicit stack */ { Sp_adj(-2); Sp(1) = R1; Sp(0) = stg_ret_n_info; jump stg_yield_to_interpreter []; } /* * When the returned value is in F1 */ INFO_TABLE_RET( stg_ctoi_F1, RET_BCO ) /* explicit stack */ { Sp_adj(-2); F_[Sp + WDS(1)] = F1; Sp(0) = stg_ret_f_info; jump stg_yield_to_interpreter []; } /* * When the returned value is in D1 */ INFO_TABLE_RET( stg_ctoi_D1, RET_BCO ) /* explicit stack */ { Sp_adj(-1) - SIZEOF_DOUBLE; D_[Sp + WDS(1)] = D1; Sp(0) = stg_ret_d_info; jump stg_yield_to_interpreter []; } /* * When the returned value is in L1 */ INFO_TABLE_RET( stg_ctoi_L1, RET_BCO ) /* explicit stack */ { Sp_adj(-1) - 8; L_[Sp + WDS(1)] = L1; Sp(0) = stg_ret_l_info; jump stg_yield_to_interpreter []; } /* * When the returned value is a void */ INFO_TABLE_RET( stg_ctoi_V, RET_BCO ) /* explicit stack */ { Sp_adj(-1); Sp(0) = stg_ret_v_info; jump stg_yield_to_interpreter []; } /* * Dummy info table pushed on the top of the stack when the interpreter * should apply the BCO on the stack to its arguments, also on the * stack. */ INFO_TABLE_RET( stg_apply_interp, RET_BCO ) /* explicit stack */ { /* Just in case we end up in here... (we shouldn't) */ jump stg_yield_to_interpreter []; } /* ---------------------------------------------------------------------------- Entry code for a BCO ------------------------------------------------------------------------- */ INFO_TABLE_FUN( stg_BCO, 4, 0, BCO, "BCO", "BCO", ARG_BCO ) /* explicit stack */ { /* entering a BCO means "apply it", same as a function */ Sp_adj(-2); // Skip the stack check; the interpreter will do one before using // the stack anyway. Sp(1) = R1; Sp(0) = stg_apply_interp_info; jump stg_yield_to_interpreter []; } /* ---------------------------------------------------------------------------- Info tables for indirections. SPECIALISED INDIRECTIONS: we have a specialised indirection for direct returns, so that we can avoid entering the object when we know it points directly to a value. The update code (Updates.cmm) updates objects with the appropriate kind of indirection. We only do this for young-gen indirections. ------------------------------------------------------------------------- */ INFO_TABLE(stg_IND,1,0,IND,"IND","IND") #if 0 /* This version in high-level cmm generates slightly less good code than the low-level version below it. (ToDo) */ (P_ node) { TICK_ENT_DYN_IND(); /* tick */ node = UNTAG(StgInd_indirectee(node)); TICK_ENT_VIA_NODE(); jump %GET_ENTRY(node) (node); } #else /* explicit stack */ { TICK_ENT_DYN_IND(); /* tick */ R1 = UNTAG(StgInd_indirectee(R1)); TICK_ENT_VIA_NODE(); jump %GET_ENTRY(R1) [R1]; } #endif INFO_TABLE(stg_IND_direct,1,0,IND,"IND","IND") (P_ node) { TICK_ENT_DYN_IND(); /* tick */ node = StgInd_indirectee(node); TICK_ENT_VIA_NODE(); jump %ENTRY_CODE(Sp(0)) (node); } INFO_TABLE(stg_IND_STATIC,1,0,IND_STATIC,"IND_STATIC","IND_STATIC") /* explicit stack */ { TICK_ENT_STATIC_IND(); /* tick */ R1 = UNTAG(StgInd_indirectee(R1)); TICK_ENT_VIA_NODE(); jump %GET_ENTRY(R1) [R1]; } /* ---------------------------------------------------------------------------- Black holes. Entering a black hole normally causes a cyclic data dependency, but in the concurrent world, black holes are synchronization points, and they are turned into blocking queues when there are threads waiting for the evaluation of the closure to finish. ------------------------------------------------------------------------- */ INFO_TABLE(stg_BLACKHOLE,1,0,BLACKHOLE,"BLACKHOLE","BLACKHOLE") (P_ node) { W_ r, info, owner, bd; P_ p, bq, msg; TICK_ENT_DYN_IND(); /* tick */ retry: p = StgInd_indirectee(node); if (GETTAG(p) != 0) { return (p); } info = StgHeader_info(p); if (info == stg_IND_info) { // This could happen, if e.g. we got a BLOCKING_QUEUE that has // just been replaced with an IND by another thread in // wakeBlockingQueue(). goto retry; } if (info == stg_TSO_info || info == stg_BLOCKING_QUEUE_CLEAN_info || info == stg_BLOCKING_QUEUE_DIRTY_info) { ("ptr" msg) = ccall allocate(MyCapability() "ptr", BYTES_TO_WDS(SIZEOF_MessageBlackHole)); SET_HDR(msg, stg_MSG_BLACKHOLE_info, CCS_SYSTEM); MessageBlackHole_tso(msg) = CurrentTSO; MessageBlackHole_bh(msg) = node; (r) = ccall messageBlackHole(MyCapability() "ptr", msg "ptr"); if (r == 0) { goto retry; } else { StgTSO_why_blocked(CurrentTSO) = BlockedOnBlackHole::I16; StgTSO_block_info(CurrentTSO) = msg; jump stg_block_blackhole(node); } } else { ENTER(p); } } // CAF_BLACKHOLE is allocated when entering a CAF. The reason it is // distinct from BLACKHOLE is so that we can tell the difference // between an update frame on the stack that points to a CAF under // evaluation, and one that points to a closure that is under // evaluation by another thread (a BLACKHOLE). see Note [suspend // duplicate work] in ThreadPaused.c // INFO_TABLE(stg_CAF_BLACKHOLE,1,0,BLACKHOLE,"BLACKHOLE","BLACKHOLE") (P_ node) { jump ENTRY_LBL(stg_BLACKHOLE) (node); } // EAGER_BLACKHOLE exists for the same reason as CAF_BLACKHOLE (see above). INFO_TABLE(__stg_EAGER_BLACKHOLE,1,0,BLACKHOLE,"BLACKHOLE","BLACKHOLE") (P_ node) { jump ENTRY_LBL(stg_BLACKHOLE) (node); } INFO_TABLE(stg_BLOCKING_QUEUE_CLEAN,4,0,BLOCKING_QUEUE,"BLOCKING_QUEUE","BLOCKING_QUEUE") { foreign "C" barf("BLOCKING_QUEUE_CLEAN object entered!") never returns; } INFO_TABLE(stg_BLOCKING_QUEUE_DIRTY,4,0,BLOCKING_QUEUE,"BLOCKING_QUEUE","BLOCKING_QUEUE") { foreign "C" barf("BLOCKING_QUEUE_DIRTY object entered!") never returns; } /* ---------------------------------------------------------------------------- Whiteholes are used for the "locked" state of a closure (see lockClosure()) ------------------------------------------------------------------------- */ INFO_TABLE(stg_WHITEHOLE, 0,0, WHITEHOLE, "WHITEHOLE", "WHITEHOLE") (P_ node) { #if defined(THREADED_RTS) W_ info, i; i = 0; loop: // spin until the WHITEHOLE is updated info = StgHeader_info(node); if (info == stg_WHITEHOLE_info) { i = i + 1; if (i == SPIN_COUNT) { i = 0; ccall yieldThread(); } goto loop; } jump %ENTRY_CODE(info) (node); #else ccall barf("WHITEHOLE object entered!") never returns; #endif } /* ---------------------------------------------------------------------------- Some static info tables for things that don't get entered, and therefore don't need entry code (i.e. boxed but unpointed objects) NON_ENTERABLE_ENTRY_CODE now defined at the beginning of the file ------------------------------------------------------------------------- */ INFO_TABLE(stg_TSO, 0,0,TSO, "TSO", "TSO") { foreign "C" barf("TSO object entered!") never returns; } INFO_TABLE(stg_STACK, 0,0, STACK, "STACK", "STACK") { foreign "C" barf("STACK object entered!") never returns; } /* ---------------------------------------------------------------------------- Weak pointers Live weak pointers have a special closure type. Dead ones are just nullary constructors (although they live on the heap - we overwrite live weak pointers with dead ones). ------------------------------------------------------------------------- */ INFO_TABLE(stg_WEAK,1,4,WEAK,"WEAK","WEAK") { foreign "C" barf("WEAK object entered!") never returns; } /* * It's important when turning an existing WEAK into a DEAD_WEAK * (which is what finalizeWeak# does) that we don't lose the link * field and break the linked list of weak pointers. Hence, we give * DEAD_WEAK 5 non-pointer fields. */ INFO_TABLE_CONSTR(stg_DEAD_WEAK,0,5,0,CONSTR,"DEAD_WEAK","DEAD_WEAK") { foreign "C" barf("DEAD_WEAK object entered!") never returns; } /* ---------------------------------------------------------------------------- C finalizer lists Singly linked lists that chain multiple C finalizers on a weak pointer. ------------------------------------------------------------------------- */ INFO_TABLE_CONSTR(stg_C_FINALIZER_LIST,1,4,0,CONSTR,"C_FINALIZER_LIST","C_FINALIZER_LIST") { foreign "C" barf("C_FINALIZER_LIST object entered!") never returns; } /* ---------------------------------------------------------------------------- NO_FINALIZER This is a static nullary constructor (like []) that we use to mark an empty finalizer in a weak pointer object. ------------------------------------------------------------------------- */ INFO_TABLE_CONSTR(stg_NO_FINALIZER,0,0,0,CONSTR_NOCAF,"NO_FINALIZER","NO_FINALIZER") { foreign "C" barf("NO_FINALIZER object entered!") never returns; } CLOSURE(stg_NO_FINALIZER_closure,stg_NO_FINALIZER); /* ---------------------------------------------------------------------------- Stable Names are unlifted too. ------------------------------------------------------------------------- */ INFO_TABLE(stg_STABLE_NAME,0,1,PRIM,"STABLE_NAME","STABLE_NAME") { foreign "C" barf("STABLE_NAME object entered!") never returns; } /* ---------------------------------------------------------------------------- MVars There are two kinds of these: full and empty. We need an info table and entry code for each type. ------------------------------------------------------------------------- */ INFO_TABLE(stg_MVAR_CLEAN,3,0,MVAR_CLEAN,"MVAR","MVAR") { foreign "C" barf("MVAR object entered!") never returns; } INFO_TABLE(stg_MVAR_DIRTY,3,0,MVAR_DIRTY,"MVAR","MVAR") { foreign "C" barf("MVAR object entered!") never returns; } /* ----------------------------------------------------------------------------- STM -------------------------------------------------------------------------- */ INFO_TABLE(stg_TVAR_CLEAN, 2, 1, TVAR, "TVAR", "TVAR") { foreign "C" barf("TVAR_CLEAN object entered!") never returns; } INFO_TABLE(stg_TVAR_DIRTY, 2, 1, TVAR, "TVAR", "TVAR") { foreign "C" barf("TVAR_DIRTY object entered!") never returns; } INFO_TABLE(stg_TVAR_WATCH_QUEUE, 3, 0, MUT_PRIM, "TVAR_WATCH_QUEUE", "TVAR_WATCH_QUEUE") { foreign "C" barf("TVAR_WATCH_QUEUE object entered!") never returns; } INFO_TABLE(stg_ATOMIC_INVARIANT, 2, 1, MUT_PRIM, "ATOMIC_INVARIANT", "ATOMIC_INVARIANT") { foreign "C" barf("ATOMIC_INVARIANT object entered!") never returns; } INFO_TABLE(stg_INVARIANT_CHECK_QUEUE, 3, 0, MUT_PRIM, "INVARIANT_CHECK_QUEUE", "INVARIANT_CHECK_QUEUE") { foreign "C" barf("INVARIANT_CHECK_QUEUE object entered!") never returns; } INFO_TABLE(stg_TREC_CHUNK, 0, 0, TREC_CHUNK, "TREC_CHUNK", "TREC_CHUNK") { foreign "C" barf("TREC_CHUNK object entered!") never returns; } INFO_TABLE(stg_TREC_HEADER, 3, 1, MUT_PRIM, "TREC_HEADER", "TREC_HEADER") { foreign "C" barf("TREC_HEADER object entered!") never returns; } INFO_TABLE_CONSTR(stg_END_STM_WATCH_QUEUE,0,0,0,CONSTR_NOCAF,"END_STM_WATCH_QUEUE","END_STM_WATCH_QUEUE") { foreign "C" barf("END_STM_WATCH_QUEUE object entered!") never returns; } INFO_TABLE_CONSTR(stg_END_INVARIANT_CHECK_QUEUE,0,0,0,CONSTR_NOCAF,"END_INVARIANT_CHECK_QUEUE","END_INVARIANT_CHECK_QUEUE") { foreign "C" barf("END_INVARIANT_CHECK_QUEUE object entered!") never returns; } INFO_TABLE_CONSTR(stg_END_STM_CHUNK_LIST,0,0,0,CONSTR_NOCAF,"END_STM_CHUNK_LIST","END_STM_CHUNK_LIST") { foreign "C" barf("END_STM_CHUNK_LIST object entered!") never returns; } INFO_TABLE_CONSTR(stg_NO_TREC,0,0,0,CONSTR_NOCAF,"NO_TREC","NO_TREC") { foreign "C" barf("NO_TREC object entered!") never returns; } CLOSURE(stg_END_STM_WATCH_QUEUE_closure,stg_END_STM_WATCH_QUEUE); CLOSURE(stg_END_INVARIANT_CHECK_QUEUE_closure,stg_END_INVARIANT_CHECK_QUEUE); CLOSURE(stg_END_STM_CHUNK_LIST_closure,stg_END_STM_CHUNK_LIST); CLOSURE(stg_NO_TREC_closure,stg_NO_TREC); /* ---------------------------------------------------------------------------- Messages ------------------------------------------------------------------------- */ // PRIM rather than CONSTR, because PRIM objects cannot be duplicated by the GC. INFO_TABLE_CONSTR(stg_MSG_TRY_WAKEUP,2,0,0,PRIM,"MSG_TRY_WAKEUP","MSG_TRY_WAKEUP") { foreign "C" barf("MSG_TRY_WAKEUP object entered!") never returns; } INFO_TABLE_CONSTR(stg_MSG_THROWTO,4,0,0,PRIM,"MSG_THROWTO","MSG_THROWTO") { foreign "C" barf("MSG_THROWTO object entered!") never returns; } INFO_TABLE_CONSTR(stg_MSG_BLACKHOLE,3,0,0,PRIM,"MSG_BLACKHOLE","MSG_BLACKHOLE") { foreign "C" barf("MSG_BLACKHOLE object entered!") never returns; } // used to overwrite a MSG_THROWTO when the message has been used/revoked INFO_TABLE_CONSTR(stg_MSG_NULL,1,0,0,PRIM,"MSG_NULL","MSG_NULL") { foreign "C" barf("MSG_NULL object entered!") never returns; } /* ---------------------------------------------------------------------------- END_TSO_QUEUE This is a static nullary constructor (like []) that we use to mark the end of a linked TSO queue. ------------------------------------------------------------------------- */ INFO_TABLE_CONSTR(stg_END_TSO_QUEUE,0,0,0,CONSTR_NOCAF,"END_TSO_QUEUE","END_TSO_QUEUE") { foreign "C" barf("END_TSO_QUEUE object entered!") never returns; } CLOSURE(stg_END_TSO_QUEUE_closure,stg_END_TSO_QUEUE); /* ---------------------------------------------------------------------------- GCD_CAF ------------------------------------------------------------------------- */ INFO_TABLE_CONSTR(stg_GCD_CAF,0,0,0,CONSTR_NOCAF,"GCD_CAF","GCD_CAF") { foreign "C" barf("Evaluated a CAF that was GC'd!") never returns; } /* ---------------------------------------------------------------------------- STM_AWOKEN This is a static nullary constructor (like []) that we use to mark a thread waiting on an STM wakeup ------------------------------------------------------------------------- */ INFO_TABLE_CONSTR(stg_STM_AWOKEN,0,0,0,CONSTR_NOCAF,"STM_AWOKEN","STM_AWOKEN") { foreign "C" barf("STM_AWOKEN object entered!") never returns; } CLOSURE(stg_STM_AWOKEN_closure,stg_STM_AWOKEN); /* ---------------------------------------------------------------------------- Arrays These come in two basic flavours: arrays of data (StgArrWords) and arrays of pointers (StgArrPtrs). They all have a similar layout: ___________________________ | Info | No. of | data.... | Ptr | Words | --------------------------- These are *unpointed* objects: i.e. they cannot be entered. ------------------------------------------------------------------------- */ INFO_TABLE(stg_ARR_WORDS, 0, 0, ARR_WORDS, "ARR_WORDS", "ARR_WORDS") { foreign "C" barf("ARR_WORDS object entered!") never returns; } INFO_TABLE(stg_MUT_ARR_PTRS_CLEAN, 0, 0, MUT_ARR_PTRS_CLEAN, "MUT_ARR_PTRS_CLEAN", "MUT_ARR_PTRS_CLEAN") { foreign "C" barf("MUT_ARR_PTRS_CLEAN object entered!") never returns; } INFO_TABLE(stg_MUT_ARR_PTRS_DIRTY, 0, 0, MUT_ARR_PTRS_DIRTY, "MUT_ARR_PTRS_DIRTY", "MUT_ARR_PTRS_DIRTY") { foreign "C" barf("MUT_ARR_PTRS_DIRTY object entered!") never returns; } INFO_TABLE(stg_MUT_ARR_PTRS_FROZEN, 0, 0, MUT_ARR_PTRS_FROZEN, "MUT_ARR_PTRS_FROZEN", "MUT_ARR_PTRS_FROZEN") { foreign "C" barf("MUT_ARR_PTRS_FROZEN object entered!") never returns; } INFO_TABLE(stg_MUT_ARR_PTRS_FROZEN0, 0, 0, MUT_ARR_PTRS_FROZEN0, "MUT_ARR_PTRS_FROZEN0", "MUT_ARR_PTRS_FROZEN0") { foreign "C" barf("MUT_ARR_PTRS_FROZEN0 object entered!") never returns; } INFO_TABLE(stg_SMALL_MUT_ARR_PTRS_CLEAN, 0, 0, SMALL_MUT_ARR_PTRS_CLEAN, "SMALL_MUT_ARR_PTRS_CLEAN", "SMALL_MUT_ARR_PTRS_CLEAN") { foreign "C" barf("SMALL_MUT_ARR_PTRS_CLEAN object entered!") never returns; } INFO_TABLE(stg_SMALL_MUT_ARR_PTRS_DIRTY, 0, 0, SMALL_MUT_ARR_PTRS_DIRTY, "SMALL_MUT_ARR_PTRS_DIRTY", "SMALL_MUT_ARR_PTRS_DIRTY") { foreign "C" barf("SMALL_MUT_ARR_PTRS_DIRTY object entered!") never returns; } INFO_TABLE(stg_SMALL_MUT_ARR_PTRS_FROZEN, 0, 0, SMALL_MUT_ARR_PTRS_FROZEN, "SMALL_MUT_ARR_PTRS_FROZEN", "SMALL_MUT_ARR_PTRS_FROZEN") { foreign "C" barf("SMALL_MUT_ARR_PTRS_FROZEN object entered!") never returns; } INFO_TABLE(stg_SMALL_MUT_ARR_PTRS_FROZEN0, 0, 0, SMALL_MUT_ARR_PTRS_FROZEN0, "SMALL_MUT_ARR_PTRS_FROZEN0", "SMALL_MUT_ARR_PTRS_FROZEN0") { foreign "C" barf("SMALL_MUT_ARR_PTRS_FROZEN0 object entered!") never returns; } /* ---------------------------------------------------------------------------- Mutable Variables ------------------------------------------------------------------------- */ INFO_TABLE(stg_MUT_VAR_CLEAN, 1, 0, MUT_VAR_CLEAN, "MUT_VAR_CLEAN", "MUT_VAR_CLEAN") { foreign "C" barf("MUT_VAR_CLEAN object entered!") never returns; } INFO_TABLE(stg_MUT_VAR_DIRTY, 1, 0, MUT_VAR_DIRTY, "MUT_VAR_DIRTY", "MUT_VAR_DIRTY") { foreign "C" barf("MUT_VAR_DIRTY object entered!") never returns; } /* ---------------------------------------------------------------------------- Dummy return closure Entering this closure will just return to the address on the top of the stack. Useful for getting a thread in a canonical form where we can just enter the top stack word to start the thread. (see deleteThread) * ------------------------------------------------------------------------- */ INFO_TABLE( stg_dummy_ret, 0, 0, CONSTR_NOCAF, "DUMMY_RET", "DUMMY_RET") () { return (); } CLOSURE(stg_dummy_ret_closure,stg_dummy_ret); /* ---------------------------------------------------------------------------- MVAR_TSO_QUEUE ------------------------------------------------------------------------- */ INFO_TABLE_CONSTR(stg_MVAR_TSO_QUEUE,2,0,0,PRIM,"MVAR_TSO_QUEUE","MVAR_TSO_QUEUE") { foreign "C" barf("MVAR_TSO_QUEUE object entered!") never returns; } /* ---------------------------------------------------------------------------- COMPACT_NFDATA (a blob of data in NF with no outgoing pointers) Just return immediately because the structure is in NF already ------------------------------------------------------------------------- */ INFO_TABLE( stg_COMPACT_NFDATA, 0, 0, COMPACT_NFDATA, "COMPACT_NFDATA", "COMPACT_NFDATA") () { return (); } /* ---------------------------------------------------------------------------- CHARLIKE and INTLIKE closures. These are static representations of Chars and small Ints, so that we can remove dynamic Chars and Ints during garbage collection and replace them with references to the static objects. ------------------------------------------------------------------------- */ #if defined(COMPILING_WINDOWS_DLL) /* * When sticking the RTS in a Windows DLL, we delay populating the * Charlike and Intlike tables until load-time, which is only * when we've got the real addresses to the C# and I# closures. * * -- this is currently broken BL 2009/11/14. * we don't rewrite to static closures at all with Windows DLLs. */ // #warning Is this correct? _imp is a pointer! #define Char_hash_con_info _imp__ghczmprim_GHCziTypes_Czh_con_info #define Int_hash_con_info _imp__ghczmprim_GHCziTypes_Izh_con_info #else #define Char_hash_con_info ghczmprim_GHCziTypes_Czh_con_info #define Int_hash_con_info ghczmprim_GHCziTypes_Izh_con_info #endif #define CHARLIKE_HDR(n) CLOSURE(Char_hash_con_info, n) #define INTLIKE_HDR(n) CLOSURE(Int_hash_con_info, n) #if !(defined(COMPILING_WINDOWS_DLL)) section "data" { stg_CHARLIKE_closure: CHARLIKE_HDR(0) CHARLIKE_HDR(1) CHARLIKE_HDR(2) CHARLIKE_HDR(3) CHARLIKE_HDR(4) CHARLIKE_HDR(5) CHARLIKE_HDR(6) CHARLIKE_HDR(7) CHARLIKE_HDR(8) CHARLIKE_HDR(9) CHARLIKE_HDR(10) CHARLIKE_HDR(11) CHARLIKE_HDR(12) CHARLIKE_HDR(13) CHARLIKE_HDR(14) CHARLIKE_HDR(15) CHARLIKE_HDR(16) CHARLIKE_HDR(17) CHARLIKE_HDR(18) CHARLIKE_HDR(19) CHARLIKE_HDR(20) CHARLIKE_HDR(21) CHARLIKE_HDR(22) CHARLIKE_HDR(23) CHARLIKE_HDR(24) CHARLIKE_HDR(25) CHARLIKE_HDR(26) CHARLIKE_HDR(27) CHARLIKE_HDR(28) CHARLIKE_HDR(29) CHARLIKE_HDR(30) CHARLIKE_HDR(31) CHARLIKE_HDR(32) CHARLIKE_HDR(33) CHARLIKE_HDR(34) CHARLIKE_HDR(35) CHARLIKE_HDR(36) CHARLIKE_HDR(37) CHARLIKE_HDR(38) CHARLIKE_HDR(39) CHARLIKE_HDR(40) CHARLIKE_HDR(41) CHARLIKE_HDR(42) CHARLIKE_HDR(43) CHARLIKE_HDR(44) CHARLIKE_HDR(45) CHARLIKE_HDR(46) CHARLIKE_HDR(47) CHARLIKE_HDR(48) CHARLIKE_HDR(49) CHARLIKE_HDR(50) CHARLIKE_HDR(51) CHARLIKE_HDR(52) CHARLIKE_HDR(53) CHARLIKE_HDR(54) CHARLIKE_HDR(55) CHARLIKE_HDR(56) CHARLIKE_HDR(57) CHARLIKE_HDR(58) CHARLIKE_HDR(59) CHARLIKE_HDR(60) CHARLIKE_HDR(61) CHARLIKE_HDR(62) CHARLIKE_HDR(63) CHARLIKE_HDR(64) CHARLIKE_HDR(65) CHARLIKE_HDR(66) CHARLIKE_HDR(67) CHARLIKE_HDR(68) CHARLIKE_HDR(69) CHARLIKE_HDR(70) CHARLIKE_HDR(71) CHARLIKE_HDR(72) CHARLIKE_HDR(73) CHARLIKE_HDR(74) CHARLIKE_HDR(75) CHARLIKE_HDR(76) CHARLIKE_HDR(77) CHARLIKE_HDR(78) CHARLIKE_HDR(79) CHARLIKE_HDR(80) CHARLIKE_HDR(81) CHARLIKE_HDR(82) CHARLIKE_HDR(83) CHARLIKE_HDR(84) CHARLIKE_HDR(85) CHARLIKE_HDR(86) CHARLIKE_HDR(87) CHARLIKE_HDR(88) CHARLIKE_HDR(89) CHARLIKE_HDR(90) CHARLIKE_HDR(91) CHARLIKE_HDR(92) CHARLIKE_HDR(93) CHARLIKE_HDR(94) CHARLIKE_HDR(95) CHARLIKE_HDR(96) CHARLIKE_HDR(97) CHARLIKE_HDR(98) CHARLIKE_HDR(99) CHARLIKE_HDR(100) CHARLIKE_HDR(101) CHARLIKE_HDR(102) CHARLIKE_HDR(103) CHARLIKE_HDR(104) CHARLIKE_HDR(105) CHARLIKE_HDR(106) CHARLIKE_HDR(107) CHARLIKE_HDR(108) CHARLIKE_HDR(109) CHARLIKE_HDR(110) CHARLIKE_HDR(111) CHARLIKE_HDR(112) CHARLIKE_HDR(113) CHARLIKE_HDR(114) CHARLIKE_HDR(115) CHARLIKE_HDR(116) CHARLIKE_HDR(117) CHARLIKE_HDR(118) CHARLIKE_HDR(119) CHARLIKE_HDR(120) CHARLIKE_HDR(121) CHARLIKE_HDR(122) CHARLIKE_HDR(123) CHARLIKE_HDR(124) CHARLIKE_HDR(125) CHARLIKE_HDR(126) CHARLIKE_HDR(127) CHARLIKE_HDR(128) CHARLIKE_HDR(129) CHARLIKE_HDR(130) CHARLIKE_HDR(131) CHARLIKE_HDR(132) CHARLIKE_HDR(133) CHARLIKE_HDR(134) CHARLIKE_HDR(135) CHARLIKE_HDR(136) CHARLIKE_HDR(137) CHARLIKE_HDR(138) CHARLIKE_HDR(139) CHARLIKE_HDR(140) CHARLIKE_HDR(141) CHARLIKE_HDR(142) CHARLIKE_HDR(143) CHARLIKE_HDR(144) CHARLIKE_HDR(145) CHARLIKE_HDR(146) CHARLIKE_HDR(147) CHARLIKE_HDR(148) CHARLIKE_HDR(149) CHARLIKE_HDR(150) CHARLIKE_HDR(151) CHARLIKE_HDR(152) CHARLIKE_HDR(153) CHARLIKE_HDR(154) CHARLIKE_HDR(155) CHARLIKE_HDR(156) CHARLIKE_HDR(157) CHARLIKE_HDR(158) CHARLIKE_HDR(159) CHARLIKE_HDR(160) CHARLIKE_HDR(161) CHARLIKE_HDR(162) CHARLIKE_HDR(163) CHARLIKE_HDR(164) CHARLIKE_HDR(165) CHARLIKE_HDR(166) CHARLIKE_HDR(167) CHARLIKE_HDR(168) CHARLIKE_HDR(169) CHARLIKE_HDR(170) CHARLIKE_HDR(171) CHARLIKE_HDR(172) CHARLIKE_HDR(173) CHARLIKE_HDR(174) CHARLIKE_HDR(175) CHARLIKE_HDR(176) CHARLIKE_HDR(177) CHARLIKE_HDR(178) CHARLIKE_HDR(179) CHARLIKE_HDR(180) CHARLIKE_HDR(181) CHARLIKE_HDR(182) CHARLIKE_HDR(183) CHARLIKE_HDR(184) CHARLIKE_HDR(185) CHARLIKE_HDR(186) CHARLIKE_HDR(187) CHARLIKE_HDR(188) CHARLIKE_HDR(189) CHARLIKE_HDR(190) CHARLIKE_HDR(191) CHARLIKE_HDR(192) CHARLIKE_HDR(193) CHARLIKE_HDR(194) CHARLIKE_HDR(195) CHARLIKE_HDR(196) CHARLIKE_HDR(197) CHARLIKE_HDR(198) CHARLIKE_HDR(199) CHARLIKE_HDR(200) CHARLIKE_HDR(201) CHARLIKE_HDR(202) CHARLIKE_HDR(203) CHARLIKE_HDR(204) CHARLIKE_HDR(205) CHARLIKE_HDR(206) CHARLIKE_HDR(207) CHARLIKE_HDR(208) CHARLIKE_HDR(209) CHARLIKE_HDR(210) CHARLIKE_HDR(211) CHARLIKE_HDR(212) CHARLIKE_HDR(213) CHARLIKE_HDR(214) CHARLIKE_HDR(215) CHARLIKE_HDR(216) CHARLIKE_HDR(217) CHARLIKE_HDR(218) CHARLIKE_HDR(219) CHARLIKE_HDR(220) CHARLIKE_HDR(221) CHARLIKE_HDR(222) CHARLIKE_HDR(223) CHARLIKE_HDR(224) CHARLIKE_HDR(225) CHARLIKE_HDR(226) CHARLIKE_HDR(227) CHARLIKE_HDR(228) CHARLIKE_HDR(229) CHARLIKE_HDR(230) CHARLIKE_HDR(231) CHARLIKE_HDR(232) CHARLIKE_HDR(233) CHARLIKE_HDR(234) CHARLIKE_HDR(235) CHARLIKE_HDR(236) CHARLIKE_HDR(237) CHARLIKE_HDR(238) CHARLIKE_HDR(239) CHARLIKE_HDR(240) CHARLIKE_HDR(241) CHARLIKE_HDR(242) CHARLIKE_HDR(243) CHARLIKE_HDR(244) CHARLIKE_HDR(245) CHARLIKE_HDR(246) CHARLIKE_HDR(247) CHARLIKE_HDR(248) CHARLIKE_HDR(249) CHARLIKE_HDR(250) CHARLIKE_HDR(251) CHARLIKE_HDR(252) CHARLIKE_HDR(253) CHARLIKE_HDR(254) CHARLIKE_HDR(255) } section "data" { stg_INTLIKE_closure: INTLIKE_HDR(-16) /* MIN_INTLIKE == -16 */ INTLIKE_HDR(-15) INTLIKE_HDR(-14) INTLIKE_HDR(-13) INTLIKE_HDR(-12) INTLIKE_HDR(-11) INTLIKE_HDR(-10) INTLIKE_HDR(-9) INTLIKE_HDR(-8) INTLIKE_HDR(-7) INTLIKE_HDR(-6) INTLIKE_HDR(-5) INTLIKE_HDR(-4) INTLIKE_HDR(-3) INTLIKE_HDR(-2) INTLIKE_HDR(-1) INTLIKE_HDR(0) INTLIKE_HDR(1) INTLIKE_HDR(2) INTLIKE_HDR(3) INTLIKE_HDR(4) INTLIKE_HDR(5) INTLIKE_HDR(6) INTLIKE_HDR(7) INTLIKE_HDR(8) INTLIKE_HDR(9) INTLIKE_HDR(10) INTLIKE_HDR(11) INTLIKE_HDR(12) INTLIKE_HDR(13) INTLIKE_HDR(14) INTLIKE_HDR(15) INTLIKE_HDR(16) /* MAX_INTLIKE == 16 */ } #endif